First attempt at python2 and python3 support in single codebase

4 tests failing on python3 (CQGI, AMF export)
This commit is contained in:
Adam Urbanczyk
2017-09-17 00:57:12 +02:00
parent 231b691b1b
commit 1e05a45f9c
22 changed files with 2068 additions and 1771 deletions

View File

@ -31,9 +31,11 @@ class CQContext(object):
All objects in the same CQ chain share a reference to this same object instance
which allows for shared state when needed,
"""
def __init__(self):
self.pendingWires = [] # a list of wires that have been created and need to be extruded
self.pendingEdges = [] # a list of created pending edges that need to be joined into wires
# a list of created pending edges that need to be joined into wires
self.pendingEdges = []
# a reference to the first point for a set of edges.
# Used to determine how to behave when close() is called
self.firstPoint = None
@ -335,7 +337,8 @@ class CQ(object):
if len(self.objects) > 1:
# are all objects 'PLANE'?
if not all(o.geomType() in ('PLANE', 'CIRCLE') for o in self.objects):
raise ValueError("If multiple objects selected, they all must be planar faces.")
raise ValueError(
"If multiple objects selected, they all must be planar faces.")
# are all faces co-planar with each other?
if not all(_isCoPlanar(self.objects[0], f) for f in self.objects[1:]):
@ -368,7 +371,8 @@ class CQ(object):
normal = self.plane.zDir
xDir = self.plane.xDir
else:
raise ValueError("Needs a face or a vertex or point on a work plane")
raise ValueError(
"Needs a face or a vertex or point on a work plane")
# invert if requested
if invert:
@ -479,7 +483,7 @@ class CQ(object):
toReturn = self._collectProperty(objType)
if selector is not None:
if isinstance(selector, str) or isinstance(selector, unicode):
if isinstance(selector, str) or isinstance(selector, str):
selectorObj = selectors.StringSyntaxSelector(selector)
else:
selectorObj = selector
@ -751,10 +755,10 @@ class CQ(object):
:param basePointVector: the base point to mirror about
:type basePointVector: tuple
"""
newS = self.newObject([self.objects[0].mirror(mirrorPlane, basePointVector)])
newS = self.newObject(
[self.objects[0].mirror(mirrorPlane, basePointVector)])
return newS.first()
def translate(self, vec):
"""
Returns a copy of all of the items on the stack moved by the specified translation vector.
@ -765,7 +769,6 @@ class CQ(object):
"""
return self.newObject([o.translate(vec) for o in self.objects])
def shell(self, thickness):
"""
Remove the selected faces to create a shell of the specified thickness.
@ -935,7 +938,7 @@ class Workplane(CQ):
if inPlane.__class__.__name__ == 'Plane':
tmpPlane = inPlane
elif isinstance(inPlane, str) or isinstance(inPlane, unicode):
elif isinstance(inPlane, str) or isinstance(inPlane, str):
tmpPlane = Plane.named(inPlane, origin)
else:
tmpPlane = None
@ -1026,7 +1029,8 @@ class Workplane(CQ):
elif isinstance(obj, Vector):
p = obj
else:
raise RuntimeError("Cannot convert object type '%s' to vector " % type(obj))
raise RuntimeError(
"Cannot convert object type '%s' to vector " % type(obj))
if useLocalCoords:
return self.plane.toLocalCoords(p)
@ -1340,7 +1344,8 @@ class Workplane(CQ):
# attempt to consolidate wires together.
consolidated = n.consolidateWires()
rotatedWires = self.plane.rotateShapes(consolidated.wires().vals(), matrix)
rotatedWires = self.plane.rotateShapes(
consolidated.wires().vals(), matrix)
for w in rotatedWires:
consolidated.objects.append(w)
@ -1506,7 +1511,6 @@ class Workplane(CQ):
if type(e) != Edge:
others.append(e)
w = Wire.assembleEdges(edges)
if not forConstruction:
self._addPendingWire(w)
@ -1788,7 +1792,8 @@ class Workplane(CQ):
for cb in results:
s = s.cut(cb)
if clean: s = s.clean()
if clean:
s = s.clean()
ctxSolid.wrapped = s.wrapped
return self.newObject([s])
@ -1835,10 +1840,12 @@ class Workplane(CQ):
"""
boreDir = Vector(0, 0, -1)
# first make the hole
hole = Solid.makeCylinder(diameter/2.0, depth, center, boreDir) # local coordianates!
hole = Solid.makeCylinder(
diameter / 2.0, depth, center, boreDir) # local coordianates!
# add the counter bore
cbore = Solid.makeCylinder(cboreDiameter / 2.0, cboreDepth, center, boreDir)
cbore = Solid.makeCylinder(
cboreDiameter / 2.0, cboreDepth, center, boreDir)
r = hole.fuse(cbore)
return r
@ -1886,7 +1893,8 @@ class Workplane(CQ):
boreDir = Vector(0, 0, -1)
# first make the hole
hole = Solid.makeCylinder(diameter/2.0, depth, center, boreDir) # local coords!
hole = Solid.makeCylinder(
diameter / 2.0, depth, center, boreDir) # local coords!
r = cskDiameter / 2.0
h = r / math.tan(math.radians(cskAngle / 2.0))
csk = Solid.makeCone(r, 0.0, h, center, boreDir)
@ -1934,7 +1942,8 @@ class Workplane(CQ):
"""
boreDir = Vector(0, 0, -1)
# first make the hole
hole = Solid.makeCylinder(diameter / 2.0, depth, center, boreDir) # local coordinates!
hole = Solid.makeCylinder(
diameter / 2.0, depth, center, boreDir) # local coordinates!
return hole
return self.cutEach(_makeHole, True, clean)
@ -1961,9 +1970,11 @@ class Workplane(CQ):
"""
# group wires together into faces based on which ones are inside the others
# result is a list of lists
wireSets = sortWiresByBuildOrder(list(self.ctx.pendingWires), self.plane, [])
wireSets = sortWiresByBuildOrder(
list(self.ctx.pendingWires), self.plane, [])
self.ctx.pendingWires = [] # now all of the wires have been used to create an extrusion
# now all of the wires have been used to create an extrusion
self.ctx.pendingWires = []
# compute extrusion vector and extrude
eDir = self.plane.zDir.multiply(distance)
@ -1988,7 +1999,8 @@ class Workplane(CQ):
newS = self._combineWithBase(r)
else:
newS = self.newObject([r])
if clean: newS = newS.clean()
if clean:
newS = newS.clean()
return newS
def extrude(self, distance, combine=True, clean=True, both=False):
@ -2016,13 +2028,15 @@ class Workplane(CQ):
perpendicular to the plane extrude to surface. this is quite tricky since the surface
selected may not be planar
"""
r = self._extrude(distance,both=both) # returns a Solid (or a compound if there were multiple)
r = self._extrude(
distance, both=both) # returns a Solid (or a compound if there were multiple)
if combine:
newS = self._combineWithBase(r)
else:
newS = self.newObject([r])
if clean: newS = newS.clean()
if clean:
newS = newS.clean()
return newS
def revolve(self, angleDegrees=360.0, axisStart=None, axisEnd=None, combine=True, clean=True):
@ -2078,7 +2092,8 @@ class Workplane(CQ):
newS = self._combineWithBase(r)
else:
newS = self.newObject([r])
if clean: newS = newS.clean()
if clean:
newS = newS.clean()
return newS
def sweep(self, path, makeSolid=True, isFrenet=False, combine=True, clean=True):
@ -2091,12 +2106,14 @@ class Workplane(CQ):
:return: a CQ object with the resulting solid selected.
"""
r = self._sweep(path.wire(), makeSolid, isFrenet) # returns a Solid (or a compound if there were multiple)
# returns a Solid (or a compound if there were multiple)
r = self._sweep(path.wire(), makeSolid, isFrenet)
if combine:
newS = self._combineWithBase(r)
else:
newS = self.newObject([r])
if clean: newS = newS.clean()
if clean:
newS = newS.clean()
return newS
def _combineWithBase(self, obj):
@ -2128,7 +2145,8 @@ class Workplane(CQ):
for ss in items:
s = s.fuse(ss)
if clean: s = s.clean()
if clean:
s = s.clean()
return self.newObject([s])
@ -2150,7 +2168,8 @@ class Workplane(CQ):
if type(toUnion) == CQ or type(toUnion) == Workplane:
solids = toUnion.solids().vals()
if len(solids) < 1:
raise ValueError("CQ object must have at least one solid on the stack to union!")
raise ValueError(
"CQ object must have at least one solid on the stack to union!")
newS = solids.pop(0)
for s in solids:
newS = newS.fuse(s)
@ -2168,7 +2187,8 @@ class Workplane(CQ):
else:
r = newS
if clean: r = r.clean()
if clean:
r = r.clean()
return self.newObject([r])
@ -2201,7 +2221,8 @@ class Workplane(CQ):
newS = solidRef.cut(solidToCut)
if clean: newS = newS.clean()
if clean:
newS = newS.clean()
if combine:
solidRef.wrapped = newS.wrapped
@ -2236,7 +2257,8 @@ class Workplane(CQ):
s = solidRef.cut(toCut)
if clean: s = s.clean()
if clean:
s = s.clean()
solidRef.wrapped = s.wrapped
return self.newObject([s])
@ -2298,14 +2320,15 @@ class Workplane(CQ):
# group wires together into faces based on which ones are inside the others
# result is a list of lists
s = time.time()
wireSets = sortWiresByBuildOrder(list(self.ctx.pendingWires), self.plane, [])
wireSets = sortWiresByBuildOrder(
list(self.ctx.pendingWires), self.plane, [])
# print "sorted wires in %d sec" % ( time.time() - s )
self.ctx.pendingWires = [] # now all of the wires have been used to create an extrusion
# now all of the wires have been used to create an extrusion
self.ctx.pendingWires = []
# compute extrusion vector and extrude
eDir = self.plane.zDir.multiply(distance)
# one would think that fusing faces into a compound and then extruding would work,
# but it doesnt-- the resulting compound appears to look right, ( right number of faces, etc)
# but then cutting it from the main solid fails with BRep_NotDone.
@ -2334,7 +2357,8 @@ class Workplane(CQ):
toFuse.append(thisObj)
if both:
thisObj = Solid.extrudeLinear(ws[0], ws[1:], eDir.multiply(-1.))
thisObj = Solid.extrudeLinear(
ws[0], ws[1:], eDir.multiply(-1.))
toFuse.append(thisObj)
return Compound.makeCompound(toFuse)
@ -2354,7 +2378,8 @@ class Workplane(CQ):
This method is a utility method, primarily for plugin and internal use.
"""
# We have to gather the wires to be revolved
wireSets = sortWiresByBuildOrder(list(self.ctx.pendingWires), self.plane, [])
wireSets = sortWiresByBuildOrder(
list(self.ctx.pendingWires), self.plane, [])
# Mark that all of the wires have been used to create a revolution
self.ctx.pendingWires = []
@ -2362,7 +2387,8 @@ class Workplane(CQ):
# Revolve the wires, make a compound out of them and then fuse them
toFuse = []
for ws in wireSets:
thisObj = Solid.revolve(ws[0], ws[1:], angleDegrees, axisStart, axisEnd)
thisObj = Solid.revolve(
ws[0], ws[1:], angleDegrees, axisStart, axisEnd)
toFuse.append(thisObj)
return Compound.makeCompound(toFuse)
@ -2378,13 +2404,16 @@ class Workplane(CQ):
# group wires together into faces based on which ones are inside the others
# result is a list of lists
s = time.time()
wireSets = sortWiresByBuildOrder(list(self.ctx.pendingWires), self.plane, [])
wireSets = sortWiresByBuildOrder(
list(self.ctx.pendingWires), self.plane, [])
# print "sorted wires in %d sec" % ( time.time() - s )
self.ctx.pendingWires = [] # now all of the wires have been used to create an extrusion
# now all of the wires have been used to create an extrusion
self.ctx.pendingWires = []
toFuse = []
for ws in wireSets:
thisObj = Solid.sweep(ws[0], ws[1:], path.val(), makeSolid, isFrenet)
thisObj = Solid.sweep(
ws[0], ws[1:], path.val(), makeSolid, isFrenet)
toFuse.append(thisObj)
return Compound.makeCompound(toFuse)
@ -2547,5 +2576,6 @@ class Workplane(CQ):
try:
cleanObjects = [obj.clean() for obj in self.objects]
except AttributeError:
raise AttributeError("%s object doesn't support `clean()` method!" % obj.ShapeType())
raise AttributeError(
"%s object doesn't support `clean()` method!" % obj.ShapeType())
return self.newObject(cleanObjects)

View File

@ -6,7 +6,7 @@ A special directive for including a cq object.
import traceback
from cadquery import *
from cadquery import cqgi
import StringIO
import io
from docutils.parsers.rst import directives
template = """
@ -34,7 +34,7 @@ def cq_directive(name, arguments, options, content, lineno,
out_svg = "Your Script Did not assign call build_output() function!"
try:
_s = StringIO.StringIO()
_s = io.StringIO()
result = cqgi.parse(plot_code).build()
if result.success:

