Files
cadquery/tests/test_cadquery.py

3512 lines
114 KiB
Python
Raw Normal View History

2013-04-14 18:39:47 -04:00
"""
This module tests cadquery creation and manipulation functions
"""
# system modules
import math, os.path, time, tempfile
from random import choice
from random import random
from random import randrange
2013-04-14 18:39:47 -04:00
from pytest import approx
# my modules
2013-04-14 18:39:47 -04:00
from cadquery import *
2013-04-16 22:29:06 -04:00
from cadquery import exporters
from cadquery import occ_impl
from tests import (
BaseTest,
writeStringToFile,
makeUnitCube,
readFileAsString,
makeUnitSquareWire,
makeCube,
)
2013-04-14 18:39:47 -04:00
# where unit test output will be saved
2018-07-15 14:51:11 +02:00
OUTDIR = tempfile.gettempdir()
SUMMARY_FILE = os.path.join(OUTDIR, "testSummary.html")
2013-04-14 18:39:47 -04:00
SUMMARY_TEMPLATE = """<html>
2013-04-14 18:39:47 -04:00
<head>
<style type="text/css">
.testResult{
background: #eeeeee;
margin: 50px;
border: 1px solid black;
}
</style>
</head>
<body>
<!--TEST_CONTENT-->
</body>
</html>"""
TEST_RESULT_TEMPLATE = """
2013-04-14 18:39:47 -04:00
<div class="testResult"><h3>%(name)s</h3>
%(svg)s
</div>
<!--TEST_CONTENT-->
"""
# clean up any summary file that is in the output directory.
# i know, this sux, but there is no other way to do this in 2.6, as we cannot do class fixutres till 2.7
writeStringToFile(SUMMARY_TEMPLATE, SUMMARY_FILE)
2013-04-14 18:39:47 -04:00
class TestCadQuery(BaseTest):
def tearDown(self):
"""
Update summary with data from this test.
This is a really hackey way of doing it-- we get a startup event from module load,
but there is no way in unittest to get a single shutdown event-- except for stuff in 2.7 and above
So what we do here is to read the existing file, stick in more content, and leave it
"""
svgFile = os.path.join(OUTDIR, self._testMethodName + ".svg")
2013-04-14 18:39:47 -04:00
# all tests do not produce output
2013-04-14 18:39:47 -04:00
if os.path.exists(svgFile):
existingSummary = readFileAsString(SUMMARY_FILE)
svgText = readFileAsString(svgFile)
svgText = svgText.replace(
'<?xml version="1.0" encoding="UTF-8" standalone="no"?>', ""
)
2013-04-14 18:39:47 -04:00
# now write data into the file
# the content we are replacing it with also includes the marker, so it can be replaced again
existingSummary = existingSummary.replace(
"<!--TEST_CONTENT-->",
TEST_RESULT_TEMPLATE % (dict(svg=svgText, name=self._testMethodName)),
)
2013-04-14 18:39:47 -04:00
writeStringToFile(existingSummary, SUMMARY_FILE)
2013-04-14 18:39:47 -04:00
def saveModel(self, shape):
2013-04-14 18:39:47 -04:00
"""
shape must be a CQ object
Save models in SVG and STEP format
"""
shape.exportSvg(os.path.join(OUTDIR, self._testMethodName + ".svg"))
shape.val().exportStep(os.path.join(OUTDIR, self._testMethodName + ".step"))
2013-04-14 18:39:47 -04:00
def testToOCC(self):
"""
Tests to make sure that a CadQuery object is converted correctly to a OCC object.
"""
r = Workplane("XY").rect(5, 5).extrude(5)
r = r.toOCC()
2020-03-22 17:53:01 +01:00
import OCP
2020-03-22 17:53:01 +01:00
self.assertEqual(type(r), OCP.TopoDS.TopoDS_Compound)
def testToSVG(self):
"""
Tests to make sure that a CadQuery object is converted correctly to SVG
"""
r = Workplane("XY").rect(5, 5).extrude(5)
r_str = r.toSvg()
# Make sure that a couple of sections from the SVG output make sense
self.assertTrue(r_str.index('path d="M') > 0)
self.assertTrue(
r_str.index('line x1="30" y1="-30" x2="58" y2="-15" stroke-width="3"') > 0
)
2013-04-14 18:39:47 -04:00
def testCubePlugin(self):
"""
Tests a plugin that combines cubes together with a base
:return:
"""
# make the plugin method
def makeCubes(self, length):
# self refers to the CQ or Workplane object
2013-04-14 18:39:47 -04:00
2020-06-17 21:04:54 +02:00
# create the solid
s = Solid.makeBox(length, length, length, Vector(0, 0, 0))
2013-04-14 18:39:47 -04:00
2020-06-17 21:04:54 +02:00
# use CQ utility method to iterate over the stack an position the cubes
return self.eachpoint(lambda loc: s.located(loc), True)
2013-04-14 18:39:47 -04:00
# link the plugin in
2013-04-14 18:39:47 -04:00
Workplane.makeCubes = makeCubes
# call it
result = (
Workplane("XY")
.box(6.0, 8.0, 0.5)
.faces(">Z")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
)
2013-04-14 18:39:47 -04:00
result = result.makeCubes(1.0)
result = result.combineSolids()
self.saveModel(result)
self.assertEqual(1, result.solids().size())
2013-04-14 18:39:47 -04:00
def testCylinderPlugin(self):
"""
Tests a cylinder plugin.
The plugin creates cylinders of the specified radius and height for each item on the stack
This is a very short plugin that illustrates just about the simplest possible
plugin
"""
def cylinders(self, radius, height):
2020-06-17 21:04:54 +02:00
# construct a cylinder at (0,0,0)
c = Solid.makeCylinder(radius, height, Vector(0, 0, 0))
2013-04-14 18:39:47 -04:00
# combine all the cylinders into a single compound
2020-06-17 21:04:54 +02:00
r = self.eachpoint(lambda loc: c.located(loc), True).combineSolids()
2013-04-14 18:39:47 -04:00
return r
2013-04-14 18:39:47 -04:00
Workplane.cyl = cylinders
# now test. here we want weird workplane to see if the objects are transformed right
s = (
Workplane(Plane(Vector((0, 0, 0)), Vector((1, -1, 0)), Vector((1, 1, 0))))
.rect(2.0, 3.0, forConstruction=True)
.vertices()
.cyl(0.25, 0.5)
)
self.assertEqual(4, s.solids().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testPolygonPlugin(self):
"""
Tests a plugin to make regular polygons around points on the stack
Demonstratings using eachpoint to allow working in local coordinates
to create geometry
"""
def rPoly(self, nSides, diameter):
2020-06-17 21:04:54 +02:00
def _makePolygon(loc):
# pnt is a vector in local coordinates
angle = 2.0 * math.pi / nSides
2013-04-14 18:39:47 -04:00
pnts = []
for i in range(nSides + 1):
pnts.append(
2020-06-17 21:04:54 +02:00
Vector(
(diameter / 2.0 * math.cos(angle * i)),
(diameter / 2.0 * math.sin(angle * i)),
0,
)
)
2020-06-17 21:04:54 +02:00
return Wire.makePolygon(pnts).located(loc)
2013-04-14 18:39:47 -04:00
return self.eachpoint(_makePolygon, True)
2013-04-14 18:39:47 -04:00
Workplane.rPoly = rPoly
s = (
Workplane("XY")
.box(4.0, 4.0, 0.25)
.faces(">Z")
.workplane()
.rect(2.0, 2.0, forConstruction=True)
.vertices()
.rPoly(5, 0.5)
.cutThruAll()
)
2013-04-14 18:39:47 -04:00
# 6 base sides, 4 pentagons, 5 sides each = 26
self.assertEqual(26, s.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testPointList(self):
2015-06-16 17:03:36 -04:00
"""
Tests adding points and using them
"""
2013-04-14 18:39:47 -04:00
c = CQ(makeUnitCube())
s = c.faces(">Z").workplane().pushPoints([(-0.3, 0.3), (0.3, 0.3), (0, 0)])
2015-06-16 17:03:36 -04:00
self.assertEqual(3, s.size())
# TODO: is the ability to iterate over points with circle really worth it?
# maybe we should just require using all() and a loop for this. the semantics and
# possible combinations got too hard ( ie, .circle().circle() ) was really odd
2013-04-14 18:39:47 -04:00
body = s.circle(0.05).cutThruAll()
self.saveModel(body)
2015-06-16 17:03:36 -04:00
self.assertEqual(9, body.faces().size())
# Test the case when using eachpoint with only a blank workplane
2020-06-17 21:04:54 +02:00
def callback_fn(loc):
self.assertEqual(
Vector(0, 0, 0), Vector(loc.wrapped.Transformation().TranslationPart())
)
2015-06-16 17:03:36 -04:00
r = Workplane("XY")
2015-06-16 17:03:36 -04:00
r.objects = []
r.eachpoint(callback_fn)
2013-04-14 18:39:47 -04:00
def testWorkplaneFromFace(self):
# make a workplane on the top face
s = CQ(makeUnitCube()).faces(">Z").workplane()
2013-04-14 18:39:47 -04:00
r = s.circle(0.125).cutBlind(-2.0)
self.saveModel(r)
# the result should have 7 faces
self.assertEqual(7, r.faces().size())
2017-08-31 14:58:14 +02:00
self.assertEqual(type(r.val()), Compound)
self.assertEqual(type(r.first().val()), Compound)
2013-04-14 18:39:47 -04:00
def testFrontReference(self):
# make a workplane on the top face
s = CQ(makeUnitCube()).faces("front").workplane()
2013-04-14 18:39:47 -04:00
r = s.circle(0.125).cutBlind(-2.0)
self.saveModel(r)
# the result should have 7 faces
self.assertEqual(7, r.faces().size())
2017-09-01 23:27:11 +02:00
self.assertEqual(type(r.val()), Compound)
self.assertEqual(type(r.first().val()), Compound)
2013-04-14 18:39:47 -04:00
def testRotate(self):
"""Test solid rotation at the CQ object level."""
box = Workplane("XY").box(1, 1, 5)
box.rotate((0, 0, 0), (1, 0, 0), 90)
startPoint = box.faces("<Y").edges("<X").first().val().startPoint().toTuple()
endPoint = box.faces("<Y").edges("<X").first().val().endPoint().toTuple()
self.assertEqual(-0.5, startPoint[0])
self.assertEqual(-0.5, startPoint[1])
self.assertEqual(-2.5, startPoint[2])
self.assertEqual(-0.5, endPoint[0])
self.assertEqual(-0.5, endPoint[1])
self.assertEqual(2.5, endPoint[2])
def testPlaneRotateZNormal(self):
"""
Rotation of a plane in the Z direction should never alter its normal.
This test creates random planes. The plane is rotated a random angle in
the Z-direction to verify that the resulting plane maintains the same
normal.
The test also checks that the random origin is unaltered after
rotation.
"""
for _ in range(100):
angle = (random() - 0.5) * 720
xdir = Vector(random(), random(), random()).normalized()
rdir = Vector(random(), random(), random()).normalized()
zdir = xdir.cross(rdir).normalized()
origin = (random(), random(), random())
plane = Plane(origin=origin, xDir=xdir, normal=zdir)
rotated = plane.rotated((0, 0, angle))
assert rotated.zDir.toTuple() == approx(zdir.toTuple())
assert rotated.origin.toTuple() == approx(origin)
def testPlaneRotateConcat(self):
"""
Test the result of a well-known concatenated rotation example.
"""
xdir = (1, 0, 0)
normal = (0, 0, 1)
k = 2.0 ** 0.5 / 2.0
origin = (2, -1, 1)
plane = Plane(origin=origin, xDir=xdir, normal=normal)
plane = plane.rotated((0, 0, 45))
assert plane.xDir.toTuple() == approx((k, k, 0))
assert plane.yDir.toTuple() == approx((-k, k, 0))
assert plane.zDir.toTuple() == approx((0, 0, 1))
plane = plane.rotated((0, 45, 0))
assert plane.xDir.toTuple() == approx((0.5, 0.5, -k))
assert plane.yDir.toTuple() == approx((-k, k, 0))
assert plane.zDir.toTuple() == approx((0.5, 0.5, k))
assert plane.origin.toTuple() == origin
def testPlaneRotateConcatRandom(self):
"""
Rotation of a plane in a given direction should never alter that
direction.
This test creates a plane and rotates it a random angle in a given
direction. After the rotation, the direction of the resulting plane
in the rotation-direction should be constant.
The test also checks that the origin is unaltered after all rotations.
"""
origin = (2, -1, 1)
plane = Plane(origin=origin, xDir=(1, 0, 0), normal=(0, 0, 1))
for _ in range(100):
before = {
0: plane.xDir.toTuple(),
1: plane.yDir.toTuple(),
2: plane.zDir.toTuple(),
}
angle = (random() - 0.5) * 720
direction = randrange(3)
rotation = [0, 0, 0]
rotation[direction] = angle
plane = plane.rotated(rotation)
after = {
0: plane.xDir.toTuple(),
1: plane.yDir.toTuple(),
2: plane.zDir.toTuple(),
}
assert before[direction] == approx(after[direction])
assert plane.origin.toTuple() == origin
2013-04-14 18:39:47 -04:00
def testLoft(self):
"""
Test making a lofted solid
:return:
"""
s = Workplane("XY").circle(4.0).workplane(5.0).rect(2.0, 2.0).loft()
2013-04-14 18:39:47 -04:00
self.saveModel(s)
# the result should have 7 faces
self.assertEqual(1, s.solids().size())
2013-04-14 18:39:47 -04:00
# the resulting loft had a split on the side, not sure why really, i expected only 3 faces
self.assertEqual(7, s.faces().size())
2013-04-14 18:39:47 -04:00
def testLoftWithOneWireRaisesValueError(self):
s = Workplane("XY").circle(5)
with self.assertRaises(ValueError) as cm:
s.loft()
err = cm.exception
self.assertEqual(str(err), "More than one wire is required")
2013-04-14 18:39:47 -04:00
def testLoftCombine(self):
"""
test combining a lof with another feature
:return:
"""
s = (
Workplane("front")
.box(4.0, 4.0, 0.25)
.faces(">Z")
.circle(1.5)
.workplane(offset=3.0)
.rect(0.75, 0.5)
.loft(combine=True)
)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
# self.assertEqual(1,s.solids().size() )
# self.assertEqual(8,s.faces().size() )
2013-04-14 18:39:47 -04:00
def testRevolveCylinder(self):
"""
Test creating a solid using the revolve operation.
