* Initial free functions * Mypy fixes * Add a mypy plugin that handles _get* * More helpers and fixes * black * More hooks * More ops and primitives * Fill with constraints and cap * Minimal docstrings and mypy fix * Bool op operators for Shape * Extra docstring * Added spline primitive * Added alternative constructors * Update solid * Add shape normalization * Add text * Added moved overload * Another moved overload * Convert location constructor to multimethod * Additional Loc constructor * Extra vertex constructor * Additional cone overload * Start with tests * Fix compouund normalization * Bool op tests * Additional Location overload * test moved and fix bool ops * Different cap params * More tests * Test revolve and offset * Test sweep and loft * Add bool ops * More tests * Test text * Improve coverage for utils * More move[d] and Location overloads * Start working on some docs * Update index * Doc fix * Typo fix * More move/moved overloads * Small doc update * Better Location coverage * Fix angle units in Location * More docs and a usability fix * Cosmetics * Mypy fix * Remove dead code * Coverage tweaks * More docs' * Box centering and box/plane arg order * Docs cosmetics - nicer sweep * Apply suggestions Co-authored-by: Jeremy Wright <wrightjmf@gmail.com> * Add docstrings * Doc tweaks * Bump multimethod version * Add occ_impl.shapes * Mention free funcs in the primer * Typos * Typo * Punctuation --------- Co-authored-by: Jeremy Wright <wrightjmf@gmail.com>
799 lines
26 KiB
Python
799 lines
26 KiB
Python
# system modules
|
|
import math
|
|
import pytest
|
|
import unittest
|
|
from tests import BaseTest
|
|
from OCP.gp import gp_Vec, gp_Pnt, gp_Ax2, gp_Circ, gp_Elips, gp, gp_XYZ, gp_Trsf
|
|
from OCP.BRepBuilderAPI import BRepBuilderAPI_MakeEdge
|
|
|
|
from cadquery import *
|
|
|
|
DEG2RAD = math.pi / 180
|
|
RAD2DEG = 180 / math.pi
|
|
|
|
|
|
class TestCadObjects(BaseTest):
|
|
def _make_circle(self):
|
|
|
|
circle = gp_Circ(gp_Ax2(gp_Pnt(1, 2, 3), gp.DZ_s()), 2.0)
|
|
return Shape.cast(BRepBuilderAPI_MakeEdge(circle).Edge())
|
|
|
|
def _make_ellipse(self):
|
|
|
|
ellipse = gp_Elips(gp_Ax2(gp_Pnt(1, 2, 3), gp.DZ_s()), 4.0, 2.0)
|
|
return Shape.cast(BRepBuilderAPI_MakeEdge(ellipse).Edge())
|
|
|
|
def testVectorConstructors(self):
|
|
v1 = Vector(1, 2, 3)
|
|
v2 = Vector((1, 2, 3))
|
|
v3 = Vector(gp_Vec(1, 2, 3))
|
|
v4 = Vector([1, 2, 3])
|
|
v5 = Vector(gp_XYZ(1, 2, 3))
|
|
|
|
for v in [v1, v2, v3, v4, v5]:
|
|
self.assertTupleAlmostEquals((1, 2, 3), v.toTuple(), 4)
|
|
|
|
v6 = Vector((1, 2))
|
|
v7 = Vector([1, 2])
|
|
v8 = Vector(1, 2)
|
|
|
|
for v in [v6, v7, v8]:
|
|
self.assertTupleAlmostEquals((1, 2, 0), v.toTuple(), 4)
|
|
|
|
v9 = Vector()
|
|
self.assertTupleAlmostEquals((0, 0, 0), v9.toTuple(), 4)
|
|
|
|
v9.x = 1.0
|
|
v9.y = 2.0
|
|
v9.z = 3.0
|
|
self.assertTupleAlmostEquals((1, 2, 3), (v9.x, v9.y, v9.z), 4)
|
|
|
|
with self.assertRaises(TypeError):
|
|
Vector("vector")
|
|
with self.assertRaises(TypeError):
|
|
Vector(1, 2, 3, 4)
|
|
|
|
def testVertex(self):
|
|
"""
|
|
Tests basic vertex functions
|
|
"""
|
|
v = Vertex.makeVertex(1, 1, 1)
|
|
self.assertEqual(1, v.X)
|
|
self.assertEqual(Vector, type(v.Center()))
|
|
|
|
def testBasicBoundingBox(self):
|
|
v = Vertex.makeVertex(1, 1, 1)
|
|
v2 = Vertex.makeVertex(2, 2, 2)
|
|
self.assertEqual(BoundBox, type(v.BoundingBox()))
|
|
self.assertEqual(BoundBox, type(v2.BoundingBox()))
|
|
|
|
bb1 = v.BoundingBox().add(v2.BoundingBox())
|
|
|
|
# OCC uses some approximations
|
|
self.assertAlmostEqual(bb1.xlen, 1.0, 1)
|
|
|
|
# Test adding to an existing bounding box
|
|
v0 = Vertex.makeVertex(0, 0, 0)
|
|
bb2 = v0.BoundingBox().add(v.BoundingBox())
|
|
|
|
bb3 = bb1.add(bb2)
|
|
self.assertTupleAlmostEquals((2, 2, 2), (bb3.xlen, bb3.ylen, bb3.zlen), 7)
|
|
|
|