View File

@ -9,6 +9,7 @@ import cadquery
CQSCRIPT = "<cqscript>"
def parse(script_source):
"""
Parses the script as a model, and returns a model.
@ -113,13 +114,14 @@ class CQModel(object):
if collector.has_results():
result.set_success_result(collector.outputObjects)
else:
raise NoOutputError("Script did not call build_object-- no output available.")
except Exception, ex:
print "Error Executing Script:"
raise NoOutputError(
"Script did not call build_object-- no output available.")
except Exception as ex:
print("Error Executing Script:")
result.set_failure_result(ex)
traceback.print_exc()
print "Full Text of Script:"
print self.script_source
print("Full Text of Script:")
print(self.script_source)
end = time.clock()
result.buildTime = end - start
@ -128,9 +130,10 @@ class CQModel(object):
def set_param_values(self, params):
model_parameters = self.metadata.parameters
for k, v in params.iteritems():
for k, v in params.items():
if k not in model_parameters:
raise InvalidParameterError("Cannot set value '%s': not a parameter of the model." % k)
raise InvalidParameterError(
"Cannot set value '%s': not a parameter of the model." % k)
p = model_parameters[k]
p.set_value(v)
@ -147,6 +150,7 @@ class BuildResult(object):
If unsuccessful, the exception property contains a reference to
the stack trace that occurred.
"""
def __init__(self):
self.buildTime = None
self.results = []
@ -173,6 +177,7 @@ class ScriptMetadata(object):
Defines the metadata for a parsed CQ Script.
the parameters property is a dict of InputParameter objects.
"""
def __init__(self):
self.parameters = {}
@ -180,7 +185,7 @@ class ScriptMetadata(object):
self.parameters[p.name] = p
def add_parameter_description(self, name, description):
print 'Adding Parameter name=%s, desc=%s' % ( name, description )
print('Adding Parameter name=%s, desc=%s' % (name, description))
p = self.parameters[name]
p.desc = description
@ -212,6 +217,7 @@ class InputParameter:
provide additional metadata
"""
def __init__(self):
#: the default value for the variable.
@ -283,6 +289,7 @@ class ScriptCallback(object):
the build_object() method is exposed to CQ scripts, to allow them
to return objects to the execution environment
"""
def __init__(self):
self.outputObjects = []
self.debugObjects = []
@ -315,16 +322,19 @@ class ScriptCallback(object):
def has_results(self):
return len(self.outputObjects) > 0
class DebugObject(object):
"""
Represents a request to debug an object
Object is the type of object we want to debug
args are parameters for use during debuging ( for example, color, tranparency )
"""
def __init__(self, object, args):
self.args = args
self.object = object
class InvalidParameterError(Exception):
"""
Raised when an attempt is made to provide a new parameter value
@ -375,6 +385,7 @@ class EnvironmentBuilder(object):
The environment includes the builtins, as well as
the other methods the script will need.
"""
def __init__(self):
self.env = {}
@ -397,10 +408,12 @@ class EnvironmentBuilder(object):
def build(self):
return self.env
class ParameterDescriptionFinder(ast.NodeTransformer):
"""
Visits a parse tree, looking for function calls to describe_parameter(var, description )
"""
def __init__(self, cq_model):
self.cqModel = cq_model
@ -418,10 +431,11 @@ class ParameterDescriptionFinder(ast.NodeTransformer):
self.cqModel.add_parameter_description(varname, desc)
except:
print "Unable to handle function call"
print("Unable to handle function call")
pass
return node
class ConstantAssignmentFinder(ast.NodeTransformer):
"""
Visits a parse tree, and adds script parameters to the cqModel
@ -447,7 +461,7 @@ class ConstantAssignmentFinder(ast.NodeTransformer):
self.cqModel.add_script_parameter(
InputParameter.create(value_node, var_name, BooleanParameterType, True))
except:
print "Unable to handle assignment for variable '%s'" % var_name
print("Unable to handle assignment for variable '%s'" % var_name)
pass
def visit_Assign(self, node):
@ -467,6 +481,7 @@ class ConstantAssignmentFinder(ast.NodeTransformer):
self.handle_assignment(n.id, v)
except:
traceback.print_exc()
print "Unable to handle assignment for node '%s'" % ast.dump(left_side)
print("Unable to handle assignment for node '%s'" %
ast.dump(left_side))
return node

View File

@ -3,7 +3,9 @@ import cadquery
import FreeCAD
import Drawing
import tempfile, os, StringIO
import tempfile
import os
import io
try:
@ -26,7 +28,7 @@ class UNITS:
def toString(shape, exportType, tolerance=0.1):
s = StringIO.StringIO()
s = io.StringIO()
exportShape(shape, exportType, s, tolerance)
return s.getvalue()
@ -42,7 +44,6 @@ def exportShape(shape,exportType,fileLike,tolerance=0.1):
for closing the object
"""
if isinstance(shape, cadquery.CQ):
shape = shape.val()
@ -83,6 +84,7 @@ def exportShape(shape,exportType,fileLike,tolerance=0.1):
res = readAndDeleteFile(outFileName)
fileLike.write(res)
def readAndDeleteFile(fileName):
"""
read data from file provided, and delete it when done
@ -153,36 +155,39 @@ class AmfWriter(object):
v3 = ET.SubElement(triangle, 'v3')
v3.text = str(t[2])
ET.ElementTree(amf).write(outFile, encoding='ISO-8859-1')
"""
Objects that represent
three.js JSON object notation
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0
"""
class JsonMesh(object):
def __init__(self):
self.vertices = [];
self.faces = [];
self.nVertices = 0;
self.nFaces = 0;
self.vertices = []
self.faces = []
self.nVertices = 0
self.nFaces = 0
def addVertex(self, x, y, z):
self.nVertices += 1;
self.vertices.extend([x,y,z]);
self.nVertices += 1
self.vertices.extend([x, y, z])
# add triangle composed of the three provided vertex indices
def addTriangleFace(self, i, j, k):
# first position means justa simple triangle
self.nFaces += 1;
self.faces.extend([0,int(i),int(j),int(k)]);
self.nFaces += 1
self.faces.extend([0, int(i), int(j), int(k)])
"""
Get a json model from this model.
For now we'll forget about colors, vertex normals, and all that stuff
"""
def toJson(self):
return JSON_TEMPLATE % {
'vertices': str(self.vertices),
@ -251,7 +256,8 @@ def getSVG(shape,opts=None):
viewVector = FreeCAD.Base.Vector(-1.75, 1.1, 5)
(visibleG0, visibleG1, hiddenG0, hiddenG1) = Drawing.project(shape, viewVector)
(hiddenPaths,visiblePaths) = getPaths(Drawing.projectToSVG(shape,viewVector,"ShowHiddenLines")) #this param is totally undocumented!
(hiddenPaths, visiblePaths) = getPaths(Drawing.projectToSVG(
shape, viewVector, "ShowHiddenLines")) # this param is totally undocumented!
# get bounding box -- these are all in 2-d space
bb = visibleG0.BoundBox
@ -263,7 +269,8 @@ def getSVG(shape,opts=None):
unitScale = min(width / bb.XLength * 0.75, height / bb.YLength * 0.75)
# compute amount to translate-- move the top left into view
(xTranslate,yTranslate) = ( (0 - bb.XMin) + marginLeft/unitScale ,(0- bb.YMax) - marginTop/unitScale)
(xTranslate, yTranslate) = ((0 - bb.XMin) + marginLeft /
unitScale, (0 - bb.YMax) - marginTop / unitScale)
# compute paths ( again -- had to strip out freecad crap )
hiddenContent = ""
@ -307,7 +314,6 @@ def exportSVG(shape, fileName):
f.close()
JSON_TEMPLATE = """\
{
"metadata" :
@ -389,4 +395,3 @@ SVG_TEMPLATE = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
"""
PATHTEMPLATE = "\t\t\t<path d=\"%s\" />\n"

View File

@ -67,6 +67,7 @@ class Vector(object):
* a 3-tuple
* three float values, x, y, and z
"""
def __init__(self, *args):
if len(args) == 3:
fV = FreeCAD.Base.Vector(args[0], args[1], args[2])
@ -82,7 +83,8 @@ class Vector(object):
elif len(args) == 0:
fV = FreeCAD.Base.Vector(0, 0, 0)
else:
raise ValueError("Expected three floats, FreeCAD Vector, or 3-tuple")
raise ValueError(
"Expected three floats, FreeCAD Vector, or 3-tuple")
self._wrapped = fV
@ -147,16 +149,20 @@ class Vector(object):
return self.wrapped.getAngle(v.wrapped)
def distanceToLine(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def projectToLine(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def distanceToPlane(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def projectToPlane(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def __add__(self, v):
return self.add(v)
@ -179,6 +185,7 @@ class Matrix:
Used to move geometry in space.
"""
def __init__(self, matrix=None):
if matrix is None:
self.wrapped = FreeCAD.Base.Matrix()
@ -255,7 +262,7 @@ class Plane(object):
return namedPlanes[stdName]
except KeyError:
raise ValueError('Supported names are {}'.format(
namedPlanes.keys()))
list(namedPlanes.keys())))
@classmethod
def XY(cls, origin=(0, 0, 0), xDir=Vector(1, 0, 0)):
@ -580,6 +587,7 @@ class Plane(object):
class BoundBox(object):
"""A BoundingBox for an object or set of objects. Wraps the FreeCAD one"""
def __init__(self, bb):
self.wrapped = bb
self.xmin = bb.XMin

View File

@ -9,9 +9,11 @@ import os
import urllib as urlreader
import tempfile
class ImportTypes:
STEP = "STEP"
class UNITS:
MM = "mm"
IN = "in"
@ -50,6 +52,8 @@ def importStep(fileName):
raise ValueError("STEP File Could not be loaded")
# Loads a STEP file from an URL into a CQ.Workplane object
def importStepFromURL(url):
# Now read and return the shape
try:
@ -68,4 +72,5 @@ def importStepFromURL(url):
return cadquery.Workplane("XY").newObject(solids)
except:
raise ValueError("STEP File from the URL: " + url + " Could not be loaded")
raise ValueError("STEP File from the URL: " +
url + " Could not be loaded")

View File

@ -214,7 +214,8 @@ class Shape(object):
elif isinstance(self.wrapped, FreeCADPart.Solid):
return Vector(self.wrapped.CenterOfMass)
else:
raise ValueError("Cannot find the center of %s object type" % str(type(self.Solids()[0].wrapped)))
raise ValueError("Cannot find the center of %s object type" % str(
type(self.Solids()[0].wrapped)))
def CenterOfBoundBox(self, tolerance=0.1):
self.wrapped.tessellate(tolerance)
@ -229,7 +230,8 @@ class Shape(object):
elif isinstance(self.wrapped, FreeCADPart.Solid):
return Vector(self.wrapped.BoundBox.Center)
else:
raise ValueError("Cannot find the center(BoundBox's) of %s object type" % str(type(self.Solids()[0].wrapped)))
raise ValueError("Cannot find the center(BoundBox's) of %s object type" % str(
type(self.Solids()[0].wrapped)))
@staticmethod
def CombinedCenter(objects):
@ -239,7 +241,8 @@ class Shape(object):
:param objects: a list of objects with mass
"""
total_mass = sum(Shape.computeMass(o) for o in objects)
weighted_centers = [o.wrapped.CenterOfMass.multiply(Shape.computeMass(o)) for o in objects]
weighted_centers = [o.wrapped.CenterOfMass.multiply(
Shape.computeMass(o)) for o in objects]
sum_wc = weighted_centers[0]
for wc in weighted_centers[1:]:
@ -430,7 +433,7 @@ class Edge(Shape):
def geomType(self):
t = type(self.wrapped.Curve)
if self.edgetypes.has_key(t):
if t in self.edgetypes:
return self.edgetypes[t]
else:
return "Unknown Edge Curve Type: %s" % str(t)
@ -565,7 +568,8 @@ class Wire(Shape):
:param normal: vector representing the direction of the plane the circle should lie in
:return:
"""
w = Wire(FreeCADPart.Wire([FreeCADPart.makeCircle(radius, center.wrapped, normal.wrapped)]))
w = Wire(FreeCADPart.Wire(
[FreeCADPart.makeCircle(radius, center.wrapped, normal.wrapped)]))
return w
@classmethod
@ -588,10 +592,12 @@ class Wire(Shape):
"""This method is not implemented yet."""
return self
class Face(Shape):
"""
a bounded surface that represents part of the boundary of a solid
"""
def __init__(self, obj):
self.wrapped = obj
@ -608,7 +614,7 @@ class Face(Shape):
def geomType(self):
t = type(self.wrapped.Surface)
if self.facetypes.has_key(t):
if t in self.facetypes:
return self.facetypes[t]
else:
return "Unknown Face Surface Type: %s" % str(t)
@ -661,6 +667,7 @@ class Shell(Shape):
"""
the outer boundary of a surface
"""
def __init__(self, wrapped):
"""
A Shell
@ -679,6 +686,7 @@ class Solid(Shape):
"""
a single solid
"""
def __init__(self, obj):
"""
A Solid

View File

@ -2,8 +2,13 @@ from OCC.Visualization import Tesselator
import cadquery
import tempfile, os
import tempfile
import os
import sys
if sys.version_info.major == 2:
import cStringIO as StringIO
else:
import io as StringIO
from .shapes import Shape, Compound, TOLERANCE
from .geom import BoundBox
@ -25,6 +30,7 @@ except ImportError:
DISCRETIZATION_TOLERANCE = 1e-3
DEFAULT_DIR = gp_Dir(-1.75, 1.1, 5)
class ExportTypes:
STL = "STL"
STEP = "STEP"
@ -55,14 +61,12 @@ def exportShape(shape,exportType,fileLike,tolerance=0.1):
for closing the object
"""
def tessellate(shape):
tess = Tesselator(shape.wrapped)
tess.Compute(compute_edges=True, mesh_quality=tolerance)
return tess
if isinstance(shape, cadquery.CQ):
shape = shape.val()
@ -107,6 +111,7 @@ def exportShape(shape,exportType,fileLike,tolerance=0.1):
res = readAndDeleteFile(outFileName)
fileLike.write(res)
def readAndDeleteFile(fileName):
"""
read data from file provided, and delete it when done
@ -179,36 +184,39 @@ class AmfWriter(object):
v3 = ET.SubElement(triangle, 'v3')
v3.text = str(t[2])
ET.ElementTree(amf).write(outFile, encoding='ISO-8859-1')
"""
Objects that represent
three.js JSON object notation
https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3.0
"""
class JsonMesh(object):
def __init__(self):
self.vertices = [];
self.faces = [];
self.nVertices = 0;
self.nFaces = 0;
self.vertices = []
self.faces = []
self.nVertices = 0
self.nFaces = 0
def addVertex(self, x, y, z):
self.nVertices += 1;
self.vertices.extend([x,y,z]);
self.nVertices += 1
self.vertices.extend([x, y, z])
# add triangle composed of the three provided vertex indices
def addTriangleFace(self, i, j, k):
# first position means justa simple triangle
self.nFaces += 1;
self.faces.extend([0,int(i),int(j),int(k)]);
self.nFaces += 1
self.faces.extend([0, int(i), int(j), int(k)])
"""
Get a json model from this model.
For now we'll forget about colors, vertex normals, and all that stuff
"""
def toJson(self):
return JSON_TEMPLATE % {
'vertices': str(self.vertices),
@ -235,10 +243,10 @@ def makeSVGedge(e):
end)
if points.IsDone():
point_it = (points.Value(i+1) for i in \
point_it = (points.Value(i + 1) for i in
range(points.NbPoints()))
p = point_it.next()
p = next(point_it)
cs.write('M{},{} '.format(p.X(), p.Y()))
for p in point_it:
@ -246,6 +254,7 @@ def makeSVGedge(e):
return cs.getvalue()
def getPaths(visibleShapes, hiddenShapes):
"""
@ -265,7 +274,6 @@ def getPaths(visibleShapes, hiddenShapes):
return (hiddenPaths, visiblePaths)
def getSVG(shape, opts=None):
"""
Export a shape to SVG
@ -322,12 +330,14 @@ def getSVG(shape,opts=None):
hidden.append(hidden_contour_edges)
# Fix the underlying geometry - otherwise we will get segfaults
for el in visible: breplib.BuildCurves3d(el,TOLERANCE)
for el in hidden: breplib.BuildCurves3d(el,TOLERANCE)
for el in visible:
breplib.BuildCurves3d(el, TOLERANCE)
for el in hidden:
breplib.BuildCurves3d(el, TOLERANCE)
# convert to native CQ objects
visible = map(Shape,visible)
hidden = map(Shape,hidden)
visible = list(map(Shape, visible))
hidden = list(map(Shape, hidden))
(hiddenPaths, visiblePaths) = getPaths(visible,
hidden)
@ -338,7 +348,8 @@ def getSVG(shape,opts=None):
unitScale = min(width / bb.xlen * 0.75, height / bb.ylen * 0.75)
# compute amount to translate-- move the top left into view
(xTranslate,yTranslate) = ( (0 - bb.xmin) + marginLeft/unitScale ,(0- bb.ymax) - marginTop/unitScale)
(xTranslate, yTranslate) = ((0 - bb.xmin) + marginLeft /
unitScale, (0 - bb.ymax) - marginTop / unitScale)
# compute paths ( again -- had to strip out freecad crap )
hiddenContent = ""
@ -382,7 +393,6 @@ def exportSVG(shape, fileName):
f.close()
JSON_TEMPLATE = """\
{
"metadata" :
@ -464,4 +474,3 @@ SVG_TEMPLATE = """<?xml version="1.0" encoding="UTF-8" standalone="no"?>
"""
PATHTEMPLATE = "\t\t\t<path d=\"%s\" />\n"