:return:
"""
2015-06-16 17:03:36 -04:00
# The dimensions of the model. These can be modified rather than changing the
# shape's code directly.
rectangle_width = 10.0
rectangle_length = 10.0
angle_degrees = 360.0
# Test revolve without any options for making a cylinder
result = (
Workplane("XY").rect(rectangle_width, rectangle_length, False).revolve()
)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
# Test revolve when only setting the angle to revolve through
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length, False)
.revolve(angle_degrees)
)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length, False)
.revolve(270.0)
)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Test when passing revolve the angle and the axis of revolution's start point
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(angle_degrees, (-5, -5))
)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(270.0, (-5, -5))
)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Test when passing revolve the angle and both the start and ends of the axis of revolution
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(angle_degrees, (-5, -5), (-5, 5))
)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(270.0, (-5, -5), (-5, 5))
)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Testing all of the above without combine
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(angle_degrees, (-5, -5), (-5, 5), False)
)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length)
.revolve(270.0, (-5, -5), (-5, 5), False)
)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
def testRevolveDonut(self):
"""
Test creating a solid donut shape with square walls
:return:
"""
2015-06-16 17:03:36 -04:00
# The dimensions of the model. These can be modified rather than changing the
# shape's code directly.
rectangle_width = 10.0
rectangle_length = 10.0
angle_degrees = 360.0
result = (
Workplane("XY")
.rect(rectangle_width, rectangle_length, True)
2015-06-16 17:03:36 -04:00
.revolve(angle_degrees, (20, 0), (20, 10))
)
self.assertEqual(4, result.faces().size())
self.assertEqual(4, result.vertices().size())
self.assertEqual(6, result.edges().size())
def testRevolveCone(self):
"""
Test creating a solid from a revolved triangle
:return:
"""
result = Workplane("XY").lineTo(0, 10).lineTo(5, 0).close().revolve()
self.assertEqual(2, result.faces().size())
self.assertEqual(2, result.vertices().size())
2019-04-28 21:13:53 +02:00
self.assertEqual(2, result.edges().size())
2019-02-24 20:20:32 +01:00
2019-02-08 23:07:30 +01:00
def testSpline(self):
"""
Tests construction of splines
"""
pts = [(0, 0), (0, 1), (1, 2), (2, 4)]
2019-02-08 23:07:30 +01:00
# Spline path - just a smoke test
path = Workplane("XZ").spline(pts).val()
# Closed spline
path_closed = Workplane("XZ").spline(pts, periodic=True).val()
2019-02-08 23:07:30 +01:00
self.assertTrue(path_closed.IsClosed())
2019-02-24 20:20:32 +01:00
# attempt to build a valid face
2019-02-08 23:07:30 +01:00
w = Wire.assembleEdges([path_closed,])
f = Face.makeFromWires(w)
self.assertTrue(f.isValid())
2019-02-24 20:20:32 +01:00
# attempt to build an invalid face
w = Wire.assembleEdges([path,])
f = Face.makeFromWires(w)
self.assertFalse(f.isValid())
2019-02-24 20:20:32 +01:00
2019-02-09 23:58:04 +01:00
# Spline with explicit tangents
path_const = Workplane("XZ").spline(pts, tangents=((0, 1), (1, 0))).val()
2019-02-08 23:07:30 +01:00
self.assertFalse(path.tangentAt(0) == path_const.tangentAt(0))
self.assertFalse(path.tangentAt(1) == path_const.tangentAt(1))
2019-06-25 07:08:54 +02:00
# test include current
path1 = Workplane("XZ").spline(pts[1:], includeCurrent=True).val()
self.assertAlmostEqual(path.Length(), path1.Length())
# test tangents and offset plane
pts = [(0, 0), (-1, 1), (-2, 0), (-1, 0)]
tangents = [(0, 1), (1, 0)]
path2 = Workplane("XY", (0, 0, 10)).spline(pts, tangents=tangents)
self.assertAlmostEqual(path2.val().tangentAt(0).z, 0)
def testRotatedEllipse(self):
def rotatePoint(x, y, alpha):
# rotation matrix
a = alpha * DEG2RAD
r = ((math.cos(a), math.sin(a)), (-math.sin(a), math.cos(a)))
return ((x * r[0][0] + y * r[1][0]), (x * r[0][1] + y * r[1][1]))
def ellipsePoints(r1, r2, a):
return (r1 * math.cos(a * DEG2RAD), r2 * math.sin(a * DEG2RAD))
DEG2RAD = math.pi / 180.0
p0 = (10, 20)
a1, a2 = 30, -60
r1, r2 = 20, 10
ra = 25
sx_rot, sy_rot = rotatePoint(*ellipsePoints(r1, r2, a1), ra)
ex_rot, ey_rot = rotatePoint(*ellipsePoints(r1, r2, a2), ra)
# startAtCurrent=False, sense = 1
ellipseArc1 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1, r2, startAtCurrent=False, angle1=a1, angle2=a2, rotation_angle=ra
)
)
start = ellipseArc1.vertices().objects[0]
end = ellipseArc1.vertices().objects[1]
self.assertTupleAlmostEquals(
(start.X, start.Y), (p0[0] + sx_rot, p0[1] + sy_rot), 3
)
self.assertTupleAlmostEquals(
(end.X, end.Y), (p0[0] + ex_rot, p0[1] + ey_rot), 3
)
# startAtCurrent=True, sense = 1
ellipseArc2 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1, r2, startAtCurrent=True, angle1=a1, angle2=a2, rotation_angle=ra
)
)
start = ellipseArc2.vertices().objects[0]
end = ellipseArc2.vertices().objects[1]
self.assertTupleAlmostEquals(
(start.X, start.Y), (p0[0] + sx_rot - sx_rot, p0[1] + sy_rot - sy_rot), 3
)
self.assertTupleAlmostEquals(
(end.X, end.Y), (p0[0] + ex_rot - sx_rot, p0[1] + ey_rot - sy_rot), 3
)
# startAtCurrent=False, sense = -1
ellipseArc3 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1,
r2,
startAtCurrent=False,
angle1=a1,
angle2=a2,
rotation_angle=ra,
sense=-1,
)
)
start = ellipseArc3.vertices().objects[0]
end = ellipseArc3.vertices().objects[1]
# swap start and end points for coparison due to different sense
self.assertTupleAlmostEquals(
(start.X, start.Y), (p0[0] + ex_rot, p0[1] + ey_rot), 3
)
self.assertTupleAlmostEquals(
(end.X, end.Y), (p0[0] + sx_rot, p0[1] + sy_rot), 3
)
# startAtCurrent=True, sense = -1
ellipseArc4 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1,
r2,
startAtCurrent=True,
angle1=a1,
angle2=a2,
rotation_angle=ra,
sense=-1,
makeWire=True,
)
)
self.assertEqual(len(ellipseArc4.ctx.pendingWires), 1)
start = ellipseArc4.vertices().objects[0]
end = ellipseArc4.vertices().objects[1]
# swap start and end points for coparison due to different sense
self.assertTupleAlmostEquals(
(start.X, start.Y), (p0[0] + ex_rot - ex_rot, p0[1] + ey_rot - ey_rot), 3
)
self.assertTupleAlmostEquals(
(end.X, end.Y), (p0[0] + sx_rot - ex_rot, p0[1] + sy_rot - ey_rot), 3
)
def testEllipseArcsClockwise(self):
ellipseArc = (
Workplane("XY")
.moveTo(10, 15)
.ellipseArc(5, 4, -10, 190, 45, sense=-1, startAtCurrent=False)
)
sp = ellipseArc.val().startPoint()
ep = ellipseArc.val().endPoint()
self.assertTupleAlmostEquals(
(sp.x, sp.y), (7.009330014275797, 11.027027582524015), 3
)
self.assertTupleAlmostEquals(
(ep.x, ep.y), (13.972972417475985, 17.990669985724203), 3
)
ellipseArc = (
ellipseArc.ellipseArc(5, 4, -10, 190, 315, sense=-1)
.ellipseArc(5, 4, -10, 190, 225, sense=-1)
.ellipseArc(5, 4, -10, 190, 135, sense=-1)
)
ep = ellipseArc.val().endPoint()
self.assertTupleAlmostEquals((sp.x, sp.y), (ep.x, ep.y), 3)
def testEllipseArcsCounterClockwise(self):
ellipseArc = (
Workplane("XY")
.moveTo(10, 15)
.ellipseArc(5, 4, -10, 190, 45, startAtCurrent=False)
)
sp = ellipseArc.val().startPoint()
ep = ellipseArc.val().endPoint()
self.assertTupleAlmostEquals(
(sp.x, sp.y), (13.972972417475985, 17.990669985724203), 3
)
self.assertTupleAlmostEquals(
(ep.x, ep.y), (7.009330014275797, 11.027027582524015), 3
)
ellipseArc = (
ellipseArc.ellipseArc(5, 4, -10, 190, 135)
.ellipseArc(5, 4, -10, 190, 225)
.ellipseArc(5, 4, -10, 190, 315)
)
ep = ellipseArc.val().endPoint()
self.assertTupleAlmostEquals((sp.x, sp.y), (ep.x, ep.y), 3)
def testEllipseCenterAndMoveTo(self):
# Whether we start from a center() call or a moveTo call, it should be the same ellipse Arc
p0 = (10, 20)
a1, a2 = 30, -60
r1, r2 = 20, 10
ra = 25
ellipseArc1 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1, r2, startAtCurrent=False, angle1=a1, angle2=a2, rotation_angle=ra
)
)
sp1 = ellipseArc1.val().startPoint()
ep1 = ellipseArc1.val().endPoint()
ellipseArc2 = (
Workplane("XY")
.moveTo(*p0)
.ellipseArc(
r1, r2, startAtCurrent=False, angle1=a1, angle2=a2, rotation_angle=ra
)
)
sp2 = ellipseArc2.val().startPoint()
ep2 = ellipseArc2.val().endPoint()
self.assertTupleAlmostEquals(sp1.toTuple(), sp2.toTuple(), 3)
self.assertTupleAlmostEquals(ep1.toTuple(), ep2.toTuple(), 3)
def testMakeEllipse(self):
el = Wire.makeEllipse(
1, 2, Vector(0, 0, 0), Vector(0, 0, 1), Vector(1, 0, 0), 0, 90, 45, True,
)
self.assertTrue(el.IsClosed())
self.assertTrue(el.isValid())
def testSweep(self):
"""
Tests the operation of sweeping a wire(s) along a path
"""
pts = [(0, 0), (0, 1), (1, 2), (2, 4)]
# Spline path
path = Workplane("XZ").spline(pts)
# Test defaults
result = Workplane("XY").circle(1.0).sweep(path)
self.assertEqual(3, result.faces().size())
self.assertEqual(3, result.edges().size())
# Test with makeSolid False
result = Workplane("XY").circle(1.0).sweep(path, makeSolid=False)
self.assertEqual(1, result.faces().size())
self.assertEqual(3, result.edges().size())
# Test with isFrenet True
result = Workplane("XY").circle(1.0).sweep(path, isFrenet=True)
self.assertEqual(3, result.faces().size())
self.assertEqual(3, result.edges().size())
# Test with makeSolid False and isFrenet True
result = Workplane("XY").circle(1.0).sweep(path, makeSolid=False, isFrenet=True)
self.assertEqual(1, result.faces().size())
self.assertEqual(3, result.edges().size())
# Test rectangle with defaults
result = Workplane("XY").rect(1.0, 1.0).sweep(path)
self.assertEqual(6, result.faces().size())
self.assertEqual(12, result.edges().size())
# Polyline path
path = Workplane("XZ").polyline(pts)
# Test defaults
result = Workplane("XY").circle(0.1).sweep(path, transition="transformed")
self.assertEqual(5, result.faces().size())
self.assertEqual(7, result.edges().size())
2019-02-26 17:04:48 +01:00
# Polyline path and one inner profiles
path = Workplane("XZ").polyline(pts)
# Test defaults
result = (
Workplane("XY")
.circle(0.2)
.circle(0.1)
.sweep(path, transition="transformed")
)
2019-02-26 17:04:48 +01:00
self.assertEqual(8, result.faces().size())
self.assertEqual(14, result.edges().size())
2019-02-26 16:37:08 +01:00
# Polyline path and different transition settings
for t in ("transformed", "right", "round"):
2019-02-26 16:37:08 +01:00
path = Workplane("XZ").polyline(pts)
result = (
Workplane("XY")
.circle(0.2)
.rect(0.2, 0.1)
.rect(0.1, 0.2)
.sweep(path, transition=t)
)
2019-02-26 16:37:08 +01:00
self.assertTrue(result.solids().val().isValid())
2019-02-26 18:39:41 +01:00
# Polyline path and multiple inner profiles
path = Workplane("XZ").polyline(pts)
# Test defaults
result = (
Workplane("XY")
.circle(0.2)
.rect(0.2, 0.1)
.rect(0.1, 0.2)
.circle(0.1)
.sweep(path)
)
2019-02-26 18:39:41 +01:00
self.assertTrue(result.solids().val().isValid())
# Arc path
path = Workplane("XZ").threePointArc((1.0, 1.5), (0.0, 1.0))
# Test defaults
result = Workplane("XY").circle(0.1).sweep(path)
self.assertEqual(3, result.faces().size())
self.assertEqual(3, result.edges().size())
2019-05-19 10:44:03 +02:00
def testMultisectionSweep(self):
"""
Tests the operation of sweeping along a list of wire(s) along a path
"""
# X axis line length 20.0
path = Workplane("XZ").moveTo(-10, 0).lineTo(10, 0)
# Sweep a circle from diameter 2.0 to diameter 1.0 to diameter 2.0 along X axis length 10.0 + 10.0
defaultSweep = (
Workplane("YZ")
.workplane(offset=-10.0)
.circle(2.0)
.workplane(offset=10.0)
.circle(1.0)
.workplane(offset=10.0)
.circle(2.0)
.sweep(path, multisection=True)
)
# We can sweep thrue different shapes
recttocircleSweep = (
Workplane("YZ")
.workplane(offset=-10.0)
.rect(2.0, 2.0)
.workplane(offset=8.0)
.circle(1.0)
.workplane(offset=4.0)
.circle(1.0)
.workplane(offset=8.0)
.rect(2.0, 2.0)
.sweep(path, multisection=True)
)
circletorectSweep = (
Workplane("YZ")
.workplane(offset=-10.0)
.circle(1.0)
.workplane(offset=7.0)
.rect(2.0, 2.0)
.workplane(offset=6.0)
.rect(2.0, 2.0)
.workplane(offset=7.0)
.circle(1.0)
.sweep(path, multisection=True)
)
# Placement of the Shape is important otherwise could produce unexpected shape
specialSweep = (
Workplane("YZ")
.circle(1.0)
.workplane(offset=10.0)
.rect(2.0, 2.0)
.sweep(path, multisection=True)
)
# Switch to an arc for the path : line l=5.0 then half circle r=4.0 then line l=5.0
path = (
Workplane("XZ")
.moveTo(-5, 4)
.lineTo(0, 4)
.threePointArc((4, 0), (0, -4))
.lineTo(-5, -4)
)
# Placement of different shapes should follow the path
# cylinder r=1.5 along first line
# then sweep allong arc from r=1.5 to r=1.0
# then cylinder r=1.0 along last line
arcSweep = (
Workplane("YZ")
.workplane(offset=-5)
.moveTo(0, 4)
.circle(1.5)
.workplane(offset=5)
.circle(1.5)
.moveTo(0, -8)
.circle(1.0)
.workplane(offset=-5)
.circle(1.0)
.sweep(path, multisection=True)
)
# Test and saveModel
self.assertEqual(1, defaultSweep.solids().size())
self.assertEqual(1, circletorectSweep.solids().size())
self.assertEqual(1, recttocircleSweep.solids().size())
self.assertEqual(1, specialSweep.solids().size())
self.assertEqual(1, arcSweep.solids().size())
self.saveModel(defaultSweep)
2015-06-16 17:03:36 -04:00
def testTwistExtrude(self):
"""
Tests extrusion while twisting through an angle.