View File

@ -21,6 +21,7 @@ class Vector(object):
* a 3-tuple
* three float values, x, y, and z
"""
def __init__(self, *args):
if len(args) == 3:
fV = gp_Vec(*args)
@ -104,16 +105,20 @@ class Vector(object):
return self.wrapped.Angle(v.wrapped)
def distanceToLine(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def projectToLine(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def distanceToPlane(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def projectToPlane(self):
raise NotImplementedError("Have not needed this yet, but FreeCAD supports it!")
raise NotImplementedError(
"Have not needed this yet, but FreeCAD supports it!")
def __add__(self, v):
return self.add(v)
@ -157,6 +162,7 @@ class Matrix:
Used to move geometry in space.
"""
def __init__(self, matrix=None):
if matrix is None:
self.wrapped = gp_Trsf()
@ -250,7 +256,7 @@ class Plane(object):
return namedPlanes[stdName]
except KeyError:
raise ValueError('Supported names are {}'.format(
namedPlanes.keys()))
list(namedPlanes.keys())))
@classmethod
def XY(cls, origin=(0, 0, 0), xDir=Vector(1, 0, 0)):
@ -353,6 +359,7 @@ class Plane(object):
def origin(self):
return self._origin
# TODO is this property rly needed -- why not handle this in the constructor
@origin.setter
def origin(self, value):
self._origin = Vector(value)
@ -604,10 +611,10 @@ class Plane(object):
self.rG = inverse
self.fG = forward
class BoundBox(object):
"""A BoundingBox for an object or set of objects. Wraps the OCC one"""
def __init__(self, bb):
self.wrapped = bb
XMin, YMin, ZMin, XMax, YMax, ZMax = bb.Get()
@ -692,7 +699,8 @@ class BoundBox(object):
else:
mesh = BRepMesh_IncrementalMesh(shape, TOL, True)
mesh.Perform()
brepbndlib_Add(shape, bbox, True) #this is adds +margin but is faster
# this is adds +margin but is faster
brepbndlib_Add(shape, bbox, True)
return cls(bbox)

View File

@ -9,9 +9,11 @@ import tempfile
from OCC.STEPControl import STEPControl_Reader
class ImportTypes:
STEP = "STEP"
class UNITS:
MM = "mm"
IN = "in"
@ -55,6 +57,8 @@ def importStep(fileName):
raise ValueError("STEP File Could not be loaded")
# Loads a STEP file from an URL into a CQ.Workplane object
def importStepFromURL(url):
# Now read and return the shape
try:
@ -66,4 +70,5 @@ def importStepFromURL(url):
return importStep(tempFile.name)
except:
raise ValueError("STEP File from the URL: " + url + " Could not be loaded")
raise ValueError("STEP File from the URL: " +
url + " Could not be loaded")

View File

@ -6,7 +6,8 @@ import OCC.GeomAbs as ga #Geometry type enum
from OCC.gp import (gp_Vec, gp_Pnt, gp_Ax1, gp_Ax2, gp_Ax3, gp_Dir, gp_Circ,
gp_Trsf, gp_Pln, gp_GTrsf, gp_Pnt2d, gp_Dir2d)
from OCC.TColgp import TColgp_Array1OfPnt #collection of pints (used for spline construction)
# collection of pints (used for spline construction)
from OCC.TColgp import TColgp_Array1OfPnt
from OCC.BRepAdaptor import BRepAdaptor_Curve, BRepAdaptor_Surface
from OCC.BRepBuilderAPI import (BRepBuilderAPI_MakeVertex,
BRepBuilderAPI_MakeEdge,
@ -16,7 +17,8 @@ from OCC.BRepBuilderAPI import (BRepBuilderAPI_MakeVertex,
BRepBuilderAPI_Copy,
BRepBuilderAPI_GTransform,
BRepBuilderAPI_Transform)
from OCC.GProp import GProp_GProps #properties used to store mass calculation result
# properties used to store mass calculation result
from OCC.GProp import GProp_GProps
from OCC.BRepGProp import BRepGProp_Face, \
brepgprop_LinearProperties, \
brepgprop_SurfaceProperties, \
@ -35,7 +37,8 @@ from OCC.BRepPrimAPI import (BRepPrimAPI_MakeBox, #TODO list functions/used for
from OCC.TopExp import TopExp_Explorer # Toplogy explorer
from OCC.BRepTools import (BRepTools_WireExplorer, # might be needed for iterating thorugh wires
breptools_UVBounds)
from OCC.BRep import BRep_Tool #used for getting underlying geoetry -- is this equvalent to brep adaptor?
# used for getting underlying geoetry -- is this equvalent to brep adaptor?
from OCC.BRep import BRep_Tool
from OCC.TopoDS import (topods_Vertex, # downcasting functions
topods_Edge,
@ -121,7 +124,7 @@ shape_properties_LUT = \
ta.TopAbs_SOLID: brepgprop_VolumeProperties,
ta.TopAbs_COMPOUND: brepgprop_VolumeProperties}
inverse_shape_LUT = {v:k for k,v in shape_LUT.iteritems()}
inverse_shape_LUT = {v: k for k, v in shape_LUT.items()}
downcast_LUT = \
{ta.TopAbs_VERTEX: topods_Vertex,
@ -160,6 +163,7 @@ def downcast(topods_obj):
return downcast_LUT[topods_obj.ShapeType()](topods_obj)
class Shape(object):
"""
Represents a shape in the system.
@ -173,11 +177,11 @@ class Shape(object):
# Helps identify this solid through the use of an ID
self.label = ""
def clean(self):
"""Experimental clean using ShapeUpgrade"""
upgrader = ShapeUpgrade_UnifySameDomain(self.wrapped,True,True,False)
upgrader = ShapeUpgrade_UnifySameDomain(
self.wrapped, True, True, False)
upgrader.Build()
return self.cast(upgrader.Shape())
@ -201,7 +205,8 @@ class Shape(object):
ta.TopAbs_COMPOUND: Compound}
t = obj.ShapeType()
tr = constructor_LUT[t](downcast(obj)) #NB downcast is nedded to handly TopoDS_Shape types
# NB downcast is nedded to handly TopoDS_Shape types
tr = constructor_LUT[t](downcast(obj))
tr.forConstruction = forConstruction
# TODO move this to Compound constructor?
'''
@ -225,7 +230,6 @@ class Shape(object):
#
def exportStl(self, fileName, precision=1e-5):
mesh = BRepMesh_IncrementalMesh(self.wrapped, precision, True)
mesh.Perform()
@ -282,7 +286,6 @@ class Shape(object):
else:
return geom_LUT_EDGE_FACE[tr(self.wrapped).GetType()]
def isType(self, obj, strType): # TODO why here?
"""
Returns True if the shape is the specified type, false otherwise
@ -358,7 +361,8 @@ class Shape(object):
:param objects: a list of objects with mass
"""
total_mass = sum(Shape.computeMass(o) for o in objects)
weighted_centers = [Shape.centerOfMass(o).multiply(Shape.computeMass(o)) for o in objects]
weighted_centers = [Shape.centerOfMass(o).multiply(
Shape.computeMass(o)) for o in objects]
sum_wc = weighted_centers[0]
for wc in weighted_centers[1:]:
@ -420,7 +424,6 @@ class Shape(object):
def ShapeType(self):
return shape_LUT[self.wrapped.ShapeType()]
def _entities(self, topo_type):
out = {} # using dict to prevent duplicates
@ -432,7 +435,7 @@ class Shape(object):
out[item.__hash__()] = item # some implementations use __hash__
explorer.Next()
return out.values()
return list(out.values())
def Vertices(self):
@ -578,6 +581,7 @@ class Shape(object):
raise NotImplemented
class Vertex(Shape):
"""
A Single Point in Space
@ -621,6 +625,7 @@ class Mixin1D(object):
return Properties.Mass()
class Edge(Shape, Mixin1D):
"""
A trimmed curve that represents the border of a face
@ -632,7 +637,6 @@ class Edge(Shape, Mixin1D):
"""
return BRepAdaptor_Curve(self.wrapped)
def startPoint(self):
"""
@ -675,7 +679,8 @@ class Edge(Shape, Mixin1D):
umin, umax = curve.FirstParameter(), curve.LastParameter()
umid = 0.5 * (umin + umax)
curve_props = BRepLProp_CLProps(curve, 2, curve.Tolerance()) #TODO what are good parameters for those?
# TODO what are good parameters for those?
curve_props = BRepLProp_CLProps(curve, 2, curve.Tolerance())
curve_props.SetParameter(umid)
if curve_props.IsTangentDefined():
@ -722,7 +727,8 @@ class Edge(Shape, Mixin1D):
:return: an Edge
"""
pnts = TColgp_Array1OfPnt(0, len(listOfVector) - 1)
for ix,v in enumerate(listOfVector): pnts.SetValue(ix,v.toPnt())
for ix, v in enumerate(listOfVector):
pnts.SetValue(ix, v.toPnt())
spline_geom = GeomAPI_PointsToBSpline(pnts).Curve()
@ -810,7 +816,8 @@ class Wire(Shape, Mixin1D):
# convert list of tuples into Vectors.
wire_builder = BRepBuilderAPI_MakePolygon()
for v in listOfVertices: wire_builder.Add(v.toPnt())
for v in listOfVertices:
wire_builder.Add(v.toPnt())
w = cls(wire_builder.Wire())
w.forConstruction = forConstruction
@ -861,6 +868,7 @@ class Wire(Shape, Mixin1D):
return self.__class__(wire_builder.Wire())
class Face(Shape):
"""
a bounded surface that represents part of the boundary of a solid
@ -898,7 +906,6 @@ class Face(Shape):
u, v = projector.LowerDistanceParameters()
p = gp_Pnt()
vn = gp_Vec()
BRepGProp_Face(self.wrapped).Normal(u, v, p, vn)
@ -959,6 +966,7 @@ class Face(Shape):
return cls(sf.Face())
class Shell(Shape):
"""
the outer boundary of a surface
@ -1057,6 +1065,7 @@ class Mixin3D(object):
return self.__class__(shell_builder.Shape())
class Solid(Shape, Mixin3D):
"""
a single solid
@ -1238,12 +1247,12 @@ class Solid(Shape,Mixin3D):
comp_builder = TopoDS_Builder()
comp_builder.MakeCompound(inner_comp) # TODO this could be not needed
for i in inner_solids: comp_builder.Add(inner_comp,i)
for i in inner_solids:
comp_builder.Add(inner_comp, i)
# subtract from the outer solid
return cls(BRepAlgoAPI_Cut(outer_solid, inner_comp).Shape())
@classmethod
def extrudeLinear(cls, outerWire, innerWires, vecNormal):
"""
@ -1276,7 +1285,8 @@ class Solid(Shape,Mixin3D):
# FreeCAD allows this in one operation, but others might not
face = Face.makeFromWires(outerWire, innerWires)
prism_builder = BRepPrimAPI_MakePrism(face.wrapped, vecNormal.wrapped, True)
prism_builder = BRepPrimAPI_MakePrism(
face.wrapped, vecNormal.wrapped, True)
return cls(prism_builder.Shape())
@ -1347,6 +1357,7 @@ class Solid(Shape,Mixin3D):
return cls(builder.Shape())
class Compound(Shape, Mixin3D):
"""
a collection of disconnected solids
@ -1361,11 +1372,14 @@ class Compound(Shape,Mixin3D):
comp_builder = TopoDS_Builder()
comp_builder.MakeCompound(comp) # TODO this could be not needed
for s in listOfShapes: comp_builder.Add(comp,s.wrapped)
for s in listOfShapes:
comp_builder.Add(comp, s.wrapped)
return cls(comp)
# TODO this is likely not needed if sing PythonOCC correclty but we will see
def sortWiresByBuildOrder(wireList, plane, result=[]):
"""Tries to determine how wires should be combined into faces.
@ -1397,11 +1411,12 @@ def sortWiresByBuildOrder(wireList, plane, result=[]):
# Iterate through the Inner:Outer Mapping
all_wires = face.Wires()
result = {w:outer_inner_map.Find(w.wrapped) for w in all_wires if outer_inner_map.IsBound(w.wrapped)}
result = {w: outer_inner_map.Find(
w.wrapped) for w in all_wires if outer_inner_map.IsBound(w.wrapped)}
# construct the result
rv = []
for k,v in result.iteritems():
for k, v in result.items():
tmp = [k, ]
iterator = TopTools_ListIteratorOfListOfShape(v)

View File

@ -24,6 +24,7 @@ from collections import defaultdict
from pyparsing import Literal, Word, nums, Optional, Combine, oneOf, upcaseTokens,\
CaselessLiteral, Group, infixNotation, opAssoc, Forward,\
ZeroOrMore, Keyword
from functools import reduce
class Selector(object):
@ -32,6 +33,7 @@ class Selector(object):
Filters must provide a single method that filters objects.
"""
def filter(self, objectList):
"""
Filter the provided list
@ -56,6 +58,7 @@ class Selector(object):
def __neg__(self):
return InverseSelector(self)
class NearestToPointSelector(Selector):
"""
Selects object nearest the provided point.
@ -73,8 +76,10 @@ class NearestToPointSelector(Selector):
returns the vertex of the unit cube closest to the point x=0,y=1,z=0
"""
def __init__(self, pnt):
self.pnt = pnt
def filter(self, objectList):
def dist(tShape):
@ -86,6 +91,7 @@ class NearestToPointSelector(Selector):
return [min(objectList, key=dist)]
class BoxSelector(Selector):
"""
Selects objects inside the 3D box defined by 2 points.
@ -100,6 +106,7 @@ class BoxSelector(Selector):
CQ(aCube).edges(BoxSelector((0,1,0), (1,2,1))
"""
def __init__(self, point0, point1, boundingbox=False):
self.p0 = Vector(*point0)
self.p1 = Vector(*point1)
@ -130,11 +137,13 @@ class BoxSelector(Selector):
return result
class BaseDirSelector(Selector):
"""
A selector that handles selection on the basis of a single
direction vector
"""
def __init__(self, vector, tolerance=0.0001):
self.direction = vector
self.TOLERANCE = tolerance
@ -167,6 +176,7 @@ class BaseDirSelector(Selector):
return r
class ParallelDirSelector(BaseDirSelector):
"""
Selects objects parallel with the provided direction
@ -190,6 +200,7 @@ class ParallelDirSelector(BaseDirSelector):
def test(self, vec):
return self.direction.cross(vec).Length < self.TOLERANCE
class DirectionSelector(BaseDirSelector):
"""
Selects objects aligned with the provided direction
@ -213,6 +224,7 @@ class DirectionSelector(BaseDirSelector):
def test(self, vec):
return abs(self.direction.getAngle(vec) < self.TOLERANCE)
class PerpendicularDirSelector(BaseDirSelector):
"""
Selects objects perpendicular with the provided direction
@ -235,7 +247,8 @@ class PerpendicularDirSelector(BaseDirSelector):
def test(self, vec):
angle = self.direction.getAngle(vec)
r = (abs(angle) < self.TOLERANCE) or (abs(angle - math.pi) < self.TOLERANCE )
r = (abs(angle) < self.TOLERANCE) or (
abs(angle - math.pi) < self.TOLERANCE)
return not r
@ -259,6 +272,7 @@ class TypeSelector(Selector):
CQ(aCube).faces( "%PLANE" )
"""
def __init__(self, typeString):
self.typeString = typeString.upper()
@ -269,6 +283,7 @@ class TypeSelector(Selector):
r.append(o)
return r
class DirectionMinMaxSelector(Selector):
"""
Selects objects closest or farthest in the specified direction
@ -291,11 +306,13 @@ class DirectionMinMaxSelector(Selector):
CQ(aCube).faces( ">Z" )
"""
def __init__(self, vector, directionMax=True, tolerance=0.0001):
self.vector = vector
self.max = max
self.directionMax = directionMax
self.TOLERANCE = tolerance
def filter(self, objectList):
def distance(tShape):
@ -306,17 +323,18 @@ class DirectionMinMaxSelector(Selector):
# make and distance to object dict
objectDict = {distance(el): el for el in objectList}
# transform it into an ordered dict
objectDict = OrderedDict(sorted(objectDict.items(),
objectDict = OrderedDict(sorted(list(objectDict.items()),
key=lambda x: x[0]))
# find out the max/min distance
if self.directionMax:
d = objectDict.keys()[-1]
d = list(objectDict.keys())[-1]
else:
d = objectDict.keys()[0]
d = list(objectDict.keys())[0]
# return all objects at the max/min distance (within a tolerance)
return filter(lambda o: abs(d - distance(o)) < self.TOLERANCE, objectList)
return [o for o in objectList if abs(d - distance(o)) < self.TOLERANCE]
class DirectionNthSelector(ParallelDirSelector):
"""
@ -327,6 +345,7 @@ class DirectionNthSelector(ParallelDirSelector):
Linear Edges
Planar Faces
"""
def __init__(self, vector, n, directionMax=True, tolerance=0.0001):
self.direction = vector
self.max = max
@ -351,17 +370,19 @@ class DirectionNthSelector(ParallelDirSelector):
objectDict[round(distance(el), digits)].append(el)
# choose the Nth unique rounded distance
nth_distance = sorted(objectDict.keys(),
nth_distance = sorted(list(objectDict.keys()),
reverse=not self.directionMax)[self.N]
# map back to original objects and return
return objectDict[nth_distance]
class BinarySelector(Selector):
"""
Base class for selectors that operates with two other
selectors. Subclass must implement the :filterResults(): method.
"""
def __init__(self, left, right):
self.left = left
self.right = right
@ -373,35 +394,43 @@ class BinarySelector(Selector):
def filterResults(self, r_left, r_right):
raise NotImplementedError
class AndSelector(BinarySelector):
"""
Intersection selector. Returns objects that is selected by both selectors.
"""
def filterResults(self, r_left, r_right):
# return intersection of lists
return list(set(r_left) & set(r_right))
class SumSelector(BinarySelector):
"""
Union selector. Returns the sum of two selectors results.
"""
def filterResults(self, r_left, r_right):
# return the union (no duplicates) of lists
return list(set(r_left + r_right))
class SubtractSelector(BinarySelector):
"""
Difference selector. Substract results of a selector from another
selectors results.
"""
def filterResults(self, r_left, r_right):
return list(set(r_left) - set(r_right))
class InverseSelector(Selector):
"""
Inverts the selection of given selector. In other words, selects
all objects that is not selected by given selector.
"""
def __init__(self, selector):
self.selector = selector
@ -426,7 +455,7 @@ def _makeGrammar():
lbracket = Literal('(')
rbracket = Literal(')')
comma = Literal(',')
vector = Combine(lbracket + floatn('x') + comma + \
vector = Combine(lbracket + floatn('x') + comma +
floatn('y') + comma + floatn('z') + rbracket)
# direction definition
@ -463,13 +492,16 @@ def _makeGrammar():
(other_op('other_op') + direction('dir')) | \
named_view('named_view')
_grammar = _makeGrammar() # make a grammar instance
class _SimpleStringSyntaxSelector(Selector):
"""
This is a private class that converts a parseResults object into a simple
selector object
"""
def __init__(self, parseResults):
# define all token to object mappings
@ -552,6 +584,7 @@ class _SimpleStringSyntaxSelector(Selector):
"""
return self.mySelector.filter(objectList)
def _makeExpressionGrammar(atom):
"""
Define the complex string selector grammar using PyParsing (which supports
@ -567,19 +600,23 @@ def _makeExpressionGrammar(atom):
def atom_callback(res):
return _SimpleStringSyntaxSelector(res)
atom.setParseAction(atom_callback) #construct a simple selector from every matched
# construct a simple selector from every matched
atom.setParseAction(atom_callback)
# define callback functions for all operations
def and_callback(res):
items = res.asList()[0][::2] #take every secend items, i.e. all operands
# take every secend items, i.e. all operands
items = res.asList()[0][::2]
return reduce(AndSelector, items)
def or_callback(res):
items = res.asList()[0][::2] #take every secend items, i.e. all operands
# take every secend items, i.e. all operands
items = res.asList()[0][::2]
return reduce(SumSelector, items)
def exc_callback(res):
items = res.asList()[0][::2] #take every secend items, i.e. all operands
# take every secend items, i.e. all operands
items = res.asList()[0][::2]
return reduce(SubtractSelector, items)
def not_callback(res):
@ -595,8 +632,10 @@ def _makeExpressionGrammar(atom):
return expr
_expression_grammar = _makeExpressionGrammar(_grammar)
class StringSyntaxSelector(Selector):
"""
Filter lists objects using a simple string syntax. All of the filters available in the string syntax
@ -647,6 +686,7 @@ class StringSyntaxSelector(Selector):
Selectors are a complex topic: see :ref:`selector_reference` for more information
"""
def __init__(self, selectorString):
"""
Feed the input string through the parser and construct an relevant complex selector object

View File

@ -36,12 +36,14 @@ TEST_DEBUG_SCRIPT = textwrap.dedent(
"""
)
class TestCQGI(BaseTest):
def test_parser(self):
model = cqgi.CQModel(TESTSCRIPT)
metadata = model.metadata
self.assertEquals(set(metadata.parameters.keys()), {'height', 'width', 'a', 'b', 'foo'})
self.assertEqual(set(metadata.parameters.keys()), {
'height', 'width', 'a', 'b', 'foo'})
def test_build_with_debug(self):
model = cqgi.CQModel(TEST_DEBUG_SCRIPT)
@ -127,9 +129,9 @@ class TestCQGI(BaseTest):
model = cqgi.CQModel(script)
result = model.build({})
self.assertEquals(2, len(result.results))
self.assertEquals(1, result.results[0])
self.assertEquals(2, result.results[1])
self.assertEqual(2, len(result.results))
self.assertEqual(1, result.results[0])
self.assertEqual(2, result.results[1])
def test_that_assinging_number_to_string_works(self):
script = textwrap.dedent(
@ -139,7 +141,7 @@ class TestCQGI(BaseTest):
"""
)
result = cqgi.parse(script).build({'h': 33.33})
self.assertEquals(result.results[0], "33.33")
self.assertEqual(result.results[0], "33.33")
def test_that_assigning_string_to_number_fails(self):
script = textwrap.dedent(
@ -149,7 +151,8 @@ class TestCQGI(BaseTest):
"""
)
result = cqgi.parse(script).build({'h': "a string"})
self.assertTrue(isinstance(result.exception, cqgi.InvalidParameterError))
self.assertTrue(isinstance(result.exception,
cqgi.InvalidParameterError))
def test_that_assigning_unknown_var_fails(self):
script = textwrap.dedent(
@ -160,7 +163,8 @@ class TestCQGI(BaseTest):
)
result = cqgi.parse(script).build({'w': "var is not there"})
self.assertTrue(isinstance(result.exception, cqgi.InvalidParameterError))
self.assertTrue(isinstance(result.exception,
cqgi.InvalidParameterError))
def test_that_not_calling_build_object_raises_error(self):
script = textwrap.dedent(
@ -195,7 +199,7 @@ class TestCQGI(BaseTest):
result = cqgi.parse(script).build({'h': False})
self.assertTrue(result.success)
self.assertEquals(result.first_result,'*False*')
self.assertEqual(result.first_result, '*False*')
def test_that_only_top_level_vars_are_detected(self):
script = textwrap.dedent(
@ -213,4 +217,4 @@ class TestCQGI(BaseTest):
model = cqgi.parse(script)
self.assertEquals(2, len(model.metadata.parameters))
self.assertEqual(2, len(model.metadata.parameters))