"""
profile = Workplane("XY").rect(10, 10)
2015-06-16 17:03:36 -04:00
r = profile.twistExtrude(10, 45, False)
self.assertEqual(6, r.faces().size())
def testTwistExtrudeCombine(self):
"""
Tests extrusion while twisting through an angle, combining with other solids.
"""
profile = Workplane("XY").rect(10, 10)
2015-06-16 17:03:36 -04:00
r = profile.twistExtrude(10, 45)
self.assertEqual(6, r.faces().size())
2013-04-14 18:39:47 -04:00
def testRectArray(self):
NUMX = 3
NUMY = 3
s = (
Workplane("XY")
.box(40, 40, 5, centered=(True, True, True))
.faces(">Z")
.workplane()
.rarray(8.0, 8.0, NUMX, NUMY, True)
.circle(2.0)
.extrude(2.0)
)
# s = Workplane("XY").box(40,40,5,centered=(True,True,True)).faces(">Z").workplane().circle(2.0).extrude(2.0)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
# 6 faces for the box, 2 faces for each cylinder
self.assertEqual(6 + NUMX * NUMY * 2, s.faces().size())
2013-04-14 18:39:47 -04:00
2018-12-25 23:30:53 +01:00
def testPolarArray(self):
radius = 10
# Test for proper number of elements
s = Workplane("XY").polarArray(radius, 0, 180, 1)
self.assertEqual(1, s.size())
s = Workplane("XY").polarArray(radius, 0, 180, 6)
self.assertEqual(6, s.size())
2020-07-09 18:16:17 +02:00
to_x = lambda l: l.wrapped.Transformation().TranslationPart().X()
to_y = lambda l: l.wrapped.Transformation().TranslationPart().Y()
2020-07-09 18:26:09 +02:00
to_angle = (
lambda l: l.wrapped.Transformation().GetRotation().GetRotationAngle()
* 180.0
/ math.pi
)
2020-07-09 18:16:17 +02:00
2018-12-25 23:30:53 +01:00
# Test for proper placement when fill == True
s = Workplane("XY").polarArray(radius, 0, 180, 3)
2020-07-09 18:16:17 +02:00
self.assertAlmostEqual(0, to_y(s.objects[1]))
self.assertAlmostEqual(radius, to_x(s.objects[1]))
2018-12-25 23:30:53 +01:00
# Test for proper placement when angle to fill is multiple of 360 deg
s = Workplane("XY").polarArray(radius, 0, 360, 4)
2020-07-09 18:16:17 +02:00
self.assertAlmostEqual(0, to_y(s.objects[1]))
self.assertAlmostEqual(radius, to_x(s.objects[1]))
2018-12-25 23:30:53 +01:00
# Test for proper placement when fill == False
s = Workplane("XY").polarArray(radius, 0, 90, 3, fill=False)
2020-07-09 18:16:17 +02:00
self.assertAlmostEqual(0, to_y(s.objects[1]))
self.assertAlmostEqual(radius, to_x(s.objects[1]))
2018-12-25 23:30:53 +01:00
# Test for proper operation of startAngle
s = Workplane("XY").polarArray(radius, 90, 180, 3)
2020-07-09 18:16:17 +02:00
self.assertAlmostEqual(radius, to_x(s.objects[0]))
self.assertAlmostEqual(0, to_y(s.objects[0]))
2018-12-25 23:30:53 +01:00
2020-07-09 18:26:09 +02:00
# Test for local rotation
s = Workplane().polarArray(radius, 0, 180, 3)
self.assertAlmostEqual(0, to_angle(s.objects[0]))
self.assertAlmostEqual(90, to_angle(s.objects[1]))
s = Workplane().polarArray(radius, 0, 180, 3, rotate=False)
self.assertAlmostEqual(0, to_angle(s.objects[0]))
self.assertAlmostEqual(0, to_angle(s.objects[1]))
2013-04-14 18:39:47 -04:00
def testNestedCircle(self):
s = (
Workplane("XY")
.box(40, 40, 5)
.pushPoints([(10, 0), (0, 10)])
.circle(4)
.circle(2)
.extrude(4)
)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
self.assertEqual(14, s.faces().size())
2013-04-14 18:39:47 -04:00
def testConcentricEllipses(self):
concentricEllipses = (
Workplane("XY").center(10, 20).ellipse(100, 10).center(0, 0).ellipse(50, 5)
)
v = concentricEllipses.vertices().objects[0]
self.assertTupleAlmostEquals((v.X, v.Y), (10 + 50, 20), 3)
2013-04-14 18:39:47 -04:00
def testLegoBrick(self):
# test making a simple lego brick
# which of the below
2013-04-14 18:39:47 -04:00
# inputs
2013-04-14 18:39:47 -04:00
lbumps = 8
wbumps = 2
# lego brick constants
P = 8.0 # nominal pitch
c = 0.1 # clearance on each brick side
H = 1.2 * P # nominal height of a brick
bumpDiam = 4.8 # the standard bump diameter
# the nominal thickness of the walls, normally 1.5
t = (P - (2 * c) - bumpDiam) / 2.0
postDiam = P - t # works out to 6.5
total_length = lbumps * P - 2.0 * c
total_width = wbumps * P - 2.0 * c
# build the brick
s = Workplane("XY").box(total_length, total_width, H) # make the base
s = s.faces("<Z").shell(-1.0 * t) # shell inwards not outwards
s = (
s.faces(">Z")
.workplane()
.rarray(P, P, lbumps, wbumps, True)
.circle(bumpDiam / 2.0)
.extrude(1.8)
) # make the bumps on the top
# add posts on the bottom. posts are different diameter depending on geometry
# solid studs for 1 bump, tubes for multiple, none for 1x1
# this is cheating a little-- how to select the inner face from the shell?
tmp = s.faces("<Z").workplane(invert=True)
2013-04-14 18:39:47 -04:00
if lbumps > 1 and wbumps > 1:
tmp = (
tmp.rarray(P, P, lbumps - 1, wbumps - 1, center=True)
.circle(postDiam / 2.0)
.circle(bumpDiam / 2.0)
.extrude(H - t)
)
2013-04-14 18:39:47 -04:00
elif lbumps > 1:
tmp = tmp.rarray(P, P, lbumps - 1, 1, center=True).circle(t).extrude(H - t)
2013-04-14 18:39:47 -04:00
elif wbumps > 1:
tmp = tmp.rarray(P, P, 1, wbumps - 1, center=True).circle(t).extrude(H - t)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testAngledHoles(self):
s = (
Workplane("front")
.box(4.0, 4.0, 0.25)
.faces(">Z")
.workplane()
.transformed(offset=Vector(0, -1.5, 1.0), rotate=Vector(60, 0, 0))
.rect(1.5, 1.5, forConstruction=True)
.vertices()
.hole(0.25)
)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
self.assertEqual(10, s.faces().size())
2013-04-14 18:39:47 -04:00
def testTranslateSolid(self):
c = CQ(makeUnitCube())
self.assertAlmostEqual(0.0, c.faces("<Z").vertices().item(0).val().Z, 3)
2013-04-14 18:39:47 -04:00
# TODO: it might be nice to provide a version of translate that modifies the existing geometry too
d = c.translate(Vector(0, 0, 1.5))
self.assertAlmostEqual(1.5, d.faces("<Z").vertices().item(0).val().Z, 3)
2013-04-14 18:39:47 -04:00
def testTranslateWire(self):
c = CQ(makeUnitSquareWire())
self.assertAlmostEqual(0.0, c.edges().vertices().item(0).val().Z, 3)
d = c.translate(Vector(0, 0, 1.5))
self.assertAlmostEqual(1.5, d.edges().vertices().item(0).val().Z, 3)
2013-04-14 18:39:47 -04:00
def testSolidReferencesCombine(self):
"test that solid references are preserved correctly"
c = CQ(makeUnitCube()) # the cube is the context solid
self.assertEqual(6, c.faces().size()) # cube has six faces
2013-04-14 18:39:47 -04:00
r = (
c.faces(">Z").workplane().circle(0.125).extrude(0.5, True)
) # make a boss, not updating the original
self.assertEqual(8, r.faces().size()) # just the boss faces
self.assertEqual(6, c.faces().size()) # original is not modified
2013-04-14 18:39:47 -04:00
def testSolidReferencesCombineTrue(self):
s = Workplane(Plane.XY())
r = s.rect(2.0, 2.0).extrude(0.5)
# the result of course has 6 faces
self.assertEqual(6, r.faces().size())
# the original workplane does not, because it did not have a solid initially
self.assertEqual(0, s.faces().size())
t = r.faces(">Z").workplane().rect(0.25, 0.25).extrude(0.5, True)
# of course the result has 11 faces
self.assertEqual(11, t.faces().size())
# r (being the parent) remains unmodified
self.assertEqual(6, r.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(r)
def testSolidReferenceCombineFalse(self):
s = Workplane(Plane.XY())
r = s.rect(2.0, 2.0).extrude(0.5)
# the result of course has 6 faces
self.assertEqual(6, r.faces().size())
# the original workplane does not, because it did not have a solid initially
self.assertEqual(0, s.faces().size())
2013-04-14 18:39:47 -04:00
t = r.faces(">Z").workplane().rect(0.25, 0.25).extrude(0.5, False)
# result has 6 faces, becuase it was not combined with the original
self.assertEqual(6, t.faces().size())
self.assertEqual(6, r.faces().size()) # original is unmodified as well
# subseuent opertions use that context solid afterwards
2013-04-14 18:39:47 -04:00
def testSimpleWorkplane(self):
"""
A simple square part with a hole in it
"""
s = Workplane(Plane.XY())
r = (
s.rect(2.0, 2.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.circle(0.25)
.cutBlind(-1.0)
)
2013-04-14 18:39:47 -04:00
self.saveModel(r)
self.assertEqual(7, r.faces().size())
2013-04-14 18:39:47 -04:00
def testMultiFaceWorkplane(self):
"""
Test Creation of workplane from multiple co-planar face
selection.
"""
s = Workplane("XY").box(1, 1, 1).faces(">Z").rect(1, 0.5).cutBlind(-0.2)
w = s.faces(">Z").workplane()
2020-06-23 18:18:33 +02:00
o = w.val() # origin of the workplane
self.assertAlmostEqual(o.x, 0.0, 3)
self.assertAlmostEqual(o.y, 0.0, 3)
self.assertAlmostEqual(o.z, 0.5, 3)
2013-04-14 18:39:47 -04:00
def testTriangularPrism(self):
s = Workplane("XY").lineTo(1, 0).lineTo(1, 1).close().extrude(0.2)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testMultiWireWorkplane(self):
"""
A simple square part with a hole in it-- but this time done as a single extrusion
with two wires, as opposed to s cut
"""
s = Workplane(Plane.XY())
r = s.rect(2.0, 2.0).circle(0.25).extrude(0.5)
2013-04-14 18:39:47 -04:00
self.saveModel(r)
self.assertEqual(7, r.faces().size())
2013-04-14 18:39:47 -04:00
def testConstructionWire(self):
"""
Tests a wire with several holes, that are based on the vertices of a square
also tests using a workplane plane other than XY
"""
s = Workplane(Plane.YZ())
r = (
s.rect(2.0, 2.0)
.rect(1.3, 1.3, forConstruction=True)
.vertices()
.circle(0.125)
.extrude(0.5)
)
2013-04-14 18:39:47 -04:00
self.saveModel(r)
# 10 faces-- 6 plus 4 holes, the vertices of the second rect.
self.assertEqual(10, r.faces().size())
2013-04-14 18:39:47 -04:00
def testTwoWorkplanes(self):
"""
Tests a model that uses more than one workplane
"""
# base block
2013-04-14 18:39:47 -04:00
s = Workplane(Plane.XY())
# TODO: this syntax is nice, but the iteration might not be worth
# the complexity.
# the simpler and slightly longer version would be:
2013-04-14 18:39:47 -04:00
# r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices()
# for c in r.all():
# c.circle(0.125).extrude(0.5,True)
r = (
s.rect(2.0, 2.0)
.rect(1.3, 1.3, forConstruction=True)
.vertices()
.circle(0.125)
.extrude(0.5)
)
2013-04-14 18:39:47 -04:00
# side hole, blind deep 1.9
2013-04-14 18:39:47 -04:00
t = r.faces(">Y").workplane().circle(0.125).cutBlind(-1.9)
self.saveModel(t)
self.assertEqual(12, t.faces().size())
2013-04-14 18:39:47 -04:00
2015-08-17 08:29:25 -04:00
def testCut(self):
"""
Tests the cut function by itself to catch the case where a Solid object is passed.
"""
s = Workplane(Plane.XY())
currentS = s.rect(2.0, 2.0).extrude(0.5)
toCut = s.rect(1.0, 1.0).extrude(0.5)
2015-08-17 08:29:25 -04:00
resS = currentS.cut(toCut.val())
2015-08-17 08:29:25 -04:00
self.assertEqual(10, resS.faces().size())
2013-04-14 18:39:47 -04:00
2020-04-06 21:20:24 +02:00
with self.assertRaises(ValueError):
currentS.cut(toCut.faces().val())
2013-04-14 18:39:47 -04:00
2018-12-25 23:30:53 +01:00
def testIntersect(self):
"""
Tests the intersect function.