View File

@ -9,7 +9,8 @@ __author__ = 'dcowden'
"""
import math
import unittest,sys
import unittest
import sys
import os.path
# my modules
@ -17,23 +18,24 @@ from tests import BaseTest,makeUnitCube,makeUnitSquareWire
from cadquery import *
from cadquery import selectors
class TestCQSelectors(BaseTest):
class TestCQSelectors(BaseTest):
def testWorkplaneCenter(self):
"Test Moving workplane center"
s = Workplane(Plane.XY())
# current point and world point should be equal
self.assertTupleAlmostEquals((0.0,0.0,0.0),s.plane.origin.toTuple(),3)
self.assertTupleAlmostEquals(
(0.0, 0.0, 0.0), s.plane.origin.toTuple(), 3)
# move origin and confirm center moves
s.center(-2.0, -2.0)
# current point should be 0,0, but
self.assertTupleAlmostEquals((-2.0,-2.0,0.0),s.plane.origin.toTuple(),3)
self.assertTupleAlmostEquals(
(-2.0, -2.0, 0.0), s.plane.origin.toTuple(), 3)
def testVertices(self):
t = makeUnitSquareWire() # square box
@ -41,18 +43,23 @@ class TestCQSelectors(BaseTest):
self.assertEqual(4, c.vertices().size())
self.assertEqual(4, c.edges().size())
self.assertEqual(0,c.vertices().edges().size() ) #no edges on any vertices
self.assertEqual(4,c.edges().vertices().size() ) #but selecting all edges still yields all vertices
self.assertEqual(0, c.vertices().edges().size()
) # no edges on any vertices
# but selecting all edges still yields all vertices
self.assertEqual(4, c.edges().vertices().size())
self.assertEqual(1, c.wires().size()) # just one wire
self.assertEqual(0, c.faces().size())
self.assertEqual(0,c.vertices().faces().size()) #odd combinations all work but yield no results
# odd combinations all work but yield no results
self.assertEqual(0, c.vertices().faces().size())
self.assertEqual(0, c.edges().faces().size())
self.assertEqual(0, c.edges().vertices().faces().size())
def testEnd(self):
c = CQ(makeUnitSquareWire())
self.assertEqual(4,c.vertices().size() ) #4 because there are 4 vertices
self.assertEqual(1,c.vertices().end().size() ) #1 because we started with 1 wire
# 4 because there are 4 vertices
self.assertEqual(4, c.vertices().size())
# 1 because we started with 1 wire
self.assertEqual(1, c.vertices().end().size())
def testAll(self):
"all returns a list of CQ objects, so that you can iterate over them individually"
@ -64,7 +71,8 @@ class TestCQSelectors(BaseTest):
def testFirst(self):
c = CQ(makeUnitCube())
self.assertEqual(type(c.vertices().first().val()), Vertex)
self.assertEqual(type(c.vertices().first().first().first().val()),Vertex)
self.assertEqual(
type(c.vertices().first().first().first().val()), Vertex)
def testCompounds(self):
c = CQ(makeUnitSquareWire())
@ -88,8 +96,6 @@ class TestCQSelectors(BaseTest):
self.assertEqual(4, c.faces().last().edges().size())
def testFaceTypesFilter(self):
"Filters by face type"
c = CQ(makeUnitCube())
@ -123,8 +129,10 @@ class TestCQSelectors(BaseTest):
# faces parallel to Z axis
self.assertEqual(2, c.faces("|Z").size())
# TODO: provide short names for ParallelDirSelector
self.assertEqual(2, c.faces(selectors.ParallelDirSelector(Vector((0,0,1)))).size()) #same thing as above
self.assertEqual(2, c.faces(selectors.ParallelDirSelector(Vector((0,0,-1)))).size()) #same thing as above
self.assertEqual(2, c.faces(selectors.ParallelDirSelector(
Vector((0, 0, 1)))).size()) # same thing as above
self.assertEqual(2, c.faces(selectors.ParallelDirSelector(
Vector((0, 0, -1)))).size()) # same thing as above
# just for fun, vertices on faces parallel to z
self.assertEqual(8, c.faces("|Z").vertices().size())
@ -175,19 +183,23 @@ class TestCQSelectors(BaseTest):
self.assertAlmostEqual(val.Center().x, -1.5)
# 2nd face with inversed selection vector
val = c.faces(selectors.DirectionNthSelector(Vector(-1,0,0),1)).val()
val = c.faces(selectors.DirectionNthSelector(
Vector(-1, 0, 0), 1)).val()
self.assertAlmostEqual(val.Center().x, 1.5)
# 2nd last face
val = c.faces(selectors.DirectionNthSelector(Vector(1,0,0),-2)).val()
val = c.faces(selectors.DirectionNthSelector(
Vector(1, 0, 0), -2)).val()
self.assertAlmostEqual(val.Center().x, 1.5)
# Last face
val = c.faces(selectors.DirectionNthSelector(Vector(1,0,0),-1)).val()
val = c.faces(selectors.DirectionNthSelector(
Vector(1, 0, 0), -1)).val()
self.assertAlmostEqual(val.Center().x, 2.5)
# check if the selected face if normal to the specified Vector
self.assertAlmostEqual(val.normalAt().cross(Vector(1,0,0)).Length,0.0)
self.assertAlmostEqual(
val.normalAt().cross(Vector(1, 0, 0)).Length, 0.0)
# repeat the test using string based selector
@ -212,7 +224,8 @@ class TestCQSelectors(BaseTest):
self.assertAlmostEqual(val.Center().x, 2.5)
# check if the selected face if normal to the specified Vector
self.assertAlmostEqual(val.normalAt().cross(Vector(1,0,0)).Length,0.0)
self.assertAlmostEqual(
val.normalAt().cross(Vector(1, 0, 0)).Length, 0.0)
# test selection of multiple faces with the same distance
c = Workplane('XY')\
@ -303,9 +316,11 @@ class TestCQSelectors(BaseTest):
self.assertTupleAlmostEquals(d[2], (v.X, v.Y, v.Z), 3)
# test multiple vertices selection
vl = c.vertices(selectors.BoxSelector((-0.1, -0.1, 0.9),(0.1, 1.1, 1.1))).vals()
vl = c.vertices(selectors.BoxSelector(
(-0.1, -0.1, 0.9), (0.1, 1.1, 1.1))).vals()
self.assertEqual(2, len(vl))
vl = c.vertices(selectors.BoxSelector((-0.1, -0.1, -0.1),(0.1, 1.1, 1.1))).vals()
vl = c.vertices(selectors.BoxSelector(
(-0.1, -0.1, -0.1), (0.1, 1.1, 1.1))).vals()
self.assertEqual(4, len(vl))
# test edge selection
@ -330,9 +345,11 @@ class TestCQSelectors(BaseTest):
self.assertTupleAlmostEquals(d[2], (ec.x, ec.y, ec.z), 3)
# test multiple edge selection
el = c.edges(selectors.BoxSelector((-0.1, -0.1, -0.1), (0.6, 0.1, 0.6))).vals()
el = c.edges(selectors.BoxSelector(
(-0.1, -0.1, -0.1), (0.6, 0.1, 0.6))).vals()
self.assertEqual(2, len(el))
el = c.edges(selectors.BoxSelector((-0.1, -0.1, -0.1), (1.1, 0.1, 0.6))).vals()
el = c.edges(selectors.BoxSelector(
(-0.1, -0.1, -0.1), (1.1, 0.1, 0.6))).vals()
self.assertEqual(3, len(el))
# test face selection
@ -357,17 +374,22 @@ class TestCQSelectors(BaseTest):
self.assertTupleAlmostEquals(d[2], (fc.x, fc.y, fc.z), 3)
# test multiple face selection
fl = c.faces(selectors.BoxSelector((0.4, 0.4, 0.4), (0.6, 1.1, 1.1))).vals()
fl = c.faces(selectors.BoxSelector(
(0.4, 0.4, 0.4), (0.6, 1.1, 1.1))).vals()
self.assertEqual(2, len(fl))
fl = c.faces(selectors.BoxSelector((0.4, 0.4, 0.4), (1.1, 1.1, 1.1))).vals()
fl = c.faces(selectors.BoxSelector(
(0.4, 0.4, 0.4), (1.1, 1.1, 1.1))).vals()
self.assertEqual(3, len(fl))
# test boundingbox option
el = c.edges(selectors.BoxSelector((-0.1, -0.1, -0.1), (1.1, 0.1, 0.6), True)).vals()
el = c.edges(selectors.BoxSelector(
(-0.1, -0.1, -0.1), (1.1, 0.1, 0.6), True)).vals()
self.assertEqual(1, len(el))
fl = c.faces(selectors.BoxSelector((0.4, 0.4, 0.4), (1.1, 1.1, 1.1), True)).vals()
fl = c.faces(selectors.BoxSelector(
(0.4, 0.4, 0.4), (1.1, 1.1, 1.1), True)).vals()
self.assertEqual(0, len(fl))
fl = c.faces(selectors.BoxSelector((-0.1, 0.4, -0.1), (1.1, 1.1, 1.1), True)).vals()
fl = c.faces(selectors.BoxSelector(
(-0.1, 0.4, -0.1), (1.1, 1.1, 1.1), True)).vals()
self.assertEqual(1, len(fl))
def testAndSelector(self):
@ -376,7 +398,8 @@ class TestCQSelectors(BaseTest):
S = selectors.StringSyntaxSelector
BS = selectors.BoxSelector
el = c.edges(selectors.AndSelector(S('|X'), BS((-2,-2,0.1), (2,2,2)))).vals()
el = c.edges(selectors.AndSelector(
S('|X'), BS((-2, -2, 0.1), (2, 2, 2)))).vals()
self.assertEqual(2, len(el))
# test 'and' (intersection) operator
@ -453,7 +476,6 @@ class TestCQSelectors(BaseTest):
v = c.vertices('(>X and >Y) or (<X and <Y)').vals()
self.assertEqual(4, len(v))
def testFaceCount(self):
c = CQ(makeUnitCube())
self.assertEqual(6, c.faces().size())
@ -499,5 +521,5 @@ class TestCQSelectors(BaseTest):
'(not |(1,1,0) and >(0,0,1)) exc XY and (Z or X)',
'not ( <X or >X or <Y or >Y )']
for e in expressions: gram.parseString(e,parseAll=True)
for e in expressions:
gram.parseString(e, parseAll=True)

View File

@ -11,6 +11,7 @@ from OCC.GC import GC_MakeCircle
from cadquery import *
class TestCadObjects(BaseTest):
def _make_circle(self):
@ -33,17 +34,18 @@ class TestCadObjects(BaseTest):
"""
v = Vertex.makeVertex(1, 1, 1)
self.assertEqual(1, v.X)
self.assertEquals(Vector, type(v.Center()))
self.assertEqual(Vector, type(v.Center()))
def testBasicBoundingBox(self):
v = Vertex.makeVertex(1, 1, 1)
v2 = Vertex.makeVertex(2, 2, 2)
self.assertEquals(BoundBox, type(v.BoundingBox()))
self.assertEquals(BoundBox, type(v2.BoundingBox()))
self.assertEqual(BoundBox, type(v.BoundingBox()))
self.assertEqual(BoundBox, type(v2.BoundingBox()))
bb1 = v.BoundingBox().add(v2.BoundingBox())
self.assertAlmostEquals(bb1.xlen, 1.0, 1) #OCC uses some approximations
# OCC uses some approximations
self.assertAlmostEqual(bb1.xlen, 1.0, 1)
def testEdgeWrapperCenter(self):
e = self._make_circle()
@ -51,16 +53,20 @@ class TestCadObjects(BaseTest):
self.assertTupleAlmostEquals((1.0, 2.0, 3.0), e.Center().toTuple(), 3)
def testEdgeWrapperMakeCircle(self):
halfCircleEdge = Edge.makeCircle(radius=10, pnt=(0, 0, 0), dir=(0, 0, 1), angle1=0, angle2=180)
halfCircleEdge = Edge.makeCircle(radius=10, pnt=(
0, 0, 0), dir=(0, 0, 1), angle1=0, angle2=180)
#self.assertTupleAlmostEquals((0.0, 5.0, 0.0), halfCircleEdge.CenterOfBoundBox(0.0001).toTuple(),3)
self.assertTupleAlmostEquals((10.0, 0.0, 0.0), halfCircleEdge.startPoint().toTuple(), 3)
self.assertTupleAlmostEquals((-10.0, 0.0, 0.0), halfCircleEdge.endPoint().toTuple(), 3)
self.assertTupleAlmostEquals(
(10.0, 0.0, 0.0), halfCircleEdge.startPoint().toTuple(), 3)
self.assertTupleAlmostEquals(
(-10.0, 0.0, 0.0), halfCircleEdge.endPoint().toTuple(), 3)
def testFaceWrapperMakePlane(self):
mplane = Face.makePlane(10, 10)
self.assertTupleAlmostEquals((0.0, 0.0, 1.0), mplane.normalAt().toTuple(), 3)
self.assertTupleAlmostEquals(
(0.0, 0.0, 1.0), mplane.normalAt().toTuple(), 3)
def testCenterOfBoundBox(self):
pass
@ -72,6 +78,7 @@ class TestCadObjects(BaseTest):
"""
Tests whether or not a proper weighted center can be found for a compound
"""
def cylinders(self, radius, height):
def _cyl(pnt):
# Inner function to build a cylinder
@ -85,15 +92,17 @@ class TestCadObjects(BaseTest):
Workplane.cyl = cylinders
# Now test. here we want weird workplane to see if the objects are transformed right
s = Workplane("XY").rect(2.0, 3.0, forConstruction=True).vertices().cyl(0.25, 0.5)
s = Workplane("XY").rect(
2.0, 3.0, forConstruction=True).vertices().cyl(0.25, 0.5)
self.assertEquals(4, len(s.val().Solids()))
self.assertTupleAlmostEquals((0.0, 0.0, 0.25), s.val().Center().toTuple(), 3)
self.assertEqual(4, len(s.val().Solids()))
self.assertTupleAlmostEquals(
(0.0, 0.0, 0.25), s.val().Center().toTuple(), 3)
def testDot(self):
v1 = Vector(2, 2, 2)
v2 = Vector(1, -1, 1)
self.assertEquals(2.0, v1.dot(v2))
self.assertEqual(2.0, v1.dot(v2))
def testVectorAdd(self):
result = Vector(1, 2, 0) + Vector(0, 0, 3)
@ -108,7 +117,8 @@ class TestCadObjects(BaseTest):
def testVertices(self):
e = Shape.cast(BRepBuilderAPI_MakeEdge(gp_Pnt(0, 0, 0),
gp_Pnt(1, 1, 0)).Edge())
self.assertEquals(2, len(e.Vertices()))
self.assertEqual(2, len(e.Vertices()))
if __name__ == '__main__':
unittest.main()

View File

@ -3,7 +3,10 @@
"""
# system modules
import math,sys,os.path,time
import math
import sys
import os.path
import time
# my modules
from cadquery import *
@ -61,7 +64,8 @@ class TestCadQuery(BaseTest):
if os.path.exists(svgFile):
existingSummary = readFileAsString(SUMMARY_FILE)
svgText = readFileAsString(svgFile)
svgText = svgText.replace('<?xml version="1.0" encoding="UTF-8" standalone="no"?>',"")
svgText = svgText.replace(
'<?xml version="1.0" encoding="UTF-8" standalone="no"?>', "")
# now write data into the file
# the content we are replacing it with also includes the marker, so it can be replaced again
@ -99,7 +103,8 @@ class TestCadQuery(BaseTest):
# Make sure that a couple of sections from the SVG output make sense
self.assertTrue(r_str.index('path d="M') > 0)
self.assertTrue(r_str.index('line x1="30" y1="-30" x2="58" y2="-15" stroke-width="3"') > 0)
self.assertTrue(r_str.index(
'line x1="30" y1="-30" x2="58" y2="-15" stroke-width="3"') > 0)
def testCubePlugin(self):
"""
@ -107,6 +112,7 @@ class TestCadQuery(BaseTest):
:return:
"""
# make the plugin method
def makeCubes(self, length):
# self refers to the CQ or Workplane object
@ -124,12 +130,12 @@ class TestCadQuery(BaseTest):
Workplane.makeCubes = makeCubes
# call it
result = Workplane("XY").box(6.0,8.0,0.5).faces(">Z").rect(4.0,4.0,forConstruction=True).vertices()
result = Workplane("XY").box(6.0, 8.0, 0.5).faces(
">Z").rect(4.0, 4.0, forConstruction=True).vertices()
result = result.makeCubes(1.0)
result = result.combineSolids()
self.saveModel(result)
self.assertEquals(1,result.solids().size() )
self.assertEqual(1, result.solids().size())
def testCylinderPlugin(self):
"""
@ -154,7 +160,7 @@ class TestCadQuery(BaseTest):
# now test. here we want weird workplane to see if the objects are transformed right
s = Workplane(Plane(Vector((0, 0, 0)), Vector((1, -1, 0)), Vector((1, 1, 0)))).rect(2.0, 3.0, forConstruction=True).vertices() \
.cyl(0.25, 0.5)
self.assertEquals(4,s.solids().size() )
self.assertEqual(4, s.solids().size())
self.saveModel(s)
def testPolygonPlugin(self):
@ -164,6 +170,7 @@ class TestCadQuery(BaseTest):
Demonstratings using eachpoint to allow working in local coordinates
to create geometry
"""
def rPoly(self, nSides, diameter):
def _makePolygon(center):
@ -171,7 +178,8 @@ class TestCadQuery(BaseTest):
angle = 2.0 * math.pi / nSides
pnts = []
for i in range(nSides + 1):
pnts.append( center + Vector((diameter / 2.0 * math.cos(angle*i)),(diameter / 2.0 * math.sin(angle*i)),0))
pnts.append(center + Vector((diameter / 2.0 * math.cos(angle * i)),
(diameter / 2.0 * math.sin(angle * i)), 0))
return Wire.makePolygon(pnts)
return self.eachpoint(_makePolygon, True)
@ -181,17 +189,18 @@ class TestCadQuery(BaseTest):
s = Workplane("XY").box(4.0, 4.0, 0.25).faces(">Z").workplane().rect(2.0, 2.0, forConstruction=True).vertices()\
.rPoly(5, 0.5).cutThruAll()
self.assertEquals(26,s.faces().size()) #6 base sides, 4 pentagons, 5 sides each = 26
# 6 base sides, 4 pentagons, 5 sides each = 26
self.assertEqual(26, s.faces().size())
self.saveModel(s)
def testPointList(self):
"""
Tests adding points and using them
"""
c = CQ(makeUnitCube())
s = c.faces(">Z").workplane().pushPoints([(-0.3, 0.3), (0.3, 0.3), (0, 0)])
s = c.faces(">Z").workplane().pushPoints(
[(-0.3, 0.3), (0.3, 0.3), (0, 0)])
self.assertEqual(3, s.size())
# TODO: is the ability to iterate over points with circle really worth it?
# maybe we should just require using all() and a loop for this. the semantics and
@ -208,9 +217,9 @@ class TestCadQuery(BaseTest):
r.objects = []
r.eachpoint(callback_fn)
def testWorkplaneFromFace(self):
s = CQ(makeUnitCube()).faces(">Z").workplane() #make a workplane on the top face
# make a workplane on the top face
s = CQ(makeUnitCube()).faces(">Z").workplane()
r = s.circle(0.125).cutBlind(-2.0)
self.saveModel(r)
# the result should have 7 faces
@ -219,7 +228,8 @@ class TestCadQuery(BaseTest):
self.assertEqual(type(r.first().val()), Compound)
def testFrontReference(self):
s = CQ(makeUnitCube()).faces("front").workplane() #make a workplane on the top face
# make a workplane on the top face
s = CQ(makeUnitCube()).faces("front").workplane()
r = s.circle(0.125).cutBlind(-2.0)
self.saveModel(r)
# the result should have 7 faces
@ -231,8 +241,10 @@ class TestCadQuery(BaseTest):
"""Test solid rotation at the CQ object level."""
box = Workplane("XY").box(1, 1, 5)
box.rotate((0, 0, 0), (1, 0, 0), 90)
startPoint = box.faces("<Y").edges("<X").first().val().startPoint().toTuple()
endPoint = box.faces("<Y").edges("<X").first().val().endPoint().toTuple()
startPoint = box.faces("<Y").edges(
"<X").first().val().startPoint().toTuple()
endPoint = box.faces("<Y").edges(
"<X").first().val().endPoint().toTuple()
self.assertEqual(-0.5, startPoint[0])
self.assertEqual(-0.5, startPoint[1])
@ -241,7 +253,6 @@ class TestCadQuery(BaseTest):
self.assertEqual(-0.5, endPoint[1])
self.assertEqual(2.5, endPoint[2])
def testLoft(self):
"""
Test making a lofted solid
@ -278,47 +289,56 @@ class TestCadQuery(BaseTest):
angle_degrees = 360.0
# Test revolve without any options for making a cylinder
result = Workplane("XY").rect(rectangle_width, rectangle_length, False).revolve()
result = Workplane("XY").rect(
rectangle_width, rectangle_length, False).revolve()
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
# Test revolve when only setting the angle to revolve through
result = Workplane("XY").rect(rectangle_width, rectangle_length, False).revolve(angle_degrees)
result = Workplane("XY").rect(
rectangle_width, rectangle_length, False).revolve(angle_degrees)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = Workplane("XY").rect(rectangle_width, rectangle_length, False).revolve(270.0)
result = Workplane("XY").rect(
rectangle_width, rectangle_length, False).revolve(270.0)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Test when passing revolve the angle and the axis of revolution's start point
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(angle_degrees,(-5,-5))
result = Workplane("XY").rect(
rectangle_width, rectangle_length).revolve(angle_degrees, (-5, -5))
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(270.0,(-5,-5))
result = Workplane("XY").rect(
rectangle_width, rectangle_length).revolve(270.0, (-5, -5))
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Test when passing revolve the angle and both the start and ends of the axis of revolution
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(angle_degrees,(-5, -5),(-5, 5))
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(
angle_degrees, (-5, -5), (-5, 5))
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(270.0,(-5, -5),(-5, 5))
result = Workplane("XY").rect(
rectangle_width, rectangle_length).revolve(270.0, (-5, -5), (-5, 5))
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
# Testing all of the above without combine
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(angle_degrees,(-5,-5),(-5,5), False)
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(
angle_degrees, (-5, -5), (-5, 5), False)
self.assertEqual(3, result.faces().size())
self.assertEqual(2, result.vertices().size())
self.assertEqual(3, result.edges().size())
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(270.0,(-5,-5),(-5,5), False)
result = Workplane("XY").rect(rectangle_width, rectangle_length).revolve(
270.0, (-5, -5), (-5, 5), False)
self.assertEqual(5, result.faces().size())
self.assertEqual(6, result.vertices().size())
self.assertEqual(9, result.edges().size())
@ -379,7 +399,8 @@ class TestCadQuery(BaseTest):
self.assertEqual(3, result.edges().size())
# Test with makeSolid False and isFrenet True
result = Workplane("XY").circle(1.0).sweep(path, makeSolid=False, isFrenet=True)
result = Workplane("XY").circle(1.0).sweep(
path, makeSolid=False, isFrenet=True)
self.assertEqual(1, result.faces().size())
self.assertEqual(3, result.edges().size())
@ -425,13 +446,16 @@ class TestCadQuery(BaseTest):
def testRectArray(self):
NUMX = 3
NUMY = 3
s = Workplane("XY").box(40,40,5,centered=(True,True,True)).faces(">Z").workplane().rarray(8.0,8.0,NUMX,NUMY,True).circle(2.0).extrude(2.0)
s = Workplane("XY").box(40, 40, 5, centered=(True, True, True)).faces(
">Z").workplane().rarray(8.0, 8.0, NUMX, NUMY, True).circle(2.0).extrude(2.0)
#s = Workplane("XY").box(40,40,5,centered=(True,True,True)).faces(">Z").workplane().circle(2.0).extrude(2.0)
self.saveModel(s)
self.assertEqual(6+NUMX*NUMY*2,s.faces().size()) #6 faces for the box, 2 faces for each cylinder
# 6 faces for the box, 2 faces for each cylinder
self.assertEqual(6 + NUMX * NUMY * 2, s.faces().size())
def testNestedCircle(self):
s = Workplane("XY").box(40,40,5).pushPoints([(10,0),(0,10)]).circle(4).circle(2).extrude(4)
s = Workplane("XY").box(40, 40, 5).pushPoints(
[(10, 0), (0, 10)]).circle(4).circle(2).extrude(4)
self.saveModel(s)
self.assertEqual(14, s.faces().size())
@ -448,7 +472,8 @@ class TestCadQuery(BaseTest):
c = 0.1 # clearance on each brick side
H = 1.2 * P # nominal height of a brick
bumpDiam = 4.8 # the standard bump diameter
t = ( P - ( 2*c) - bumpDiam ) / 2.0 # the nominal thickness of the walls, normally 1.5
# the nominal thickness of the walls, normally 1.5
t = (P - (2 * c) - bumpDiam) / 2.0
postDiam = P - t # works out to 6.5
total_length = lbumps * P - 2.0 * c
@ -457,18 +482,23 @@ class TestCadQuery(BaseTest):
# build the brick
s = Workplane("XY").box(total_length, total_width, H) # make the base
s = s.faces("<Z").shell(-1.0 * t) # shell inwards not outwards
s = s.faces(">Z").workplane().rarray(P,P,lbumps,wbumps,True).circle(bumpDiam/2.0).extrude(1.8) # make the bumps on the top
s = s.faces(">Z").workplane().rarray(P, P, lbumps, wbumps, True).circle(
bumpDiam / 2.0).extrude(1.8) # make the bumps on the top
# add posts on the bottom. posts are different diameter depending on geometry
# solid studs for 1 bump, tubes for multiple, none for 1x1
tmp = s.faces("<Z").workplane(invert=True) #this is cheating a little-- how to select the inner face from the shell?
# this is cheating a little-- how to select the inner face from the shell?
tmp = s.faces("<Z").workplane(invert=True)
if lbumps > 1 and wbumps > 1:
tmp = tmp.rarray(P,P,lbumps - 1,wbumps - 1,center=True).circle(postDiam/2.0).circle(bumpDiam/2.0).extrude(H-t)
tmp = tmp.rarray(P, P, lbumps - 1, wbumps - 1, center=True).circle(
postDiam / 2.0).circle(bumpDiam / 2.0).extrude(H - t)
elif lbumps > 1:
tmp = tmp.rarray(P,P,lbumps - 1,1,center=True).circle(t).extrude(H-t)
tmp = tmp.rarray(P, P, lbumps - 1, 1,
center=True).circle(t).extrude(H - t)
elif wbumps > 1:
tmp = tmp.rarray(P,P,1,wbumps -1,center=True).circle(t).extrude(H-t)
tmp = tmp.rarray(P, P, 1, wbumps - 1,
center=True).circle(t).extrude(H - t)
self.saveModel(s)
@ -480,11 +510,13 @@ class TestCadQuery(BaseTest):
def testTranslateSolid(self):
c = CQ(makeUnitCube())
self.assertAlmostEqual(0.0,c.faces("<Z").vertices().item(0).val().Z, 3 )
self.assertAlmostEqual(0.0, c.faces(
"<Z").vertices().item(0).val().Z, 3)
# TODO: it might be nice to provide a version of translate that modifies the existing geometry too
d = c.translate(Vector(0, 0, 1.5))
self.assertAlmostEqual(1.5,d.faces("<Z").vertices().item(0).val().Z, 3 )
self.assertAlmostEqual(1.5, d.faces(
"<Z").vertices().item(0).val().Z, 3)
def testTranslateWire(self):
c = CQ(makeUnitSquareWire())
@ -497,29 +529,37 @@ class TestCadQuery(BaseTest):
c = CQ(makeUnitCube()) # the cube is the context solid
self.assertEqual(6, c.faces().size()) # cube has six faces
r = c.faces('>Z').workplane().circle(0.125).extrude(0.5,True) #make a boss, not updating the original
r = c.faces('>Z').workplane().circle(0.125).extrude(
0.5, True) # make a boss, not updating the original
self.assertEqual(8, r.faces().size()) # just the boss faces
self.assertEqual(8, c.faces().size()) # original is modified too
def testSolidReferencesCombineTrue(self):
s = Workplane(Plane.XY())
r = s.rect(2.0, 2.0).extrude(0.5)
self.assertEqual(6,r.faces().size() ) #the result of course has 6 faces
self.assertEqual(0,s.faces().size() ) # the original workplane does not, because it did not have a solid initially
# the result of course has 6 faces
self.assertEqual(6, r.faces().size())
# the original workplane does not, because it did not have a solid initially
self.assertEqual(0, s.faces().size())
t = r.faces(">Z").workplane().rect(0.25, 0.25).extrude(0.5, True)
self.assertEqual(11,t.faces().size()) #of course the result has 11 faces
self.assertEqual(11,r.faces().size()) #r does as well. the context solid for r was updated since combine was true
# of course the result has 11 faces
self.assertEqual(11, t.faces().size())
# r does as well. the context solid for r was updated since combine was true
self.assertEqual(11, r.faces().size())
self.saveModel(r)
def testSolidReferenceCombineFalse(self):
s = Workplane(Plane.XY())
r = s.rect(2.0, 2.0).extrude(0.5)
self.assertEqual(6,r.faces().size() ) #the result of course has 6 faces
self.assertEqual(0,s.faces().size() ) # the original workplane does not, because it did not have a solid initially
# the result of course has 6 faces
self.assertEqual(6, r.faces().size())
# the original workplane does not, because it did not have a solid initially
self.assertEqual(0, s.faces().size())
t = r.faces(">Z").workplane().rect(0.25, 0.25).extrude(0.5, False)
self.assertEqual(6,t.faces().size()) #result has 6 faces, becuase it was not combined with the original
# result has 6 faces, becuase it was not combined with the original
self.assertEqual(6, t.faces().size())
self.assertEqual(6, r.faces().size()) # original is unmodified as well
# subseuent opertions use that context solid afterwards
@ -540,7 +580,8 @@ class TestCadQuery(BaseTest):
Test Creation of workplane from multiple co-planar face
selection.
"""
s = Workplane('XY').box(1,1,1).faces('>Z').rect(1,0.5).cutBlind(-0.2)
s = Workplane('XY').box(1, 1, 1).faces(
'>Z').rect(1, 0.5).cutBlind(-0.2)
w = s.faces('>Z').workplane()
o = w.objects[0] # origin of the workplane
@ -569,9 +610,11 @@ class TestCadQuery(BaseTest):
also tests using a workplane plane other than XY
"""
s = Workplane(Plane.YZ())
r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices().circle(0.125).extrude(0.5)
r = s.rect(2.0, 2.0).rect(
1.3, 1.3, forConstruction=True).vertices().circle(0.125).extrude(0.5)
self.saveModel(r)
self.assertEqual(10,r.faces().size() ) # 10 faces-- 6 plus 4 holes, the vertices of the second rect.
# 10 faces-- 6 plus 4 holes, the vertices of the second rect.
self.assertEqual(10, r.faces().size())
def testTwoWorkplanes(self):
"""
@ -586,7 +629,8 @@ class TestCadQuery(BaseTest):
# r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices()
# for c in r.all():
# c.circle(0.125).extrude(0.5,True)
r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices().circle(0.125).extrude(0.5)
r = s.rect(2.0, 2.0).rect(
1.3, 1.3, forConstruction=True).vertices().circle(0.125).extrude(0.5)
# side hole, blind deep 1.9
t = r.faces(">Y").workplane().circle(0.125).cutBlind(-1.9)
@ -648,7 +692,8 @@ class TestCadQuery(BaseTest):
"""
# base block
s = Workplane(Plane.XY())
r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices().circle(0.125).extrude(0.5)
r = s.rect(2.0, 2.0).rect(
1.3, 1.3, forConstruction=True).vertices().circle(0.125).extrude(0.5)
# side hole, thru all
t = r.faces(">Y").workplane().circle(0.125).cutThruAll()
@ -661,12 +706,15 @@ class TestCadQuery(BaseTest):
"""
# base block
s = Workplane(Plane.XY())
r = s.rect(2.0,2.0).rect(1.3,1.3,forConstruction=True).vertices().circle(0.125).extrude(0.5)
r = s.rect(2.0, 2.0).rect(
1.3, 1.3, forConstruction=True).vertices().circle(0.125).extrude(0.5)
# side hole, up to 0.1 from the last face
try:
t = r.faces(">Y").workplane().circle(0.125).cutToOffsetFromFace(r.faces().mminDist(Dir.Y),0.1)
self.assertEqual(10,t.faces().size() ) #should end up being a blind hole
t = r.faces(">Y").workplane().circle(
0.125).cutToOffsetFromFace(r.faces().mminDist(Dir.Y), 0.1)
# should end up being a blind hole
self.assertEqual(10, t.faces().size())
t.first().val().exportStep('c:/temp/testCutToFace.STEP')
except:
pass
@ -674,20 +722,20 @@ class TestCadQuery(BaseTest):
def testWorkplaneOnExistingSolid(self):
"Tests extruding on an existing solid"
c = CQ( makeUnitCube()).faces(">Z").workplane().circle(0.25).circle(0.125).extrude(0.25)
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(
0.25).circle(0.125).extrude(0.25)
self.saveModel(c)
self.assertEqual(10, c.faces().size())
def testWorkplaneCenterMove(self):
# this workplane is centered at x=0.5,y=0.5, the center of the upper face
s = Workplane("XY").box(1,1,1).faces(">Z").workplane().center(-0.5,-0.5) # move the center to the corner
s = Workplane("XY").box(1, 1, 1).faces(">Z").workplane(
).center(-0.5, -0.5) # move the center to the corner
t = s.circle(0.25).extrude(0.2) # make a boss
self.assertEqual(9, t.faces().size())
self.saveModel(t)
def testBasicLines(self):