"""
s = Workplane(Plane.XY())
currentS = s.rect(2.0, 2.0).extrude(0.5)
toIntersect = s.rect(1.0, 1.0).extrude(1)
resS = currentS.intersect(toIntersect.val())
2018-12-25 23:30:53 +01:00
self.assertEqual(6, resS.faces().size())
self.assertAlmostEqual(resS.val().Volume(), 0.5)
2019-02-24 20:20:32 +01:00
resS = currentS.intersect(toIntersect)
2018-12-26 00:07:15 +01:00
self.assertEqual(6, resS.faces().size())
self.assertAlmostEqual(resS.val().Volume(), 0.5)
2018-12-25 23:30:53 +01:00
2020-04-06 21:26:00 +02:00
b1 = Workplane("XY").box(1, 1, 1)
b2 = Workplane("XY", origin=(0, 0, 0.5)).box(1, 1, 1)
2020-04-06 21:20:24 +02:00
resS = b1.intersect(b2)
2020-04-06 21:26:00 +02:00
2020-04-06 21:20:24 +02:00
self.assertAlmostEqual(resS.val().Volume(), 0.5)
2020-04-06 21:26:00 +02:00
2020-04-06 21:20:24 +02:00
with self.assertRaises(ValueError):
b1.intersect(b2.faces().val())
2018-12-25 23:30:53 +01:00
def testBoundingBox(self):
"""
Tests the boudingbox center of a model
"""
result0 = (
Workplane("XY")
.moveTo(10, 0)
.lineTo(5, 0)
.threePointArc((3.9393, 0.4393), (3.5, 1.5))
.threePointArc((3.0607, 2.5607), (2, 3))
.lineTo(1.5, 3)
.threePointArc((0.4393, 3.4393), (0, 4.5))
.lineTo(0, 13.5)
.threePointArc((0.4393, 14.5607), (1.5, 15))
.lineTo(28, 15)
.lineTo(28, 13.5)
.lineTo(24, 13.5)
.lineTo(24, 11.5)
.lineTo(27, 11.5)
.lineTo(27, 10)
.lineTo(22, 10)
.lineTo(22, 13.2)
.lineTo(14.5, 13.2)
.lineTo(14.5, 10)
.lineTo(12.5, 10)
.lineTo(12.5, 13.2)
.lineTo(5.5, 13.2)
.lineTo(5.5, 2)
.threePointArc((5.793, 1.293), (6.5, 1))
.lineTo(10, 1)
.close()
)
result = result0.extrude(100)
bb_center = result.val().BoundingBox().center
self.saveModel(result)
self.assertAlmostEqual(14.0, bb_center.x, 3)
self.assertAlmostEqual(7.5, bb_center.y, 3)
self.assertAlmostEqual(50.0, bb_center.z, 3)
# The following will raise with the default tolerance of TOL 1e-2
bb = result.val().BoundingBox(tolerance=1e-3)
self.assertAlmostEqual(0.0, bb.xmin, 2)
self.assertAlmostEqual(28, bb.xmax, 2)
self.assertAlmostEqual(0.0, bb.ymin, 2)
self.assertAlmostEqual(15.0, bb.ymax, 2)
self.assertAlmostEqual(0.0, bb.zmin, 2)
self.assertAlmostEqual(100.0, bb.zmax, 2)
2013-04-14 18:39:47 -04:00
def testCutThroughAll(self):
"""
Tests a model that uses more than one workplane
"""
# base block
2013-04-14 18:39:47 -04:00
s = Workplane(Plane.XY())
r = (
s.rect(2.0, 2.0)
.rect(1.3, 1.3, forConstruction=True)
.vertices()
.circle(0.125)
.extrude(0.5)
)
2019-03-05 21:34:54 +01:00
# thru all without explicit face selection
t = r.circle(0.5).cutThruAll()
self.assertEqual(11, t.faces().size())
# side hole, thru all
2019-03-05 21:34:54 +01:00
t = t.faces(">Y").workplane().circle(0.125).cutThruAll()
2013-04-14 18:39:47 -04:00
self.saveModel(t)
2019-03-05 21:34:54 +01:00
self.assertEqual(13, t.faces().size())
2013-04-14 18:39:47 -04:00
def testCutToFaceOffsetNOTIMPLEMENTEDYET(self):
"""
Tests cutting up to a given face, or an offset from a face
"""
# base block
2013-04-14 18:39:47 -04:00
s = Workplane(Plane.XY())
r = (
s.rect(2.0, 2.0)
.rect(1.3, 1.3, forConstruction=True)
.vertices()
.circle(0.125)
.extrude(0.5)
)
2013-04-14 18:39:47 -04:00
# side hole, up to 0.1 from the last face
2013-04-14 18:39:47 -04:00
try:
t = (
r.faces(">Y")
.workplane()
.circle(0.125)
.cutToOffsetFromFace(r.faces().mminDist(Dir.Y), 0.1)
)
# should end up being a blind hole
self.assertEqual(10, t.faces().size())
t.first().val().exportStep("c:/temp/testCutToFace.STEP")
2013-04-14 18:39:47 -04:00
except:
pass
# Not Implemented Yet
2013-04-14 18:39:47 -04:00
def testWorkplaneOnExistingSolid(self):
"Tests extruding on an existing solid"
c = (
CQ(makeUnitCube())
.faces(">Z")
.workplane()
.circle(0.25)
.circle(0.125)
.extrude(0.25)
)
2013-04-14 18:39:47 -04:00
self.saveModel(c)
self.assertEqual(10, c.faces().size())
2013-04-14 18:39:47 -04:00
def testWorkplaneCenterMove(self):
# this workplane is centered at x=0.5,y=0.5, the center of the upper face
s = (
Workplane("XY").box(1, 1, 1).faces(">Z").workplane().center(-0.5, -0.5)
) # move the center to the corner
2013-04-14 18:39:47 -04:00
t = s.circle(0.25).extrude(0.2) # make a boss
self.assertEqual(9, t.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(t)
def testBasicLines(self):
"Make a triangluar boss"
global OUTDIR
2013-04-14 18:39:47 -04:00
s = Workplane(Plane.XY())
# TODO: extrude() should imply wire() if not done already
# most users dont understand what a wire is, they are just drawing
2013-04-14 18:39:47 -04:00
r = s.lineTo(1.0, 0).lineTo(0, 1.0).close().wire().extrude(0.25)
r.val().exportStep(os.path.join(OUTDIR, "testBasicLinesStep1.STEP"))
2013-04-14 18:39:47 -04:00
# no faces on the original workplane
self.assertEqual(0, s.faces().size())
# 5 faces on newly created object
self.assertEqual(5, r.faces().size())
2013-04-14 18:39:47 -04:00
# now add a circle through a side face
r1 = r.faces("+XY").workplane().circle(0.08).cutThruAll()
self.assertEqual(6, r1.faces().size())
r1.val().exportStep(os.path.join(OUTDIR, "testBasicLinesXY.STEP"))
2013-04-14 18:39:47 -04:00
# now add a circle through a top
r2 = r1.faces("+Z").workplane().circle(0.08).cutThruAll()
self.assertEqual(9, r2.faces().size())
r2.val().exportStep(os.path.join(OUTDIR, "testBasicLinesZ.STEP"))
2013-04-14 18:39:47 -04:00
self.saveModel(r2)
2013-04-14 18:39:47 -04:00
def test2DDrawing(self):
"""
Draw things like 2D lines and arcs, should be expanded later to include all 2D constructs
"""
s = Workplane(Plane.XY())
r = (
s.lineTo(1.0, 0.0)
.lineTo(1.0, 1.0)
.threePointArc((1.0, 1.5), (0.0, 1.0))
.lineTo(0.0, 0.0)
.moveTo(1.0, 0.0)
.lineTo(2.0, 0.0)
.lineTo(2.0, 2.0)
.threePointArc((2.0, 2.5), (0.0, 2.0))
.lineTo(-2.0, 2.0)
.lineTo(-2.0, 0.0)
.close()
)
self.assertEqual(1, r.wires().size())
# Test the *LineTo functions
s = Workplane(Plane.XY())
r = s.hLineTo(1.0).vLineTo(1.0).hLineTo(0.0).close()
self.assertEqual(1, r.wire().size())
self.assertEqual(4, r.edges().size())
# Test the *Line functions
s = Workplane(Plane.XY())
r = s.hLine(1.0).vLine(1.0).hLine(-1.0).close()
self.assertEqual(1, r.wire().size())
self.assertEqual(4, r.edges().size())
# Test the move function
s = Workplane(Plane.XY())
r = s.move(1.0, 1.0).hLine(1.0).vLine(1.0).hLine(-1.0).close()
self.assertEqual(1, r.wire().size())
self.assertEqual(4, r.edges().size())
self.assertEqual(
(1.0, 1.0),
(
r.vertices(selectors.NearestToPointSelector((0.0, 0.0, 0.0)))
.first()
.val()
.X,
r.vertices(selectors.NearestToPointSelector((0.0, 0.0, 0.0)))
.first()
.val()
.Y,
),
)
# Test the sagittaArc and radiusArc functions
a1 = Workplane(Plane.YZ()).threePointArc((5, 1), (10, 0))
a2 = Workplane(Plane.YZ()).sagittaArc((10, 0), -1)
a3 = Workplane(Plane.YZ()).threePointArc((6, 2), (12, 0))
a4 = Workplane(Plane.YZ()).radiusArc((12, 0), -10)
assert a1.edges().first().val().geomType() == "CIRCLE"
assert a2.edges().first().val().geomType() == "CIRCLE"
assert a3.edges().first().val().geomType() == "CIRCLE"
assert a4.edges().first().val().geomType() == "CIRCLE"
assert a1.edges().first().val().Length() == a2.edges().first().val().Length()
assert a3.edges().first().val().Length() == a4.edges().first().val().Length()
def testPolarLines(self):
"""
Draw some polar lines and check expected results
"""
# Test the PolarLine* functions
s = Workplane(Plane.XY())
r = (
s.polarLine(10, 45)
.polarLineTo(10, -45)
.polarLine(10, -180)
.polarLine(-10, -90)
.close()
)
# a single wire, 5 edges
self.assertEqual(1, r.wires().size())
self.assertEqual(5, r.wires().edges().size())
2015-06-16 17:03:36 -04:00
def testLargestDimension(self):
"""
Tests the largestDimension function when no solids are on the stack and when there are
"""
r = Workplane("XY").box(1, 1, 1)
2015-06-16 17:03:36 -04:00
dim = r.largestDimension()
self.assertAlmostEqual(1.76, dim, 1)
r = Workplane("XY").rect(1, 1).extrude(1)
dim = r.largestDimension()
self.assertAlmostEqual(1.76, dim, 1)
2015-06-16 17:03:36 -04:00
r = Workplane("XY")
2015-06-16 17:03:36 -04:00
dim = r.largestDimension()
self.assertEqual(-1, dim)
2013-04-14 18:39:47 -04:00
def testOccBottle(self):
"""
Make the OCC bottle example.
"""
L = 20.0
w = 6.0
t = 3.0
s = Workplane(Plane.XY())
# draw half the profile of the bottle
p = (
s.center(-L / 2.0, 0)
.vLine(w / 2.0)
.threePointArc((L / 2.0, w / 2.0 + t), (L, w / 2.0))
.vLine(-w / 2.0)
.mirrorX()
.extrude(30.0, True)
)
2013-04-14 18:39:47 -04:00
# make the neck
p.faces(">Z").workplane().circle(3.0).extrude(
2.0, True
) # .edges().fillet(0.05)
2013-04-14 18:39:47 -04:00
# make a shell
2013-04-14 18:39:47 -04:00
p.faces(">Z").shell(0.3)
self.saveModel(p)
def testSplineShape(self):
"""
Tests making a shape with an edge that is a spline
"""
s = Workplane(Plane.XY())
sPnts = [
(2.75, 1.5),
(2.5, 1.75),
(2.0, 1.5),
(1.5, 1.0),
(1.0, 1.25),
(0.5, 1.0),
(0, 1.0),
2013-04-14 18:39:47 -04:00
]
r = s.lineTo(3.0, 0).lineTo(3.0, 1.0).spline(sPnts).close()
2013-04-14 18:39:47 -04:00
r = r.extrude(0.5)
self.saveModel(r)
def testSimpleMirror(self):
"""
Tests a simple mirroring operation
"""
s = (
Workplane("XY")
.lineTo(2, 2)
.threePointArc((3, 1), (2, 0))
.mirrorX()
.extrude(0.25)
)
self.assertEqual(6, s.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testUnorderedMirror(self):
"""
Tests whether or not a wire can be mirrored if its mirror won't connect to it
"""
r = 20
s = 7
t = 1.5
points = [
(0, 0),
(0, t / 2),
(r / 2 - 1.5 * t, r / 2 - t),
(s / 2, r / 2 - t),
(s / 2, r / 2),
(r / 2, r / 2),
(r / 2, s / 2),
(r / 2 - t, s / 2),
(r / 2 - t, r / 2 - 1.5 * t),
(t / 2, 0),
]
r = Workplane("XY").polyline(points).mirrorX()
self.assertEqual(1, r.wires().size())
self.assertEqual(18, r.edges().size())
# try the same with includeCurrent=True
r = Workplane("XY").polyline(points[1:], includeCurrent=True).mirrorX()
2019-06-25 07:08:54 +02:00
self.assertEqual(1, r.wires().size())
self.assertEqual(18, r.edges().size())
2019-05-17 23:02:22 +02:00
def testChainedMirror(self):
"""
Tests whether or not calling mirrorX().mirrorY() works correctly
"""
r = 20
s = 7
t = 1.5
2019-05-17 23:02:22 +02:00
points = [
(0, 0),
(0, t / 2),
(r / 2 - 1.5 * t, r / 2 - t),
(s / 2, r / 2 - t),
(s / 2, r / 2),
(r / 2, r / 2),
(r / 2, s / 2),
(r / 2 - t, s / 2),
(r / 2 - t, r / 2 - 1.5 * t),
(t / 2, 0),
2019-05-17 23:02:22 +02:00
]
r = Workplane("XY").polyline(points).mirrorX().mirrorY().extrude(1).faces(">Z")
2020-03-22 17:53:01 +01:00
self.assertEqual(1, r.wires().size())
self.assertEqual(32, r.edges().size())
# TODO: Re-work testIbeam test below now that chaining works
# TODO: Add toLocalCoords and toWorldCoords tests
2013-04-14 18:39:47 -04:00
def testIbeam(self):
"""
Make an ibeam. demonstrates fancy mirroring
"""
s = Workplane(Plane.XY())
L = 100.0
H = 20.0
W = 20.0
t = 1.0
# TODO: for some reason doing 1/4 of the profile and mirroring twice ( .mirrorX().mirrorY() )
# did not work, due to a bug in freecad-- it was losing edges when creating a composite wire.
# i just side-stepped it for now
2013-04-14 18:39:47 -04:00
pts = [
(0, 0),
(0, H / 2.0),
(W / 2.0, H / 2.0),
(W / 2.0, (H / 2.0 - t)),
(t / 2.0, (H / 2.0 - t)),
(t / 2.0, (t - H / 2.0)),
(W / 2.0, (t - H / 2.0)),
(W / 2.0, H / -2.0),
(0, H / -2.0),
2013-04-14 18:39:47 -04:00
]
r = s.polyline(pts).mirrorY() # these other forms also work
2013-04-14 18:39:47 -04:00
res = r.extrude(L)
self.saveModel(res)
def testCone(self):
"""
Tests that a simple cone works
"""
s = Solid.makeCone(0, 1.0, 2.0)
2013-04-14 18:39:47 -04:00
t = CQ(s)
self.saveModel(t)
self.assertEqual(2, t.faces().size())
2013-04-14 18:39:47 -04:00
def testFillet(self):
"""
Tests filleting edges on a solid
"""
c = (
CQ(makeUnitCube())
.faces(">Z")
.workplane()
.circle(0.25)
.extrude(0.25, True)
.edges("|Z")
.fillet(0.2)
)
2013-04-14 18:39:47 -04:00
self.saveModel(c)
self.assertEqual(12, c.faces().size())
2013-04-14 18:39:47 -04:00
2015-06-22 22:02:20 +03:00
def testChamfer(self):
"""
Test chamfer API with a box shape
"""
cube = CQ(makeUnitCube()).faces(">Z").chamfer(0.1)
self.saveModel(cube)
self.assertEqual(10, cube.faces().size())
def testChamferAsymmetrical(self):
"""
Test chamfer API with a box shape for asymmetrical lengths
"""
cube = CQ(makeUnitCube()).faces(">Z").chamfer(0.1, 0.2)
self.saveModel(cube)
self.assertEqual(10, cube.faces().size())
# test if edge lengths are different
edge = cube.edges(">Z").vals()[0]
self.assertAlmostEqual(0.6, edge.Length(), 3)
edge = cube.edges("|Z").vals()[0]
self.assertAlmostEqual(0.9, edge.Length(), 3)
def testChamferCylinder(self):
"""
Test chamfer API with a cylinder shape
"""
cylinder = Workplane("XY").circle(1).extrude(1).faces(">Z").chamfer(0.1)
2015-06-22 22:02:20 +03:00
self.saveModel(cylinder)
self.assertEqual(4, cylinder.faces().size())
2013-04-14 18:39:47 -04:00
def testCounterBores(self):
"""
Tests making a set of counterbored holes in a face
"""
2013-04-14 18:39:47 -04:00
c = CQ(makeCube(3.0))
pnts = [(-1.0, -1.0), (0.0, 0.0), (1.0, 1.0)]
c = c.faces(">Z").workplane().pushPoints(pnts).cboreHole(0.1, 0.25, 0.25, 0.75)
self.assertEqual(18, c.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(c)
2015-06-16 17:03:36 -04:00
# Tests the case where the depth of the cboreHole is not specified
c2 = CQ(makeCube(3.0))
c2 = c2.faces(">Z").workplane().pushPoints(pnts).cboreHole(0.1, 0.25, 0.25)
self.assertEqual(15, c2.faces().size())
2015-06-16 17:03:36 -04:00
2013-04-14 18:39:47 -04:00
def testCounterSinks(self):
"""
Tests countersinks
"""
s = Workplane(Plane.XY())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
2013-04-14 18:39:47 -04:00
self.saveModel(result)
def testSplitKeepingHalf(self):
"""
Tests splitting a solid
"""
2013-04-14 18:39:47 -04:00
# drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
2013-04-14 18:39:47 -04:00
self.assertEqual(7, c.faces().size())
2013-04-14 18:39:47 -04:00
# now cut it in half sideways
2019-06-09 16:41:27 +02:00
result = c.faces(">Y").workplane(-0.5).split(keepTop=True)
self.saveModel(result)
self.assertEqual(8, result.faces().size())
2013-04-14 18:39:47 -04:00
def testSplitKeepingBoth(self):
"""
Tests splitting a solid
"""
2013-04-14 18:39:47 -04:00
# drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
self.assertEqual(7, c.faces().size())
2013-04-14 18:39:47 -04:00
# now cut it in half sideways
result = c.faces(">Y").workplane(-0.5).split(keepTop=True, keepBottom=True)
2013-04-14 18:39:47 -04:00
# stack will have both halves, original will be unchanged
# two solids are on the stack, eac
self.assertEqual(2, result.solids().size())
self.assertEqual(8, result.solids().item(0).faces().size())
self.assertEqual(8, result.solids().item(1).faces().size())
2013-04-14 18:39:47 -04:00
def testSplitKeepingBottom(self):
"""
Tests splitting a solid improperly
"""
# Drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
self.assertEqual(7, c.faces().size())
# Now cut it in half sideways
result = c.faces(">Y").workplane(-0.5).split(keepTop=False, keepBottom=True)
# stack will have both halves, original will be unchanged
# one solid is on the stack
self.assertEqual(1, result.solids().size())
self.assertEqual(8, result.solids().item(0).faces().size())
2013-04-14 18:39:47 -04:00
def testBoxDefaults(self):
"""
Tests creating a single box
"""
s = Workplane("XY").box(2, 3, 4)
self.assertEqual(1, s.solids().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testSimpleShell(self):
"""
Create s simple box
"""
s = Workplane("XY").box(2, 2, 2).faces("+Z").shell(0.05)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
self.assertEqual(23, s.faces().size())
2013-04-14 18:39:47 -04:00
def testClosedShell(self):
"""
Create a hollow box
"""
s1 = Workplane("XY").box(2, 2, 2).shell(-0.1)
self.assertEqual(12, s1.faces().size())
self.assertTrue(s1.val().isValid())
s2 = Workplane("XY").box(2, 2, 2).shell(0.1)
self.assertEqual(32, s2.faces().size())
self.assertTrue(s2.val().isValid())
2013-04-14 18:39:47 -04:00
def testOpenCornerShell(self):
s = Workplane("XY").box(1, 1, 1)
2013-04-14 18:39:47 -04:00
s1 = s.faces("+Z")
s1.add(s.faces("+Y")).add(s.faces("+X"))
self.saveModel(s1.shell(0.2))
# Tests the list option variation of add
s1 = s.faces("+Z")
s1.add(s.faces("+Y")).add([s.faces("+X")])
# Tests the raw object option variation of add
s1 = s.faces("+Z")
s1.add(s.faces("+Y")).add(s.faces("+X").val().wrapped)
2013-04-14 18:39:47 -04:00
def testTopFaceFillet(self):
s = Workplane("XY").box(1, 1, 1).faces("+Z").edges().fillet(0.1)
self.assertEqual(s.faces().size(), 10)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testBoxPointList(self):
"""
Tests creating an array of boxes
"""
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.box(0.25, 0.25, 0.25, combine=True)
)
# 1 object, 4 solids because the object is a compound
self.assertEqual(4, s.solids().size())
self.assertEqual(1, s.size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.box(0.25, 0.25, 0.25, combine=False)
)
# 4 objects, 4 solids, because each is a separate solid
self.assertEqual(4, s.size())
self.assertEqual(4, s.solids().size())
2013-04-14 18:39:47 -04:00
def testBoxCombine(self):
s = (
Workplane("XY")
.box(4, 4, 0.5)
.faces(">Z")
.workplane()
.rect(3, 3, forConstruction=True)
.vertices()
.box(0.25, 0.25, 0.25, combine=True)
)
2013-04-14 18:39:47 -04:00
self.saveModel(s)
self.assertEqual(1, s.solids().size()) # we should have one big solid
# should have 26 faces. 6 for the box, and 4x5 for the smaller cubes
self.assertEqual(26, s.faces().size())
2013-04-14 18:39:47 -04:00
def testSphereDefaults(self):
s = Workplane("XY").sphere(10)
self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEqual(1, s.solids().size())
self.assertEqual(1, s.faces().size())
def testSphereCustom(self):
s = Workplane("XY").sphere(
10, angle1=0, angle2=90, angle3=360, centered=(False, False, False)
)
self.saveModel(s)
self.assertEqual(1, s.solids().size())
self.assertEqual(2, s.faces().size())
def testSpherePointList(self):
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.sphere(0.25, combine=False)
)
# self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEqual(4, s.solids().size())
self.assertEqual(4, s.faces().size())
def testSphereCombine(self):
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.sphere(2.25, combine=True)
)
# self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEqual(1, s.solids().size())
self.assertEqual(4, s.faces().size())
def testWedgeDefaults(self):
s = Workplane("XY").wedge(10, 10, 10, 5, 5, 5, 5)
self.saveModel(s)
self.assertEqual(1, s.solids().size())
self.assertEqual(5, s.faces().size())
self.assertEqual(5, s.vertices().size())
def testWedgeCentering(self):
s = Workplane("XY").wedge(
10, 10, 10, 5, 5, 5, 5, centered=(False, False, False)
)
# self.saveModel(s)
self.assertEqual(1, s.solids().size())
self.assertEqual(5, s.faces().size())
self.assertEqual(5, s.vertices().size())
def testWedgePointList(self):
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.wedge(10, 10, 10, 5, 5, 5, 5, combine=False)
)
# self.saveModel(s)
self.assertEqual(4, s.solids().size())
self.assertEqual(20, s.faces().size())
self.assertEqual(20, s.vertices().size())
def testWedgeCombined(self):
s = (
Workplane("XY")
.rect(4.0, 4.0, forConstruction=True)
.vertices()
.wedge(10, 10, 10, 5, 5, 5, 5, combine=True)
)
# self.saveModel(s)
self.assertEqual(1, s.solids().size())
self.assertEqual(12, s.faces().size())
self.assertEqual(16, s.vertices().size())
2013-04-14 18:39:47 -04:00
def testQuickStartXY(self):
s = (
Workplane(Plane.XY())
.box(2, 4, 0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testQuickStartYZ(self):
s = (
Workplane(Plane.YZ())
.box(2, 4, 0.5)
.faces(">X")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testQuickStartXZ(self):
s = (
Workplane(Plane.XZ())
.box(2, 4, 0.5)
.faces(">Y")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testDoubleTwistedLoft(self):
s = (
Workplane("XY")
.polygon(8, 20.0)
.workplane(offset=4.0)
.transformed(rotate=Vector(0, 0, 15.0))
.polygon(8, 20)
.loft()
)
s2 = (
Workplane("XY")
.polygon(8, 20.0)
.workplane(offset=-4.0)
.transformed(rotate=Vector(0, 0, 15.0))
.polygon(8, 20)
.loft()
)
# self.assertEquals(10,s.faces().size())
# self.assertEquals(1,s.solids().size())
2013-04-14 18:39:47 -04:00
s3 = s.combineSolids(s2)
self.saveModel(s3)
def testTwistedLoft(self):
s = (
Workplane("XY")
.polygon(8, 20.0)
.workplane(offset=4.0)
.transformed(rotate=Vector(0, 0, 15.0))
.polygon(8, 20)
.loft()
)
self.assertEqual(10, s.faces().size())
self.assertEqual(1, s.solids().size())
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testUnions(self):
# duplicates a memory problem of some kind reported when combining lots of objects
s = Workplane("XY").rect(0.5, 0.5).extrude(5.0)
2013-04-14 18:39:47 -04:00
o = []
beginTime = time.time()
for i in range(15):
t = Workplane("XY").center(10.0 * i, 0).rect(0.5, 0.5).extrude(5.0)
2013-04-14 18:39:47 -04:00
o.append(t)
# union stuff
2013-04-14 18:39:47 -04:00
for oo in o:
s = s.union(oo)
print("Total time %0.3f" % (time.time() - beginTime))
2013-04-14 18:39:47 -04:00
# Test unioning a Solid object
2015-08-17 08:29:25 -04:00
s = Workplane(Plane.XY())
currentS = s.rect(2.0, 2.0).extrude(0.5)
toUnion = s.rect(1.0, 1.0).extrude(1.0)
2015-08-17 08:29:25 -04:00
resS = currentS.union(toUnion)
self.assertEqual(11, resS.faces().size())
2015-08-17 08:29:25 -04:00
2020-04-06 21:20:24 +02:00
with self.assertRaises(ValueError):
resS.union(toUnion.faces().val())
2015-08-17 08:29:25 -04:00
def testCombine(self):
s = Workplane(Plane.XY())
objects1 = s.rect(2.0, 2.0).extrude(0.5).faces(">Z").rect(1.0, 1.0).extrude(0.5)
2015-08-17 08:29:25 -04:00
objects1.combine()
self.assertEqual(11, objects1.faces().size())
2013-04-14 18:39:47 -04:00
def testCombineSolidsInLoop(self):
# duplicates a memory problem of some kind reported when combining lots of objects
s = Workplane("XY").rect(0.5, 0.5).extrude(5.0)
2013-04-14 18:39:47 -04:00
o = []
beginTime = time.time()
for i in range(15):
t = Workplane("XY").center(10.0 * i, 0).rect(0.5, 0.5).extrude(5.0)
2013-04-14 18:39:47 -04:00
o.append(t)
# append the 'good way'
2013-04-14 18:39:47 -04:00
for oo in o:
s.add(oo)
s = s.combineSolids()
print("Total time %0.3f" % (time.time() - beginTime))
2013-04-14 18:39:47 -04:00
self.saveModel(s)
def testClean(self):
2015-07-22 23:39:11 +03:00
"""
Tests the `clean()` method which is called automatically.
2015-07-22 23:39:11 +03:00
"""
# make a cube with a splitter edge on one of the faces
# autosimplify should remove the splitter
s = (
Workplane("XY")
.moveTo(0, 0)
.line(5, 0)
.line(5, 0)
.line(0, 10)
.line(-10, 0)
.close()
.extrude(10)
)
2015-07-22 23:39:11 +03:00
self.assertEqual(6, s.faces().size())
# test removal of splitter caused by union operation
s = Workplane("XY").box(10, 10, 10).union(Workplane("XY").box(20, 10, 10))
2015-07-22 23:39:11 +03:00
self.assertEqual(6, s.faces().size())
# test removal of splitter caused by extrude+combine operation
s = (
Workplane("XY")
.box(10, 10, 10)
.faces(">Y")
.workplane()
.rect(5, 10, 5)
.extrude(20)
)
2015-07-22 23:39:11 +03:00
self.assertEqual(10, s.faces().size())
2015-08-02 17:36:35 +03:00
# test removal of splitter caused by double hole operation
s = (
Workplane("XY")
.box(10, 10, 10)
.faces(">Z")
.workplane()
.hole(3, 5)
.faces(">Z")
.workplane()
.hole(3, 10)
)
2015-08-02 17:36:35 +03:00
self.assertEqual(7, s.faces().size())
2015-08-03 23:06:21 +03:00
# test removal of splitter caused by cutThruAll
s = (
Workplane("XY")
.box(10, 10, 10)
.faces(">Y")
.workplane()
.rect(10, 5)
.cutBlind(-5)
.faces(">Z")
.workplane()
.center(0, 2.5)
.rect(5, 5)
.cutThruAll()
)
2015-08-03 23:06:21 +03:00
self.assertEqual(18, s.faces().size())
2015-08-06 22:39:25 +03:00
# test removal of splitter with box
s = Workplane("XY").box(5, 5, 5).box(10, 5, 2)
2015-08-06 22:39:25 +03:00
self.assertEqual(14, s.faces().size())
def testNoClean(self):
2015-07-22 23:39:11 +03:00
"""
Test the case when clean is disabled.
2015-07-22 23:39:11 +03:00
"""
# test disabling autoSimplify
s = (
Workplane("XY")
.moveTo(0, 0)
.line(5, 0)
.line(5, 0)
.line(0, 10)
.line(-10, 0)
.close()
.extrude(10, clean=False)
)
2015-07-22 23:39:11 +03:00
self.assertEqual(7, s.faces().size())
s = (
Workplane("XY")
.box(10, 10, 10)
.union(Workplane("XY").box(20, 10, 10), clean=False)
)
2015-07-22 23:39:11 +03:00
self.assertEqual(14, s.faces().size())
s = (
Workplane("XY")
.box(10, 10, 10)
.faces(">Y")
.workplane()
.rect(5, 10, 5)
.extrude(20, clean=False)
)
2015-07-22 23:39:11 +03:00
self.assertEqual(12, s.faces().size())
def testExplicitClean(self):
2015-07-22 23:39:11 +03:00
"""
Test running of `clean()` method explicitly.