"Make a triangluar boss"
global OUTDIR
@ -699,8 +747,10 @@ class TestCadQuery(BaseTest):
r = s.lineTo(1.0, 0).lineTo(0, 1.0).close().wire().extrude(0.25)
r.val().exportStep(os.path.join(OUTDIR, 'testBasicLinesStep1.STEP'))
self.assertEqual(0,s.faces().size()) #no faces on the original workplane
self.assertEqual(5,r.faces().size() ) # 5 faces on newly created object
# no faces on the original workplane
self.assertEqual(0, s.faces().size())
# 5 faces on newly created object
self.assertEqual(5, r.faces().size())
# now add a circle through a side face
r.faces("+XY").workplane().circle(0.08).cutThruAll()
@ -754,9 +804,10 @@ class TestCadQuery(BaseTest):
self.assertEqual(1, r.wire().size())
self.assertEqual(4, r.edges().size())
self.assertEqual((1.0, 1.0),
(r.vertices(selectors.NearestToPointSelector((0.0, 0.0, 0.0)))\
(r.vertices(selectors.NearestToPointSelector((0.0, 0.0, 0.0)))
.first().val().X,
r.vertices(selectors.NearestToPointSelector((0.0, 0.0, 0.0)))\
r.vertices(
selectors.NearestToPointSelector((0.0, 0.0, 0.0)))
.first().val().Y))
def testLargestDimension(self):
@ -788,13 +839,13 @@ class TestCadQuery(BaseTest):
.extrude(30.0, True)
# make the neck
p.faces(">Z").workplane().circle(3.0).extrude(2.0,True) #.edges().fillet(0.05)
p.faces(">Z").workplane().circle(3.0).extrude(
2.0, True) # .edges().fillet(0.05)
# make a shell
p.faces(">Z").shell(0.3)
self.saveModel(p)
def testSplineShape(self):
"""
Tests making a shape with an edge that is a spline
@ -819,7 +870,7 @@ class TestCadQuery(BaseTest):
"""
s = Workplane("XY").lineTo(2, 2).threePointArc((3, 1), (2, 0)) \
.mirrorX().extrude(0.25)
self.assertEquals(6, s.faces().size())
self.assertEqual(6, s.faces().size())
self.saveModel(s)
def testUnorderedMirror(self):
@ -844,8 +895,8 @@ class TestCadQuery(BaseTest):
r = Workplane("XY").polyline(points).mirrorX()
self.assertEquals(1, r.wires().size())
self.assertEquals(18, r.edges().size())
self.assertEqual(1, r.wires().size())
self.assertEqual(18, r.edges().size())
# def testChainedMirror(self):
# """
@ -916,7 +967,8 @@ class TestCadQuery(BaseTest):
"""
Tests filleting edges on a solid
"""
c = CQ( makeUnitCube()).faces(">Z").workplane().circle(0.25).extrude(0.25,True).edges("|Z").fillet(0.2)
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(
0.25).extrude(0.25, True).edges("|Z").fillet(0.2)
self.saveModel(c)
self.assertEqual(12, c.faces().size())
@ -946,7 +998,8 @@ class TestCadQuery(BaseTest):
"""
Test chamfer API with a cylinder shape
"""
cylinder = Workplane("XY").circle(1).extrude(1).faces(">Z").chamfer(0.1)
cylinder = Workplane("XY").circle(
1).extrude(1).faces(">Z").chamfer(0.1)
self.saveModel(cylinder)
self.assertEqual(4, cylinder.faces().size())
@ -958,8 +1011,9 @@ class TestCadQuery(BaseTest):
pnts = [
(-1.0, -1.0), (0.0, 0.0), (1.0, 1.0)
]
c.faces(">Z").workplane().pushPoints(pnts).cboreHole(0.1, 0.25, 0.25, 0.75)
self.assertEquals(18, c.faces().size())
c.faces(">Z").workplane().pushPoints(
pnts).cboreHole(0.1, 0.25, 0.25, 0.75)
self.assertEqual(18, c.faces().size())
self.saveModel(c)
# Tests the case where the depth of the cboreHole is not specified
@ -968,7 +1022,7 @@ class TestCadQuery(BaseTest):
(-1.0, -1.0), (0.0, 0.0), (1.0, 1.0)
]
c2.faces(">Z").workplane().pushPoints(pnts).cboreHole(0.1, 0.25, 0.25)
self.assertEquals(15, c2.faces().size())
self.assertEqual(15, c2.faces().size())
def testCounterSinks(self):
"""
@ -985,7 +1039,8 @@ class TestCadQuery(BaseTest):
"""
# drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
c = CQ(makeUnitCube()).faces(
">Z").workplane().circle(0.25).cutThruAll()
self.assertEqual(7, c.faces().size())
@ -1000,14 +1055,17 @@ class TestCadQuery(BaseTest):
"""
# drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
c = CQ(makeUnitCube()).faces(
">Z").workplane().circle(0.25).cutThruAll()
self.assertEqual(7, c.faces().size())
# now cut it in half sideways
result = c.faces(">Y").workplane(-0.5).split(keepTop=True, keepBottom=True)
result = c.faces(
">Y").workplane(-0.5).split(keepTop=True, keepBottom=True)
# stack will have both halves, original will be unchanged
self.assertEqual(2, result.solids().size()) # two solids are on the stack, eac
# two solids are on the stack, eac
self.assertEqual(2, result.solids().size())
self.assertEqual(8, result.solids().item(0).faces().size())
self.assertEqual(8, result.solids().item(1).faces().size())
@ -1016,14 +1074,17 @@ class TestCadQuery(BaseTest):
Tests splitting a solid improperly
"""
# Drill a hole in the side
c = CQ(makeUnitCube()).faces(">Z").workplane().circle(0.25).cutThruAll()
c = CQ(makeUnitCube()).faces(
">Z").workplane().circle(0.25).cutThruAll()
self.assertEqual(7, c.faces().size())
# Now cut it in half sideways
result = c.faces(">Y").workplane(-0.5).split(keepTop=False, keepBottom=True)
result = c.faces(
">Y").workplane(-0.5).split(keepTop=False, keepBottom=True)
# stack will have both halves, original will be unchanged
self.assertEqual(1, result.solids().size()) # one solid is on the stack
# one solid is on the stack
self.assertEqual(1, result.solids().size())
self.assertEqual(8, result.solids().item(0).faces().size())
def testBoxDefaults(self):
@ -1031,7 +1092,7 @@ class TestCadQuery(BaseTest):
Tests creating a single box
"""
s = Workplane("XY").box(2, 3, 4)
self.assertEquals(1, s.solids().size())
self.assertEqual(1, s.solids().size())
self.saveModel(s)
def testSimpleShell(self):
@ -1040,8 +1101,7 @@ class TestCadQuery(BaseTest):
"""
s = Workplane("XY").box(2, 2, 2).faces("+Z").shell(0.05)
self.saveModel(s)
self.assertEquals(23, s.faces().size())
self.assertEqual(23, s.faces().size())
def testOpenCornerShell(self):
s = Workplane("XY").box(1, 1, 1)
@ -1059,88 +1119,98 @@ class TestCadQuery(BaseTest):
def testTopFaceFillet(self):
s = Workplane("XY").box(1, 1, 1).faces("+Z").edges().fillet(0.1)
self.assertEquals(s.faces().size(), 10)
self.assertEqual(s.faces().size(), 10)
self.saveModel(s)
def testBoxPointList(self):
"""
Tests creating an array of boxes
"""
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().box(0.25, 0.25, 0.25, combine=True)
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().box(
0.25, 0.25, 0.25, combine=True)
# 1 object, 4 solids because the object is a compound
self.assertEquals(4, s.solids().size())
self.assertEquals(1, s.size())
self.assertEqual(4, s.solids().size())
self.assertEqual(1, s.size())
self.saveModel(s)
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().box(0.25, 0.25, 0.25, combine=False)
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().box(
0.25, 0.25, 0.25, combine=False)
# 4 objects, 4 solids, because each is a separate solid
self.assertEquals(4, s.size())
self.assertEquals(4, s.solids().size())
self.assertEqual(4, s.size())
self.assertEqual(4, s.solids().size())
def testBoxCombine(self):
s = Workplane("XY").box(4, 4, 0.5).faces(">Z").workplane().rect(3, 3, forConstruction=True).vertices().box(0.25, 0.25, 0.25, combine=True)
s = Workplane("XY").box(4, 4, 0.5).faces(">Z").workplane().rect(
3, 3, forConstruction=True).vertices().box(0.25, 0.25, 0.25, combine=True)
self.saveModel(s)
self.assertEquals(1, s.solids().size()) # we should have one big solid
self.assertEquals(26, s.faces().size()) # should have 26 faces. 6 for the box, and 4x5 for the smaller cubes
self.assertEqual(1, s.solids().size()) # we should have one big solid
# should have 26 faces. 6 for the box, and 4x5 for the smaller cubes
self.assertEqual(26, s.faces().size())
def testSphereDefaults(self):
s = Workplane("XY").sphere(10)
# self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEquals(1, s.solids().size())
self.assertEquals(1, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(1, s.faces().size())
def testSphereCustom(self):
s = Workplane("XY").sphere(10, angle1=0, angle2=90, angle3=360, centered=(False, False, False))
s = Workplane("XY").sphere(10, angle1=0, angle2=90,
angle3=360, centered=(False, False, False))
self.saveModel(s)
self.assertEquals(1, s.solids().size())
self.assertEquals(2, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(2, s.faces().size())
def testSpherePointList(self):
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().sphere(0.25, combine=False)
s = Workplane("XY").rect(
4.0, 4.0, forConstruction=True).vertices().sphere(0.25, combine=False)
# self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEquals(4, s.solids().size())
self.assertEquals(4, s.faces().size())
self.assertEqual(4, s.solids().size())
self.assertEqual(4, s.faces().size())
def testSphereCombine(self):
s = Workplane("XY").rect(4.0, 4.0, forConstruction=True).vertices().sphere(2.25, combine=True)
s = Workplane("XY").rect(
4.0, 4.0, forConstruction=True).vertices().sphere(2.25, combine=True)
# self.saveModel(s) # Until FreeCAD fixes their sphere operation
self.assertEquals(1, s.solids().size())
self.assertEquals(4, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(4, s.faces().size())
def testQuickStartXY(self):
s = Workplane(Plane.XY()).box(2, 4, 0.5).faces(">Z").workplane().rect(1.5, 3.5, forConstruction=True)\
.vertices().cskHole(0.125, 0.25, 82, depth=None)
self.assertEquals(1, s.solids().size())
self.assertEquals(14, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
self.saveModel(s)
def testQuickStartYZ(self):
s = Workplane(Plane.YZ()).box(2, 4, 0.5).faces(">X").workplane().rect(1.5, 3.5, forConstruction=True)\
.vertices().cskHole(0.125, 0.25, 82, depth=None)
self.assertEquals(1, s.solids().size())
self.assertEquals(14, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
self.saveModel(s)
def testQuickStartXZ(self):
s = Workplane(Plane.XZ()).box(2, 4, 0.5).faces(">Y").workplane().rect(1.5, 3.5, forConstruction=True)\
.vertices().cskHole(0.125, 0.25, 82, depth=None)
self.assertEquals(1, s.solids().size())
self.assertEquals(14, s.faces().size())
self.assertEqual(1, s.solids().size())
self.assertEqual(14, s.faces().size())
self.saveModel(s)
def testDoubleTwistedLoft(self):
s = Workplane("XY").polygon(8, 20.0).workplane(offset=4.0).transformed(rotate=Vector(0, 0, 15.0)).polygon(8, 20).loft()
s2 = Workplane("XY").polygon(8, 20.0).workplane(offset=-4.0).transformed(rotate=Vector(0, 0, 15.0)).polygon(8, 20).loft()
s = Workplane("XY").polygon(8, 20.0).workplane(offset=4.0).transformed(
rotate=Vector(0, 0, 15.0)).polygon(8, 20).loft()
s2 = Workplane("XY").polygon(8, 20.0).workplane(
offset=-4.0).transformed(rotate=Vector(0, 0, 15.0)).polygon(8, 20).loft()
# self.assertEquals(10,s.faces().size())
# self.assertEquals(1,s.solids().size())
s3 = s.combineSolids(s2)
self.saveModel(s3)
def testTwistedLoft(self):
s = Workplane("XY").polygon(8,20.0).workplane(offset=4.0).transformed(rotate=Vector(0,0,15.0)).polygon(8,20).loft()
self.assertEquals(10,s.faces().size())
self.assertEquals(1,s.solids().size())
s = Workplane("XY").polygon(8, 20.0).workplane(offset=4.0).transformed(
rotate=Vector(0, 0, 15.0)).polygon(8, 20).loft()
self.assertEqual(10, s.faces().size())
self.assertEqual(1, s.solids().size())
self.saveModel(s)
def testUnions(self):
@ -1155,7 +1225,7 @@ class TestCadQuery(BaseTest):
# union stuff
for oo in o:
s = s.union(oo)
print "Total time %0.3f" % (time.time() - beginTime)
print("Total time %0.3f" % (time.time() - beginTime))
# Test unioning a Solid object
s = Workplane(Plane.XY())
@ -1169,13 +1239,13 @@ class TestCadQuery(BaseTest):
def testCombine(self):
s = Workplane(Plane.XY())
objects1 = s.rect(2.0,2.0).extrude(0.5).faces('>Z').rect(1.0,1.0).extrude(0.5)
objects1 = s.rect(2.0, 2.0).extrude(0.5).faces(
'>Z').rect(1.0, 1.0).extrude(0.5)
objects1.combine()
self.assertEqual(11, objects1.faces().size())
def testCombineSolidsInLoop(self):
# duplicates a memory problem of some kind reported when combining lots of objects
s = Workplane("XY").rect(0.5, 0.5).extrude(5.0)
@ -1190,7 +1260,7 @@ class TestCadQuery(BaseTest):
s.add(oo)
s = s.combineSolids()
print "Total time %0.3f" % (time.time() - beginTime)
print("Total time %0.3f" % (time.time() - beginTime))
self.saveModel(s)
@ -1207,7 +1277,8 @@ class TestCadQuery(BaseTest):
self.assertEqual(6, s.faces().size())
# test removal of splitter caused by union operation
s = Workplane("XY").box(10,10,10).union(Workplane("XY").box(20,10,10))
s = Workplane("XY").box(10, 10, 10).union(
Workplane("XY").box(20, 10, 10))
self.assertEqual(6, s.faces().size())
@ -1262,7 +1333,6 @@ class TestCadQuery(BaseTest):
self.assertEqual(6, s.faces().size())
def testCup(self):
"""
UOM = "mm"
@ -1298,11 +1368,11 @@ class TestCadQuery(BaseTest):
h = 10.0
t = 1.0
s1 = Workplane("XY").circle(bd).workplane(offset=h).circle(td).loft()
s2 = Workplane("XY").workplane(offset=t).circle(bd-(2.0*t)).workplane(offset=(h-t)).circle(td-(2.0*t)).loft()
s2 = Workplane("XY").workplane(offset=t).circle(
bd - (2.0 * t)).workplane(offset=(h - t)).circle(td - (2.0 * t)).loft()
s3 = s1.cut(s2)
self.saveModel(s3)
def testEnclosure(self):
"""
Builds an electronics enclosure
@ -1317,21 +1387,30 @@ class TestCadQuery(BaseTest):
p_thickness = 3.0 # Thickness of the box walls
p_sideRadius = 10.0 # Radius for the curves around the sides of the bo
p_topAndBottomRadius = 2.0 #Radius for the curves on the top and bottom edges of the box
# Radius for the curves on the top and bottom edges of the box
p_topAndBottomRadius = 2.0
p_screwpostInset = 12.0 #How far in from the edges the screwposts should be place.
p_screwpostID = 4.0 #nner Diameter of the screwpost holes, should be roughly screw diameter not including threads
p_screwpostOD = 10.0 #Outer Diameter of the screwposts.\nDetermines overall thickness of the posts
# How far in from the edges the screwposts should be place.
p_screwpostInset = 12.0
# nner Diameter of the screwpost holes, should be roughly screw diameter not including threads
p_screwpostID = 4.0
# Outer Diameter of the screwposts.\nDetermines overall thickness of the posts
p_screwpostOD = 10.0
p_boreDiameter = 8.0 # Diameter of the counterbore hole, if any
p_boreDepth = 1.0 # Depth of the counterbore hole, if
p_countersinkDiameter = 0.0 #Outer diameter of countersink. Should roughly match the outer diameter of the screw head
p_countersinkAngle = 90.0 #Countersink angle (complete angle between opposite sides, not from center to one side)
p_flipLid = True #Whether to place the lid with the top facing down or not.
p_lipHeight = 1.0 #Height of lip on the underside of the lid.\nSits inside the box body for a snug fit.
# Outer diameter of countersink. Should roughly match the outer diameter of the screw head
p_countersinkDiameter = 0.0
# Countersink angle (complete angle between opposite sides, not from center to one side)
p_countersinkAngle = 90.0
# Whether to place the lid with the top facing down or not.
p_flipLid = True
# Height of lip on the underside of the lid.\nSits inside the box body for a snug fit.
p_lipHeight = 1.0
# outer shell
oshell = Workplane("XY").rect(p_outerWidth,p_outerLength).extrude(p_outerHeight + p_lipHeight)
oshell = Workplane("XY").rect(p_outerWidth, p_outerLength).extrude(
p_outerHeight + p_lipHeight)
# weird geometry happens if we make the fillets in the wrong order
if p_sideRadius > p_topAndBottomRadius:
@ -1363,20 +1442,25 @@ class TestCadQuery(BaseTest):
.extrude((-1.0) * (p_outerHeight + p_lipHeight - p_thickness), True)
# split lid into top and bottom parts
(lid,bottom) = box.faces(">Z").workplane(-p_thickness -p_lipHeight ).split(keepTop=True,keepBottom=True).all() #splits into two solids
(lid, bottom) = box.faces(">Z").workplane(-p_thickness -
p_lipHeight).split(keepTop=True, keepBottom=True).all() # splits into two solids
# translate the lid, and subtract the bottom from it to produce the lid inset
lowerLid = lid.translate((0, 0, -p_lipHeight))
cutlip = lowerLid.cut(bottom).translate((p_outerWidth + p_thickness ,0,p_thickness - p_outerHeight + p_lipHeight))
cutlip = lowerLid.cut(bottom).translate(
(p_outerWidth + p_thickness, 0, p_thickness - p_outerHeight + p_lipHeight))
# compute centers for counterbore/countersink or counterbore
topOfLidCenters = cutlip.faces(">Z").workplane().rect(POSTWIDTH,POSTLENGTH,forConstruction=True).vertices()
topOfLidCenters = cutlip.faces(">Z").workplane().rect(
POSTWIDTH, POSTLENGTH, forConstruction=True).vertices()
# add holes of the desired type
if p_boreDiameter > 0 and p_boreDepth > 0:
topOfLid = topOfLidCenters.cboreHole(p_screwpostID,p_boreDiameter,p_boreDepth,(2.0)*p_thickness)
topOfLid = topOfLidCenters.cboreHole(
p_screwpostID, p_boreDiameter, p_boreDepth, (2.0) * p_thickness)
elif p_countersinkDiameter > 0 and p_countersinkAngle > 0:
topOfLid = topOfLidCenters.cskHole(p_screwpostID,p_countersinkDiameter,p_countersinkAngle,(2.0)*p_thickness)
topOfLid = topOfLidCenters.cskHole(
p_screwpostID, p_countersinkDiameter, p_countersinkAngle, (2.0) * p_thickness)
else:
topOfLid = topOfLidCenters.hole(p_screwpostID, (2.0) * p_thickness)
@ -1409,6 +1493,3 @@ class TestCadQuery(BaseTest):
self.assertTupleAlmostEquals(delta.toTuple(),
(0., 0., 2. * h),
decimal_places)