2015-07-22 23:39:11 +03:00
"""
s = (
Workplane("XY")
.moveTo(0, 0)
.line(5, 0)
.line(5, 0)
.line(0, 10)
.line(-10, 0)
.close()
.extrude(10, clean=False)
.clean()
)
2015-07-22 23:39:11 +03:00
self.assertEqual(6, s.faces().size())
def testPlanes(self):
"""
Test other planes other than the normal ones (XY, YZ)
"""
# ZX plane
s = Workplane(Plane.ZX())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# YX plane
s = Workplane(Plane.YX())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# YX plane
s = Workplane(Plane.YX())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# ZY plane
s = Workplane(Plane.ZY())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# front plane
s = Workplane(Plane.front())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# back plane
s = Workplane(Plane.back())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# left plane
s = Workplane(Plane.left())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# right plane
s = Workplane(Plane.right())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# top plane
s = Workplane(Plane.top())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
# bottom plane
s = Workplane(Plane.bottom())
result = (
s.rect(2.0, 4.0)
.extrude(0.5)
.faces(">Z")
.workplane()
.rect(1.5, 3.5, forConstruction=True)
.vertices()
.cskHole(0.125, 0.25, 82, depth=None)
)
self.saveModel(result)
2018-12-27 21:08:30 +01:00
def testIsInside(self):
"""
Testing if one box is inside of another.
"""
box1 = Workplane(Plane.XY()).box(10, 10, 10)
box2 = Workplane(Plane.XY()).box(5, 5, 5)
self.assertFalse(box2.val().BoundingBox().isInside(box1.val().BoundingBox()))
self.assertTrue(box1.val().BoundingBox().isInside(box2.val().BoundingBox()))
2013-04-14 18:39:47 -04:00
def testCup(self):
"""
UOM = "mm"
#
# PARAMETERS and PRESETS
# These parameters can be manipulated by end users
#
bottomDiameter = FloatParam(min=10.0,presets={'default':50.0,'tumbler':50.0,'shot':35.0,'tea':50.0,'saucer':100.0},group="Basics", desc="Bottom diameter")
topDiameter = FloatParam(min=10.0,presets={'default':85.0,'tumbler':85.0,'shot':50.0,'tea':51.0,'saucer':400.0 },group="Basics", desc="Top diameter")
thickness = FloatParam(min=0.1,presets={'default':2.0,'tumbler':2.0,'shot':2.66,'tea':2.0,'saucer':2.0},group="Basics", desc="Thickness")
height = FloatParam(min=1.0,presets={'default':80.0,'tumbler':80.0,'shot':59.0,'tea':125.0,'saucer':40.0},group="Basics", desc="Overall height")
lipradius = FloatParam(min=1.0,presets={'default':1.0,'tumbler':1.0,'shot':0.8,'tea':1.0,'saucer':1.0},group="Basics", desc="Lip Radius")
bottomThickness = FloatParam(min=1.0,presets={'default':5.0,'tumbler':5.0,'shot':10.0,'tea':10.0,'saucer':5.0},group="Basics", desc="BottomThickness")
#
# Your build method. It must return a solid object
#
def build():
br = bottomDiameter.value / 2.0
tr = topDiameter.value / 2.0
t = thickness.value
s1 = Workplane("XY").circle(br).workplane(offset=height.value).circle(tr).loft()
s2 = Workplane("XY").workplane(offset=bottomThickness.value).circle(br - t ).workplane(offset=height.value - t ).circle(tr - t).loft()
cup = s1.cut(s2)
cup.faces(">Z").edges().fillet(lipradius.value)
return cup
"""
# for some reason shell doesnt work on this simple shape. how disappointing!
2013-04-14 18:39:47 -04:00
td = 50.0
bd = 20.0
h = 10.0
t = 1.0
s1 = Workplane("XY").circle(bd).workplane(offset=h).circle(td).loft()
s2 = (
Workplane("XY")
.workplane(offset=t)
.circle(bd - (2.0 * t))
.workplane(offset=(h - t))
.circle(td - (2.0 * t))
.loft()
)
2013-04-14 18:39:47 -04:00
s3 = s1.cut(s2)
self.saveModel(s3)
def testEnclosure(self):
"""
Builds an electronics enclosure
Original FreeCAD script: 81 source statements ,not including variables
This script: 34
"""
# parameter definitions
p_outerWidth = 100.0 # Outer width of box enclosure
p_outerLength = 150.0 # Outer length of box enclosure
p_outerHeight = 50.0 # Outer height of box enclosure
p_thickness = 3.0 # Thickness of the box walls
p_sideRadius = 10.0 # Radius for the curves around the sides of the bo
# Radius for the curves on the top and bottom edges of the box
p_topAndBottomRadius = 2.0
# How far in from the edges the screwposts should be place.
p_screwpostInset = 12.0
# nner Diameter of the screwpost holes, should be roughly screw diameter not including threads
p_screwpostID = 4.0
# Outer Diameter of the screwposts.\nDetermines overall thickness of the posts
p_screwpostOD = 10.0
p_boreDiameter = 8.0 # Diameter of the counterbore hole, if any
p_boreDepth = 1.0 # Depth of the counterbore hole, if
# Outer diameter of countersink. Should roughly match the outer diameter of the screw head
p_countersinkDiameter = 0.0
# Countersink angle (complete angle between opposite sides, not from center to one side)
p_countersinkAngle = 90.0
# Whether to place the lid with the top facing down or not.
p_flipLid = True
# Height of lip on the underside of the lid.\nSits inside the box body for a snug fit.
p_lipHeight = 1.0
# outer shell
oshell = (
Workplane("XY")
.rect(p_outerWidth, p_outerLength)
.extrude(p_outerHeight + p_lipHeight)
)
# weird geometry happens if we make the fillets in the wrong order
2013-04-14 18:39:47 -04:00
if p_sideRadius > p_topAndBottomRadius:
oshell = (
oshell.edges("|Z")
.fillet(p_sideRadius)
.edges("#Z")
.fillet(p_topAndBottomRadius)
)
2013-04-14 18:39:47 -04:00
else:
oshell = (
oshell.edges("#Z")
.fillet(p_topAndBottomRadius)
.edges("|Z")
.fillet(p_sideRadius)
)
2013-04-14 18:39:47 -04:00
# inner shell
ishell = (
oshell.faces("<Z")
.workplane(p_thickness, True)
.rect(
(p_outerWidth - 2.0 * p_thickness), (p_outerLength - 2.0 * p_thickness)
)
.extrude((p_outerHeight - 2.0 * p_thickness), False)
) # set combine false to produce just the new boss
ishell = ishell.edges("|Z").fillet(p_sideRadius - p_thickness)
2013-04-14 18:39:47 -04:00
# make the box outer box
2013-04-14 18:39:47 -04:00
box = oshell.cut(ishell)
# make the screwposts
POSTWIDTH = p_outerWidth - 2.0 * p_screwpostInset
POSTLENGTH = p_outerLength - 2.0 * p_screwpostInset
box = (
box.faces(">Z")
.workplane(-p_thickness)
.rect(POSTWIDTH, POSTLENGTH, forConstruction=True)
.vertices()
.circle(p_screwpostOD / 2.0)
.circle(p_screwpostID / 2.0)
.extrude((-1.0) * (p_outerHeight + p_lipHeight - p_thickness), True)
)
2013-04-14 18:39:47 -04:00
# split lid into top and bottom parts
(lid, bottom) = (
box.faces(">Z")
.workplane(-p_thickness - p_lipHeight)
.split(keepTop=True, keepBottom=True)
.all()
) # splits into two solids
2013-04-14 18:39:47 -04:00
# translate the lid, and subtract the bottom from it to produce the lid inset
lowerLid = lid.translate((0, 0, -p_lipHeight))
cutlip = lowerLid.cut(bottom).translate(
(p_outerWidth + p_thickness, 0, p_thickness - p_outerHeight + p_lipHeight)
)
2013-04-14 18:39:47 -04:00
# compute centers for counterbore/countersink or counterbore
topOfLidCenters = (
cutlip.faces(">Z")
.workplane()
.rect(POSTWIDTH, POSTLENGTH, forConstruction=True)
.vertices()
)
2013-04-14 18:39:47 -04:00
# add holes of the desired type
2013-04-14 18:39:47 -04:00
if p_boreDiameter > 0 and p_boreDepth > 0:
topOfLid = topOfLidCenters.cboreHole(
p_screwpostID, p_boreDiameter, p_boreDepth, (2.0) * p_thickness
)
2013-04-14 18:39:47 -04:00
elif p_countersinkDiameter > 0 and p_countersinkAngle > 0:
topOfLid = topOfLidCenters.cskHole(
p_screwpostID,
p_countersinkDiameter,
p_countersinkAngle,
(2.0) * p_thickness,
)
2013-04-14 18:39:47 -04:00
else:
topOfLid = topOfLidCenters.hole(p_screwpostID, (2.0) * p_thickness)
2013-04-14 18:39:47 -04:00
# flip lid upside down if desired
2013-04-14 18:39:47 -04:00
if p_flipLid:
topOfLid.rotateAboutCenter((1, 0, 0), 180)
2013-04-14 18:39:47 -04:00
# return the combined result
result = topOfLid.union(bottom)
2013-04-14 18:39:47 -04:00
self.saveModel(result)
def testExtrude(self):
"""
2019-02-06 21:08:48 +01:00
Test extrude
"""
r = 1.0
h = 1.0
decimal_places = 9.0
2019-02-24 20:20:32 +01:00
2019-02-06 21:08:48 +01:00
# extrude in one direction
s = Workplane("XY").circle(r).extrude(h, both=False)
top_face = s.faces(">Z")
bottom_face = s.faces("<Z")
# calculate the distance between the top and the bottom face
delta = top_face.val().Center().sub(bottom_face.val().Center())
self.assertTupleAlmostEquals(delta.toTuple(), (0.0, 0.0, h), decimal_places)
# extrude symmetrically
s = Workplane("XY").circle(r).extrude(h, both=True)
self.assertTrue(len(s.val().Solids()) == 1)
top_face = s.faces(">Z")
bottom_face = s.faces("<Z")
# calculate the distance between the top and the bottom face
delta = top_face.val().Center().sub(bottom_face.val().Center())
self.assertTupleAlmostEquals(
delta.toTuple(), (0.0, 0.0, 2.0 * h), decimal_places
)
2019-02-24 20:20:32 +01:00
2019-02-07 21:03:20 +01:00
def testTaperedExtrudeCutBlind(self):
2019-02-24 20:20:32 +01:00
h = 1.0
r = 1.0
2019-02-07 21:03:20 +01:00
t = 5
2019-02-24 20:20:32 +01:00
2019-02-06 21:08:48 +01:00
# extrude with a positive taper
2019-02-07 21:03:20 +01:00
s = Workplane("XY").circle(r).extrude(h, taper=t)
2019-02-06 21:08:48 +01:00
top_face = s.faces(">Z")
bottom_face = s.faces("<Z")
# top and bottom face area
delta = top_face.val().Area() - bottom_face.val().Area()
self.assertTrue(delta < 0)
2019-02-24 20:20:32 +01:00
2019-02-06 21:08:48 +01:00
# extrude with a negative taper
2019-02-07 21:03:20 +01:00
s = Workplane("XY").circle(r).extrude(h, taper=-t)
2019-02-06 21:08:48 +01:00
top_face = s.faces(">Z")
bottom_face = s.faces("<Z")
# top and bottom face area
delta = top_face.val().Area() - bottom_face.val().Area()
self.assertTrue(delta > 0)
2019-02-24 20:20:32 +01:00
2019-02-07 21:03:20 +01:00
# cut a tapered hole
s = (
Workplane("XY")
.rect(2 * r, 2 * r)
.extrude(2 * h)
.faces(">Z")
.workplane()
.rect(r, r)
.cutBlind(-h, taper=t)
)
middle_face = s.faces(">Z[-2]")
2019-02-24 20:20:32 +01:00
2019-02-07 21:03:20 +01:00
self.assertTrue(middle_face.val().Area() < 1)
def testClose(self):
# Close without endPoint and startPoint coincide.
# Create a half-circle
a = Workplane(Plane.XY()).sagittaArc((10, 0), 2).close().extrude(2)
# Close when endPoint and startPoint coincide.
# Create a double half-circle
b = (
Workplane(Plane.XY())
.sagittaArc((10, 0), 2)
.sagittaArc((0, 0), 2)
.close()
.extrude(2)
)
# The b shape shall have twice the volume of the a shape.
self.assertAlmostEqual(a.val().Volume() * 2.0, b.val().Volume())
# Testcase 3 from issue #238
thickness = 3.0
length = 10.0
width = 5.0
obj1 = (
Workplane("XY", origin=(0, 0, -thickness / 2))
.moveTo(length / 2, 0)
.threePointArc((0, width / 2), (-length / 2, 0))
.threePointArc((0, -width / 2), (length / 2, 0))
.close()
.extrude(thickness)
)
os_x = 8.0 # Offset in X
os_y = -19.5 # Offset in Y
obj2 = (
Workplane("YZ", origin=(os_x, os_y, -thickness / 2))
.moveTo(os_x + length / 2, os_y)
.sagittaArc((os_x - length / 2, os_y), width / 2)
.sagittaArc((os_x + length / 2, os_y), width / 2)
.close()
.extrude(thickness)
)
# The obj1 shape shall have the same volume as the obj2 shape.
self.assertAlmostEqual(obj1.val().Volume(), obj2.val().Volume())
2019-02-24 20:20:32 +01:00
2019-02-21 21:17:54 +01:00
def testText(self):
2019-02-24 20:20:32 +01:00
box = Workplane("XY").box(4, 4, 0.5)
obj1 = (
box.faces(">Z")
.workplane()
.text(
"CQ 2.0",
0.5,
-0.05,
cut=True,
halign="left",
valign="bottom",
font="Sans",
)
)
# combined object should have smaller volume
self.assertGreater(box.val().Volume(), obj1.val().Volume())
obj2 = (
box.faces(">Z")
.workplane()
.text("CQ 2.0", 0.5, 0.05, cut=False, combine=True, font="Sans")
)
# combined object should have bigger volume
self.assertLess(box.val().Volume(), obj2.val().Volume())
# verify that the number of top faces is correct (NB: this is font specific)
self.assertEqual(len(obj2.faces(">Z").vals()), 5)
obj3 = (
box.faces(">Z")
.workplane()
.text(
"CQ 2.0",
0.5,
0.05,
cut=False,
combine=False,
halign="right",
valign="top",
font="Sans",
)
)
# verify that the number of solids is correct
self.assertEqual(len(obj3.solids().vals()), 5)
2019-02-24 20:20:32 +01:00
def testParametricCurve(self):
from math import sin, cos, pi
k = 4
r = 1
func = lambda t: (
r * (k + 1) * cos(t) - r * cos((k + 1) * t),
r * (k + 1) * sin(t) - r * sin((k + 1) * t),
)
2019-02-24 20:20:32 +01:00
res_open = Workplane("XY").parametricCurve(func).extrude(3)
2019-02-24 20:20:32 +01:00
# open profile generates an invalid solid
2019-02-24 20:20:32 +01:00
self.assertFalse(res_open.solids().val().isValid())
res_closed = (
Workplane("XY").parametricCurve(func, start=0, stop=2 * pi).extrude(3)
)
2019-02-24 20:20:32 +01:00
# closed profile will generate a valid solid with 3 faces
2019-02-24 20:20:32 +01:00
self.assertTrue(res_closed.solids().val().isValid())
self.assertEqual(len(res_closed.faces().vals()), 3)
def testMakeShellSolid(self):
c0 = math.sqrt(2) / 4
vertices = [[c0, -c0, c0], [c0, c0, -c0], [-c0, c0, c0], [-c0, -c0, -c0]]
faces_ixs = [[0, 1, 2, 0], [1, 0, 3, 1], [2, 3, 0, 2], [3, 2, 1, 3]]
faces = []
for ixs in faces_ixs:
lines = []
for v1, v2 in zip(ixs, ixs[1:]):
lines.append(
Edge.makeLine(Vector(*vertices[v1]), Vector(*vertices[v2]))
)
wire = Wire.combine(lines)
faces.append(Face.makeFromWires(wire))
shell = Shell.makeShell(faces)
solid = Solid.makeSolid(shell)
self.assertTrue(shell.isValid())
self.assertTrue(solid.isValid())
self.assertEqual(len(solid.Vertices()), 4)
self.assertEqual(len(solid.Faces()), 4)
def testIsInsideSolid(self):
# test solid
model = Workplane("XY").box(10, 10, 10)
solid = model.val() # get first object on stack
self.assertTrue(solid.isInside((0, 0, 0)))
self.assertFalse(solid.isInside((10, 10, 10)))
self.assertTrue(solid.isInside((Vector(3, 3, 3))))
self.assertFalse(solid.isInside((Vector(30.0, 30.0, 30.0))))
self.assertTrue(solid.isInside((0, 0, 4.99), tolerance=0.1))
self.assertTrue(solid.isInside((0, 0, 5))) # check point on surface
self.assertTrue(solid.isInside((0, 0, 5.01), tolerance=0.1))
self.assertFalse(solid.isInside((0, 0, 5.1), tolerance=0.1))
# test compound solid
model = Workplane("XY").box(10, 10, 10)
model = model.moveTo(50, 50).box(10, 10, 10)
solid = model.val()
self.assertTrue(solid.isInside((0, 0, 0)))
self.assertTrue(solid.isInside((50, 50, 0)))
self.assertFalse(solid.isInside((50, 56, 0)))
# make sure raises on non solid
model = Workplane("XY").rect(10, 10)
solid = model.val()
with self.assertRaises(AttributeError):
solid.isInside((0, 0, 0))
# test solid with an internal void
void = Workplane("XY").box(10, 10, 10)
model = Workplane("XY").box(100, 100, 100).cut(void)
solid = model.val()
self.assertFalse(solid.isInside((0, 0, 0)))
self.assertTrue(solid.isInside((40, 40, 40)))
self.assertFalse(solid.isInside((55, 55, 55)))
def testWorkplaneCenterOptions(self):
"""
Test options for specifiying origin of workplane
"""
decimal_places = 9
pts = [(0, 0), (90, 0), (90, 30), (30, 30), (30, 60), (0.0, 60)]
r = Workplane("XY").polyline(pts).close().extrude(10.0)
origin = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (0.0, 0.0, 10.0), decimal_places)
origin = (
r.faces(">Z").workplane(centerOption="CenterOfMass").plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (37.5, 22.5, 10.0), decimal_places)
origin = (
r.faces(">Z")
.workplane(centerOption="CenterOfBoundBox")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (45.0, 30.0, 10.0), decimal_places)
origin = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin", origin=(30, 10, 20))
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (30.0, 10.0, 10.0), decimal_places)
origin = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin", origin=Vector(30, 10, 20))
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (30.0, 10.0, 10.0), decimal_places)
with self.assertRaises(ValueError):
origin = r.faces(">Z").workplane(centerOption="undefined")
# test case where plane origin is shifted with center call
r = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin")
.center(30, 0)
.hole(90)
)
origin = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (30.0, 0.0, 10.0), decimal_places)
origin = (
r.faces(">Z")
.workplane(centerOption="ProjectedOrigin", origin=(0, 0, 0))
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (0.0, 0.0, 10.0), decimal_places)
# make sure projection works in all directions
r = Workplane("YZ").polyline(pts).close().extrude(10.0)
origin = (
r.faces(">X")
.workplane(centerOption="ProjectedOrigin")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (10.0, 0.0, 0.0), decimal_places)
origin = (
r.faces(">X").workplane(centerOption="CenterOfMass").plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (10.0, 37.5, 22.5), decimal_places)
origin = (
r.faces(">X")
.workplane(centerOption="CenterOfBoundBox")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (10.0, 45.0, 30.0), decimal_places)
r = Workplane("XZ").polyline(pts).close().extrude(10.0)
origin = (
r.faces("<Y")
.workplane(centerOption="ProjectedOrigin")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (0.0, -10.0, 0.0), decimal_places)
origin = (
r.faces("<Y").workplane(centerOption="CenterOfMass").plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (37.5, -10.0, 22.5), decimal_places)
origin = (
r.faces("<Y")
.workplane(centerOption="CenterOfBoundBox")
.plane.origin.toTuple()
)
self.assertTupleAlmostEquals(origin, (45.0, -10.0, 30.0), decimal_places)
2019-07-12 08:20:39 +02:00
def testFindSolid(self):
r = Workplane("XY").pushPoints([(-2, 0), (2, 0)]).box(1, 1, 1, combine=False)
2019-07-12 08:20:39 +02:00
# there should be two solids on the stack
self.assertEqual(len(r.objects), 2)
self.assertTrue(isinstance(r.val(), Solid))
2019-07-12 08:20:39 +02:00
# find solid should return a compund of two solids
s = r.findSolid()
self.assertEqual(len(s.Solids()), 2)
self.assertTrue(isinstance(s, Compound))
2019-09-04 01:11:07 -05:00
2019-09-14 00:18:50 -05:00
def testSlot2D(self):
2019-09-04 01:11:07 -05:00
decimal_places = 9
# Ensure it produces a solid with the correct volume
result = Workplane("XY").slot2D(4, 1, 0).extrude(1)
self.assertAlmostEqual(result.val().Volume(), 3.785398163, decimal_places)
2019-09-04 01:11:07 -05:00
# Test for proper expected behaviour when cutting
box = Workplane("XY").box(5, 5, 1)
result = box.faces(">Z").workplane().slot2D(4, 1, 0).cutThruAll()
self.assertAlmostEqual(result.val().Volume(), 21.214601837, decimal_places)
result = box.faces(">Z").workplane().slot2D(4, 1, 0).cutBlind(-0.5)
self.assertAlmostEqual(result.val().Volume(), 23.107300918, decimal_places)
# Test to see if slot is rotated correctly
result = Workplane("XY").slot2D(4, 1, 45).extrude(1)
2019-09-04 01:11:07 -05:00
point = result.faces(">Z").edges(">X").first().val().startPoint().toTuple()
self.assertTupleAlmostEquals(
point, (0.707106781, 1.414213562, 1.0), decimal_places
)
2019-09-04 01:11:07 -05:00
2019-12-24 10:50:03 +01:00
def test_assembleEdges(self):
2019-12-24 16:32:38 +01:00
2019-12-24 11:39:58 +01:00
# Plate with 5 sides and 2 bumps, one side is not co-planar with the other sides
2019-12-25 09:21:15 +01:00
# Passes an open wire to assembleEdges so that IsDone is true but Error returns 2 to test the warning functionality.
edge_points = [
[-7.0, -7.0, 0.0],
[-3.0, -10.0, 3.0],
[7.0, -7.0, 0.0],
[7.0, 7.0, 0.0],
[-7.0, 7.0, 0.0],
]
edge_wire = Workplane("XY").polyline(
[(-7.0, -7.0), (7.0, -7.0), (7.0, 7.0), (-7.0, 7.0)]
)
edge_wire = edge_wire.add(
Workplane("YZ")
.workplane()
2020-03-22 17:53:01 +01:00
.transformed(offset=Vector(0, 0, -7), rotate=Vector(45, 0, 0))
.spline([(-7.0, 0.0), (3, -3), (7.0, 0.0)])
)
2019-12-24 11:39:58 +01:00
edge_wire = [o.vals()[0] for o in edge_wire.all()]
2019-12-24 12:00:09 +01:00
edge_wire = Wire.assembleEdges(edge_wire)
2019-12-24 11:39:58 +01:00
# Embossed star, need to change optional parameters to obtain nice looking result.
r1 = 3.0
r2 = 10.0
fn = 6
edge_points = [
[r1 * math.cos(i * math.pi / fn), r1 * math.sin(i * math.pi / fn)]
if i % 2 == 0
else [r2 * math.cos(i * math.pi / fn), r2 * math.sin(i * math.pi / fn)]
for i in range(2 * fn + 1)
]
edge_wire = Workplane("XY").polyline(edge_points)
2019-12-24 11:39:58 +01:00
edge_wire = [o.vals()[0] for o in edge_wire.all()]
2019-12-24 12:00:09 +01:00
edge_wire = Wire.assembleEdges(edge_wire)
2019-12-24 11:39:58 +01:00
# Points on hexagonal pattern coordinates, use of pushpoints.
r1 = 1.0
2019-12-24 11:39:58 +01:00
fn = 6
edge_points = [
[r1 * math.cos(i * 2 * math.pi / fn), r1 * math.sin(i * 2 * math.pi / fn)]
for i in range(fn + 1)
]
surface_points = [
[0.25, 0, 0.75],
[-0.25, 0, 0.75],
[0, 0.25, 0.75],
[0, -0.25, 0.75],
[0, 0, 2],
]
edge_wire = Workplane("XY").polyline(edge_points)
2019-12-24 11:39:58 +01:00
edge_wire = [o.vals()[0] for o in edge_wire.all()]
2019-12-24 12:00:09 +01:00
edge_wire = Wire.assembleEdges(edge_wire)
2019-12-24 11:39:58 +01:00
# Gyroïd, all edges are splines on different workplanes.
edge_points = [
[[3.54, 3.54], [1.77, 0.0], [3.54, -3.54]],
[[-3.54, -3.54], [0.0, -1.77], [3.54, -3.54]],
[[-3.54, -3.54], [0.0, -1.77], [3.54, -3.54]],
[[-3.54, -3.54], [-1.77, 0.0], [-3.54, 3.54]],
[[3.54, 3.54], [0.0, 1.77], [-3.54, 3.54]],
[[3.54, 3.54], [0.0, 1.77], [-3.54, 3.54]],
]
plane_list = ["XZ", "XY", "YZ", "XZ", "YZ", "XY"]
offset_list = [-3.54, 3.54, 3.54, 3.54, -3.54, -3.54]
edge_wire = (
Workplane(plane_list[0])
.workplane(offset=-offset_list[0])
.spline(edge_points[0])
)
for i in range(len(edge_points) - 1):
edge_wire = edge_wire.add(
Workplane(plane_list[i + 1])
.workplane(offset=-offset_list[i + 1])
.spline(edge_points[i + 1])
)
2019-12-24 11:39:58 +01:00
edge_wire = [o.vals()[0] for o in edge_wire.all()]
2019-12-24 12:00:09 +01:00
edge_wire = Wire.assembleEdges(edge_wire)
2019-12-20 20:54:59 +10:30
def testTag(self):
# test tagging
2020-01-23 21:25:32 +10:30
result = (
Workplane("XY")
.pushPoints([(-2, 0), (2, 0)])
.box(1, 1, 1, combine=False)
.tag("2 solids")
2020-01-23 22:22:53 +10:30
.union(Workplane("XY").box(6, 1, 1))
2020-01-23 21:25:32 +10:30
)
2019-12-20 20:54:59 +10:30
self.assertEqual(len(result.objects), 1)
2020-01-19 08:41:43 +10:30
result = result._getTagged("2 solids")
2019-12-20 20:54:59 +10:30
self.assertEqual(len(result.objects), 2)
def testCopyWorkplane(self):
obj0 = Workplane("XY").box(1, 1, 10).faces(">Z").workplane()
obj1 = Workplane("XY").copyWorkplane(obj0).box(1, 1, 1)
2020-01-23 21:25:32 +10:30
self.assertTupleAlmostEquals((0, 0, 5), obj1.val().Center().toTuple(), 9)
2019-12-20 20:54:59 +10:30
def testWorkplaneFromTagged(self):
2019-12-20 20:54:59 +10:30
# create a flat, wide base. Extrude one object 4 units high, another
# object ontop of it 6 units high. Go back to base plane. Extrude an
# object 11 units high. Assert that top face is 11 units high.
2020-01-23 21:25:32 +10:30
result = (
Workplane("XY")
.box(10, 10, 1, centered=(True, True, False))
.faces(">Z")
.workplane()
.tag("base")
.center(3, 0)
.rect(2, 2)
.extrude(4)
.faces(">Z")
.workplane()
.circle(1)
.extrude(6)
.workplaneFromTagged("base")
.center(-3, 0)
.circle(1)
.extrude(11)
)
self.assertTupleAlmostEquals(
result.faces(">Z").val().Center().toTuple(), (-3, 0, 12), 9
)
2019-12-22 13:54:59 +10:30
def testTagSelectors(self):
result0 = Workplane("XY").box(1, 1, 1).tag("box").sphere(1)
# result is currently a sphere
self.assertEqual(1, result0.faces().size())
# a box has 8 vertices
self.assertEqual(8, result0.vertices(tag="box").size())
# 6 faces
self.assertEqual(6, result0.faces(tag="box").size())
# 12 edges
self.assertEqual(12, result0.edges(tag="box").size())
# 6 wires
self.assertEqual(6, result0.wires(tag="box").size())
# create two solids, tag them, join to one solid
2020-01-23 21:25:32 +10:30
result1 = (
Workplane("XY")
.pushPoints([(1, 0), (-1, 0)])
.box(1, 1, 1)
.tag("boxes")
.sphere(1)
)
2019-12-22 13:54:59 +10:30
self.assertEqual(1, result1.solids().size())
self.assertEqual(2, result1.solids(tag="boxes").size())
self.assertEqual(1, result1.shells().size())
self.assertEqual(2, result1.shells(tag="boxes").size())
# create 4 individual objects, tag it, then combine to one compound
2020-01-23 21:25:32 +10:30
result2 = (
Workplane("XY")
.rect(4, 4)
.vertices()
.box(1, 1, 1, combine=False)
.tag("4 objs")
)
2019-12-22 13:54:59 +10:30
result2 = result2.newObject([Compound.makeCompound(result2.objects)])
self.assertEqual(1, result2.compounds().size())
self.assertEqual(0, result2.compounds(tag="4 objs").size())
def test_interpPlate(self):
"""
Tests the interpPlate() functionnalites
Numerical values of Areas and Volumes were obtained with the Area() and Volume() functions on a Linux machine under Debian 10 with python 3.7.