View File

@ -2,13 +2,18 @@
Tests basic workplane functionality
"""
# core modules
import StringIO
import sys
if sys.version_info.major == 2:
import cStringIO as StringIO
else:
import io as StringIO
# my modules
from cadquery import *
from cadquery import exporters
from tests import BaseTest
class TestExporters(BaseTest):
def _exportBox(self, eType, stringsToFind):
@ -40,4 +45,5 @@ class TestExporters(BaseTest):
self._exportBox(exporters.ExportTypes.STEP, ['FILE_SCHEMA'])
def testTJS(self):
self._exportBox(exporters.ExportTypes.TJS,['vertices','formatVersion','faces'])
self._exportBox(exporters.ExportTypes.TJS, [
'vertices', 'formatVersion', 'faces'])

View File

@ -2,7 +2,7 @@
Tests file importers such as STEP
"""
# core modules
import StringIO
import io
from cadquery import *
from cadquery import exporters
@ -39,9 +39,12 @@ class TestImporters(BaseTest):
self.assertTrue(importedShape.val().ShapeType() == "Solid")
# Check the number of faces and vertices per face to make sure we have a box shape
self.assertTrue(importedShape.faces("+X").size() == 1 and importedShape.faces("+X").vertices().size() == 4)
self.assertTrue(importedShape.faces("+Y").size() == 1 and importedShape.faces("+Y").vertices().size() == 4)
self.assertTrue(importedShape.faces("+Z").size() == 1 and importedShape.faces("+Z").vertices().size() == 4)
self.assertTrue(importedShape.faces("+X").size() ==
1 and importedShape.faces("+X").vertices().size() == 4)
self.assertTrue(importedShape.faces("+Y").size() ==
1 and importedShape.faces("+Y").vertices().size() == 4)
self.assertTrue(importedShape.faces("+Z").size() ==
1 and importedShape.faces("+Z").vertices().size() == 4)
def testSTEP(self):
"""
@ -49,6 +52,7 @@ class TestImporters(BaseTest):
"""
self.importBox(importers.ImportTypes.STEP, OUTDIR + "/tempSTEP.step")
if __name__ == '__main__':
import unittest
unittest.main()

View File

@ -14,6 +14,7 @@ xInvAxis_ = Vector(-1, 0, 0)
yInvAxis_ = Vector(0, -1, 0)
zInvAxis_ = Vector(0, 0, -1)
class TestWorkplanes(BaseTest):
def testYZPlaneOrigins(self):
@ -22,71 +23,88 @@ class TestWorkplanes(BaseTest):
p = Plane(base, Vector(0, 1, 0), Vector(1, 0, 0))
# origin is always (0,0,0) in local coordinates
self.assertTupleAlmostEquals((0,0,0), p.toLocalCoords(p.origin).toTuple() ,2 )
self.assertTupleAlmostEquals(
(0, 0, 0), p.toLocalCoords(p.origin).toTuple(), 2)
#(0,0,0) is always the original base in global coordinates
self.assertTupleAlmostEquals(base.toTuple(), p.toWorldCoords((0,0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
base.toTuple(), p.toWorldCoords((0, 0)).toTuple(), 2)
def testXYPlaneOrigins(self):
base = Vector(0, 0, 0.25)
p = Plane(base, Vector(1, 0, 0), Vector(0, 0, 1))
# origin is always (0,0,0) in local coordinates
self.assertTupleAlmostEquals((0,0,0), p.toLocalCoords(p.origin).toTuple() ,2 )
self.assertTupleAlmostEquals(
(0, 0, 0), p.toLocalCoords(p.origin).toTuple(), 2)
#(0,0,0) is always the original base in global coordinates
self.assertTupleAlmostEquals(toTuple(base), p.toWorldCoords((0,0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
toTuple(base), p.toWorldCoords((0, 0)).toTuple(), 2)
def testXZPlaneOrigins(self):
base = Vector(0, 0.25, 0)
p = Plane(base, Vector(0, 0, 1), Vector(0, 1, 0))
#(0,0,0) is always the original base in global coordinates
self.assertTupleAlmostEquals(toTuple(base), p.toWorldCoords((0,0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
toTuple(base), p.toWorldCoords((0, 0)).toTuple(), 2)
# origin is always (0,0,0) in local coordinates
self.assertTupleAlmostEquals((0,0,0), p.toLocalCoords(p.origin).toTuple() ,2 )
self.assertTupleAlmostEquals(
(0, 0, 0), p.toLocalCoords(p.origin).toTuple(), 2)
def testPlaneBasics(self):
p = Plane.XY()
# local to world
self.assertTupleAlmostEquals((1.0,1.0,0),p.toWorldCoords((1,1)).toTuple(),2 )
self.assertTupleAlmostEquals((-1.0,-1.0,0), p.toWorldCoords((-1,-1)).toTuple(),2 )
self.assertTupleAlmostEquals(
(1.0, 1.0, 0), p.toWorldCoords((1, 1)).toTuple(), 2)
self.assertTupleAlmostEquals(
(-1.0, -1.0, 0), p.toWorldCoords((-1, -1)).toTuple(), 2)
# world to local
self.assertTupleAlmostEquals((-1.0,-1.0), p.toLocalCoords(Vector(-1,-1,0)).toTuple() ,2 )
self.assertTupleAlmostEquals((1.0,1.0), p.toLocalCoords(Vector(1,1,0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(-1.0, -1.0), p.toLocalCoords(Vector(-1, -1, 0)).toTuple(), 2)
self.assertTupleAlmostEquals(
(1.0, 1.0), p.toLocalCoords(Vector(1, 1, 0)).toTuple(), 2)
p = Plane.YZ()
self.assertTupleAlmostEquals((0,1.0,1.0),p.toWorldCoords((1,1)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(0, 1.0, 1.0), p.toWorldCoords((1, 1)).toTuple(), 2)
# world to local
self.assertTupleAlmostEquals((1.0,1.0), p.toLocalCoords(Vector(0,1,1)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(1.0, 1.0), p.toLocalCoords(Vector(0, 1, 1)).toTuple(), 2)
p = Plane.XZ()
r = p.toWorldCoords((1, 1)).toTuple()
self.assertTupleAlmostEquals((1.0, 0.0, 1.0), r, 2)
# world to local
self.assertTupleAlmostEquals((1.0,1.0), p.toLocalCoords(Vector(1,0,1)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(1.0, 1.0), p.toLocalCoords(Vector(1, 0, 1)).toTuple(), 2)
def testOffsetPlanes(self):
"Tests that a plane offset from the origin works ok too"
p = Plane.XY(origin=(10.0, 10.0, 0))
self.assertTupleAlmostEquals((11.0,11.0,0.0),p.toWorldCoords((1.0,1.0)).toTuple(),2 )
self.assertTupleAlmostEquals((2.0,2.0), p.toLocalCoords(Vector(12.0,12.0,0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(11.0, 11.0, 0.0), p.toWorldCoords((1.0, 1.0)).toTuple(), 2)
self.assertTupleAlmostEquals((2.0, 2.0), p.toLocalCoords(
Vector(12.0, 12.0, 0)).toTuple(), 2)
# TODO test these offsets in the other dimensions too
p = Plane.YZ(origin=(0, 2, 2))
self.assertTupleAlmostEquals((0.0,5.0,5.0), p.toWorldCoords((3.0,3.0)).toTuple() ,2 )
self.assertTupleAlmostEquals((10,10.0,0.0), p.toLocalCoords(Vector(0.0,12.0,12.0)).toTuple() ,2 )
self.assertTupleAlmostEquals(
(0.0, 5.0, 5.0), p.toWorldCoords((3.0, 3.0)).toTuple(), 2)
self.assertTupleAlmostEquals((10, 10.0, 0.0), p.toLocalCoords(
Vector(0.0, 12.0, 12.0)).toTuple(), 2)
p = Plane.XZ(origin=(2, 0, 2))
r = p.toWorldCoords((1.0, 1.0)).toTuple()
self.assertTupleAlmostEquals((3.0, 0.0, 3.0), r, 2)
self.assertTupleAlmostEquals((10.0,10.0), p.toLocalCoords(Vector(12.0,0.0,12.0)).toTuple() ,2 )
self.assertTupleAlmostEquals((10.0, 10.0), p.toLocalCoords(
Vector(12.0, 0.0, 12.0)).toTuple(), 2)
def testXYPlaneBasics(self):
p = Plane.named('XY')

View File

@ -4,6 +4,7 @@ import unittest
import sys
import os
def readFileAsString(fileName):
f = open(fileName, 'r')
s = f.read()
@ -37,13 +38,16 @@ def toTuple(v):
elif type(v) == Vector:
return v.toTuple()
else:
raise RuntimeError("dont know how to convert type %s to tuple" % str(type(v)) )
raise RuntimeError(
"dont know how to convert type %s to tuple" % str(type(v)))
class BaseTest(unittest.TestCase):
def assertTupleAlmostEquals(self, expected, actual, places):
for i, j in zip(actual, expected):
self.assertAlmostEquals(i, j, places)
self.assertAlmostEqual(i, j, places)
__all__ = ['TestCadObjects', 'TestCadQuery', 'TestCQSelectors', 'TestWorkplanes', 'TestExporters', 'TestCQSelectors', 'TestImporters','TestCQGI']
__all__ = ['TestCadObjects', 'TestCadQuery', 'TestCQSelectors', 'TestWorkplanes',
'TestExporters', 'TestCQSelectors', 'TestImporters', 'TestCQGI']