"""
# example from PythonOCC core_geometry_geomplate.py, use of thickness = 0 returns 2D surface.
thickness = 0
edge_points = [
[0.0, 0.0, 0.0],
[0.0, 10.0, 0.0],
[0.0, 10.0, 10.0],
[0.0, 0.0, 10.0],
]
surface_points = [[5.0, 5.0, 5.0]]
plate_0 = Workplane("XY").interpPlate(edge_points, surface_points, thickness)
self.assertTrue(plate_0.val().isValid())
self.assertAlmostEqual(plate_0.val().Area(), 141.218823892, 1)
# Plate with 5 sides and 2 bumps, one side is not co-planar with the other sides
thickness = 0.1
edge_points = [
[-7.0, -7.0, 0.0],
[-3.0, -10.0, 3.0],
[7.0, -7.0, 0.0],
[7.0, 7.0, 0.0],
[-7.0, 7.0, 0.0],
]
edge_wire = Workplane("XY").polyline(
[(-7.0, -7.0), (7.0, -7.0), (7.0, 7.0), (-7.0, 7.0)]
)
# edge_wire = edge_wire.add(Workplane('YZ').workplane().transformed(offset=Vector(0, 0, -7), rotate=Vector(45, 0, 0)).polyline([(-7.,0.), (3,-3), (7.,0.)]))
# In CadQuery Sept-2019 it worked with rotate=Vector(0, 45, 0). In CadQuery Dec-2019 rotate=Vector(45, 0, 0) only closes the wire.
edge_wire = edge_wire.add(
Workplane("YZ")
.workplane()
.transformed(offset=Vector(0, 0, -7), rotate=Vector(45, 0, 0))
.spline([(-7.0, 0.0), (3, -3), (7.0, 0.0)])
)
surface_points = [[-3.0, -3.0, -3.0], [3.0, 3.0, 3.0]]
plate_1 = Workplane("XY").interpPlate(edge_wire, surface_points, thickness)
self.assertTrue(plate_1.val().isValid())
self.assertAlmostEqual(plate_1.val().Volume(), 26.124970206, 3)
# Embossed star, need to change optional parameters to obtain nice looking result.
r1 = 3.0
r2 = 10.0
fn = 6
thickness = 0.1
edge_points = [
[r1 * math.cos(i * math.pi / fn), r1 * math.sin(i * math.pi / fn)]
if i % 2 == 0
else [r2 * math.cos(i * math.pi / fn), r2 * math.sin(i * math.pi / fn)]
for i in range(2 * fn + 1)
]
edge_wire = Workplane("XY").polyline(edge_points)
r2 = 4.5
surface_points = [
[r2 * math.cos(i * math.pi / fn), r2 * math.sin(i * math.pi / fn), 1.0]
for i in range(2 * fn)
] + [[0.0, 0.0, -2.0]]
plate_2 = Workplane("XY").interpPlate(
edge_wire,
surface_points,
thickness,
combine=True,
clean=True,
degree=3,
nbPtsOnCur=15,
nbIter=2,
anisotropy=False,
tol2d=0.00001,
tol3d=0.0001,
tolAng=0.01,
tolCurv=0.1,
maxDeg=8,
maxSegments=49,
)
self.assertTrue(plate_2.val().isValid())
self.assertAlmostEqual(plate_2.val().Volume(), 10.956054314, 0)
# Points on hexagonal pattern coordinates, use of pushpoints.
r1 = 1.0
N = 3
ca = math.cos(30.0 * math.pi / 180.0)
sa = math.sin(30.0 * math.pi / 180.0)
# EVEN ROWS
pts = [
(-3.0, -3.0),
(-1.267949, -3.0),
(0.464102, -3.0),
(2.196152, -3.0),
(-3.0, 0.0),
(-1.267949, 0.0),
(0.464102, 0.0),
(2.196152, 0.0),
(-2.133974, -1.5),
(-0.401923, -1.5),
(1.330127, -1.5),
(3.062178, -1.5),
(-2.133975, 1.5),
(-0.401924, 1.5),
(1.330127, 1.5),
(3.062178, 1.5),
]
# Spike surface
thickness = 0.1
fn = 6
edge_points = [
[
r1 * math.cos(i * 2 * math.pi / fn + 30 * math.pi / 180),
r1 * math.sin(i * 2 * math.pi / fn + 30 * math.pi / 180),
]
for i in range(fn + 1)
]
surface_points = [
[
r1 / 4 * math.cos(i * 2 * math.pi / fn + 30 * math.pi / 180),
r1 / 4 * math.sin(i * 2 * math.pi / fn + 30 * math.pi / 180),
0.75,
]
for i in range(fn + 1)
] + [[0, 0, 2]]
edge_wire = Workplane("XY").polyline(edge_points)
plate_3 = (
Workplane("XY")
.pushPoints(pts)
.interpPlate(
edge_wire,
surface_points,
thickness,
combine=False,
clean=False,
degree=2,
nbPtsOnCur=20,
nbIter=2,
anisotropy=False,
tol2d=0.00001,
tol3d=0.0001,
tolAng=0.01,
tolCurv=0.1,
maxDeg=8,
maxSegments=9,
)
)
self.assertTrue(plate_3.val().isValid())
self.assertAlmostEqual(plate_3.val().Volume(), 0.45893954685189414, 1)
# Gyroïd, all edges are splines on different workplanes.
thickness = 0.1
edge_points = [
[[3.54, 3.54], [1.77, 0.0], [3.54, -3.54]],
[[-3.54, -3.54], [0.0, -1.77], [3.54, -3.54]],
[[-3.54, -3.54], [0.0, -1.77], [3.54, -3.54]],
[[-3.54, -3.54], [-1.77, 0.0], [-3.54, 3.54]],
[[3.54, 3.54], [0.0, 1.77], [-3.54, 3.54]],
[[3.54, 3.54], [0.0, 1.77], [-3.54, 3.54]],
]
plane_list = ["XZ", "XY", "YZ", "XZ", "YZ", "XY"]
offset_list = [-3.54, 3.54, 3.54, 3.54, -3.54, -3.54]
edge_wire = (
Workplane(plane_list[0])
.workplane(offset=-offset_list[0])
.spline(edge_points[0])
)
for i in range(len(edge_points) - 1):
edge_wire = edge_wire.add(
Workplane(plane_list[i + 1])
.workplane(offset=-offset_list[i + 1])
.spline(edge_points[i + 1])
)
surface_points = [[0, 0, 0]]
plate_4 = Workplane("XY").interpPlate(edge_wire, surface_points, thickness)
self.assertTrue(plate_4.val().isValid())
self.assertAlmostEqual(plate_4.val().Volume(), 7.760559490, 3)
def testTangentArcToPoint(self):
# create a simple shape with tangents of straight edges and see if it has the correct area
s0 = (
Workplane("XY")
.hLine(1)
.tangentArcPoint((1, 1), relative=False)
.hLineTo(0)
.tangentArcPoint((0, 0), relative=False)
.close()
.extrude(1)
)
area0 = s0.faces(">Z").val().Area()
self.assertAlmostEqual(area0, (1 + math.pi * 0.5 ** 2), 4)
# test relative coords
s1 = (
Workplane("XY")
.hLine(1)
.tangentArcPoint((0, 1), relative=True)
.hLineTo(0)
.tangentArcPoint((0, -1), relative=True)
.close()
.extrude(1)
)
self.assertTupleAlmostEquals(
s1.val().Center().toTuple(), s0.val().Center().toTuple(), 4
)
self.assertAlmostEqual(s1.val().Volume(), s0.val().Volume(), 4)
# consecutive tangent arcs
s1 = (
Workplane("XY")
.vLine(2)
.tangentArcPoint((1, 0))
.tangentArcPoint((1, 0))
.tangentArcPoint((1, 0))
.vLine(-2)
.close()
.extrude(1)
)
self.assertAlmostEqual(
s1.faces(">Z").val().Area(), 2 * 3 + 0.5 * math.pi * 0.5 ** 2, 4
)
# tangentArc on the end of a spline
# spline will be a simple arc of a circle, then finished off with a
# tangentArcPoint
angles = [idx * 1.5 * math.pi / 10 for idx in range(10)]
pts = [(math.sin(a), math.cos(a)) for a in angles]
s2 = (
Workplane("XY")
.spline(pts)
.tangentArcPoint((0, 1), relative=False)
.close()
.extrude(1)
)
# volume should almost be pi, but not accurately because we need to
# start with a spline
self.assertAlmostEqual(s2.val().Volume(), math.pi, 1)
# assert local coords are mapped to global correctly
arc0 = Workplane("XZ", origin=(1, 1, 1)).hLine(1).tangentArcPoint((1, 1)).val()
self.assertTupleAlmostEquals(arc0.endPoint().toTuple(), (3, 1, 2), 4)
# tangentArcPoint with 3-tuple argument
2020-03-19 18:51:15 +01:00
w0 = Workplane("XY").lineTo(1, 1).tangentArcPoint((1, 1, 1)).wire()
zmax = w0.val().BoundingBox().zmax
self.assertAlmostEqual(zmax, 1, 1)
def test_findFromEdge(self):
part = Workplane("XY", origin=(1, 1, 1)).hLine(1)
found_edge = part._findFromEdge(useLocalCoords=False)
self.assertTupleAlmostEquals(found_edge.startPoint().toTuple(), (1, 1, 1), 3)
self.assertTupleAlmostEquals(found_edge.Center().toTuple(), (1.5, 1, 1), 3)
self.assertTupleAlmostEquals(found_edge.endPoint().toTuple(), (2, 1, 1), 3)
found_edge = part._findFromEdge(useLocalCoords=True)
self.assertTupleAlmostEquals(found_edge.endPoint().toTuple(), (1, 0, 0), 3)
# check _findFromEdge can find a spline
pts = [(0, 0), (0, 1), (1, 2), (2, 4)]
spline0 = Workplane("XZ").spline(pts)._findFromEdge()
self.assertTupleAlmostEquals((2, 0, 4), spline0.endPoint().toTuple(), 3)
# check method fails if no edge is present
part2 = Workplane("XY").box(1, 1, 1)
with self.assertRaises(RuntimeError):
part2._findFromEdge()
with self.assertRaises(RuntimeError):
part2._findFromEdge(useLocalCoords=True)
2020-04-04 15:20:04 +02:00
def testMakeHelix(self):
h = 10
2020-04-04 15:42:34 +02:00
pitch = 1.5
2020-04-04 15:20:04 +02:00
r = 1.2
obj = Wire.makeHelix(pitch, h, r)
bb = obj.BoundingBox()
self.assertAlmostEqual(bb.zlen, h, 1)
2020-04-06 21:20:24 +02:00
def testUnionCompound(self):
2020-04-06 21:26:00 +02:00
box1 = Workplane("XY").box(10, 20, 30)
box2 = Workplane("YZ").box(10, 20, 30)
shape_to_cut = Workplane("XY").box(15, 15, 15).translate((8, 8, 8))
2020-04-06 21:20:24 +02:00
list_of_shapes = []
2020-04-06 21:26:00 +02:00
for o in box1.all():
list_of_shapes.extend(o.vals())
for o in box2.all():
list_of_shapes.extend(o.vals())
obj = Workplane("XY").newObject(list_of_shapes).cut(shape_to_cut)
assert obj.val().isValid()
def testSection(self):
box = Workplane("XY", origin=(1, 2, 3)).box(1, 1, 1)
s1 = box.section()
s2 = box.section(0.5)
self.assertAlmostEqual(s1.faces().val().Area(), 1)
self.assertAlmostEqual(s2.faces().val().Area(), 1)
line = Workplane("XY").hLine(1)
with self.assertRaises(ValueError):
line.section()
2020-06-04 20:55:12 +02:00
def testGlue(self):
box1 = Workplane("XY").rect(1, 1).extrude(2)
box2 = Workplane("XY", origin=(0, 1, 0)).rect(1, 1).extrude(1)
res = box1.union(box2, glue=True)
self.assertEqual(res.faces().size(), 8)
2020-06-05 17:13:13 +02:00
obj = obj = (
Workplane("XY").rect(1, 1).extrude(2).moveTo(0, 2).rect(1, 1).extrude(2)
)
2020-06-04 20:55:12 +02:00
res = obj.union(box2, glue=True)
self.assertEqual(res.faces().size(), 10)
2020-06-05 17:26:37 +02:00
def testFuzzyBoolOp(self):
eps = 1e-3
box1 = Workplane("XY").box(1, 1, 1)
box2 = Workplane("XY", origin=(1 + eps, 0.0)).box(1, 1, 1)
box3 = Workplane("XY", origin=(2, 0, 0)).box(1, 1, 1)
res = box1.union(box2)
res_fuzzy = box1.union(box2, tol=eps)
res_fuzzy2 = box1.union(box3).union(box2, tol=eps)
self.assertEqual(res.solids().size(), 2)
self.assertEqual(res_fuzzy.solids().size(), 1)
self.assertEqual(res_fuzzy2.solids().size(), 1)
2020-06-22 22:36:43 +02:00
def testLocatedMoved(self):
box = Solid.makeBox(1, 1, 1, Vector(-0.5, -0.5, -0.5))
loc = Location(Vector(1, 1, 1))
box1 = box.located(loc)
self.assertTupleAlmostEquals(box1.Center().toTuple(), (1, 1, 1), 6)
self.assertTupleAlmostEquals(box.Center().toTuple(), (0, 0, 0), 6)
box.locate(loc)
self.assertTupleAlmostEquals(box.Center().toTuple(), (1, 1, 1), 6)
box2 = box.moved(loc)
self.assertTupleAlmostEquals(box.Center().toTuple(), (1, 1, 1), 6)
self.assertTupleAlmostEquals(box2.Center().toTuple(), (2, 2, 2), 6)
box.move(loc)
self.assertTupleAlmostEquals(box.Center().toTuple(), (2, 2, 2), 6)
def testNullShape(self):
from OCP.TopoDS import TopoDS_Shape
s = TopoDS_Shape()
# make sure raises on non solid
with self.assertRaises(ValueError):
r = occ_impl.shapes.downcast(s)
def testCenterOfBoundBox(self):
obj = Workplane().pushPoints([(0, 0), (2, 2)]).box(1, 1, 1)
c = obj.workplane(centerOption="CenterOfBoundBox").plane.origin
self.assertTupleAlmostEquals(c.toTuple(), (1, 1, 0), 6)