bb3 = bb2.add((3, 3, 3))
|
|
self.assertTupleAlmostEquals((3, 3, 3), (bb3.xlen, bb3.ylen, bb3.zlen), 7)
|
|
|
|
bb3 = bb2.add(Vector(3, 3, 3))
|
|
self.assertTupleAlmostEquals((3, 3, 3), (bb3.xlen, bb3.ylen, bb3.zlen), 7)
|
|
|
|
# Test 2D bounding boxes
|
|
bb1 = (
|
|
Vertex.makeVertex(1, 1, 0)
|
|
.BoundingBox()
|
|
.add(Vertex.makeVertex(2, 2, 0).BoundingBox())
|
|
)
|
|
bb2 = (
|
|
Vertex.makeVertex(0, 0, 0)
|
|
.BoundingBox()
|
|
.add(Vertex.makeVertex(3, 3, 0).BoundingBox())
|
|
)
|
|
bb3 = (
|
|
Vertex.makeVertex(0, 0, 0)
|
|
.BoundingBox()
|
|
.add(Vertex.makeVertex(1.5, 1.5, 0).BoundingBox())
|
|
)
|
|
# Test that bb2 contains bb1
|
|
self.assertEqual(bb2, BoundBox.findOutsideBox2D(bb1, bb2))
|
|
self.assertEqual(bb2, BoundBox.findOutsideBox2D(bb2, bb1))
|
|
# Test that neither bounding box contains the other
|
|
self.assertIsNone(BoundBox.findOutsideBox2D(bb1, bb3))
|
|
|
|
# Test creation of a bounding box from a shape - note the low accuracy comparison
|
|
# as the box is a little larger than the shape
|
|
bb1 = BoundBox._fromTopoDS(Solid.makeCylinder(1, 1).wrapped, optimal=False)
|
|
self.assertTupleAlmostEquals((2, 2, 1), (bb1.xlen, bb1.ylen, bb1.zlen), 1)
|
|
|
|
def testEdgeWrapperCenter(self):
|
|
e = self._make_circle()
|
|
|
|
self.assertTupleAlmostEquals((1.0, 2.0, 3.0), e.Center().toTuple(), 3)
|
|
|
|
def testEdgeWrapperEllipseCenter(self):
|
|
e = self._make_ellipse()
|
|
w = Wire.assembleEdges([e])
|
|
self.assertTupleAlmostEquals(
|
|
(1.0, 2.0, 3.0), Face.makeFromWires(w).Center().toTuple(), 3
|
|
)
|
|
|
|
def testEdgeWrapperMakeCircle(self):
|
|
halfCircleEdge = Edge.makeCircle(
|
|
radius=10, pnt=(0, 0, 0), dir=(0, 0, 1), angle1=0, angle2=180
|
|
)
|
|
|
|
# self.assertTupleAlmostEquals((0.0, 5.0, 0.0), halfCircleEdge.CenterOfBoundBox(0.0001).toTuple(),3)
|
|
self.assertTupleAlmostEquals(
|
|
(10.0, 0.0, 0.0), halfCircleEdge.startPoint().toTuple(), 3
|
|
)
|
|
self.assertTupleAlmostEquals(
|
|
(-10.0, 0.0, 0.0), halfCircleEdge.endPoint().toTuple(), 3
|
|
)
|
|
|
|
def testEdgeWrapperMakeTangentArc(self):
|
|
tangent_arc = Edge.makeTangentArc(
|
|
Vector(1, 1), # starts at 1, 1
|
|
Vector(0, 1), # tangent at start of arc is in the +y direction
|
|
Vector(2, 1), # arc curves 180 degrees and ends at 2, 1
|
|
)
|
|
self.assertTupleAlmostEquals((1, 1, 0), tangent_arc.startPoint().toTuple(), 3)
|
|
self.assertTupleAlmostEquals((2, 1, 0), tangent_arc.endPoint().toTuple(), 3)
|
|
self.assertTupleAlmostEquals(
|
|
(0, 1, 0), tangent_arc.tangentAt(locationParam=0).toTuple(), 3
|
|
)
|
|
self.assertTupleAlmostEquals(
|
|
(1, 0, 0), tangent_arc.tangentAt(locationParam=0.5).toTuple(), 3
|
|
)
|
|
self.assertTupleAlmostEquals(
|
|
(0, -1, 0), tangent_arc.tangentAt(locationParam=1).toTuple(), 3
|
|
)
|
|
|
|
def testEdgeWrapperMakeEllipse1(self):
|
|
# Check x_radius > y_radius
|
|
x_radius, y_radius = 20, 10
|
|
angle1, angle2 = -75.0, 90.0
|
|
arcEllipseEdge = Edge.makeEllipse(
|
|
x_radius=x_radius,
|
|
y_radius=y_radius,
|
|
pnt=(0, 0, 0),
|
|
dir=(0, 0, 1),
|
|
angle1=angle1,
|
|
angle2=angle2,
|
|
)
|
|
|
|
start = (
|
|
x_radius * math.cos(angle1 * DEG2RAD),
|
|
y_radius * math.sin(angle1 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
end = (
|
|
x_radius * math.cos(angle2 * DEG2RAD),
|
|
y_radius * math.sin(angle2 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
self.assertTupleAlmostEquals(start, arcEllipseEdge.startPoint().toTuple(), 3)
|
|
self.assertTupleAlmostEquals(end, arcEllipseEdge.endPoint().toTuple(), 3)
|
|
|
|
def testEdgeWrapperMakeEllipse2(self):
|
|
# Check x_radius < y_radius
|
|
x_radius, y_radius = 10, 20
|
|
angle1, angle2 = 0.0, 45.0
|
|
arcEllipseEdge = Edge.makeEllipse(
|
|
x_radius=x_radius,
|
|
y_radius=y_radius,
|
|
pnt=(0, 0, 0),
|
|
dir=(0, 0, 1),
|
|
angle1=angle1,
|
|
angle2=angle2,
|
|
)
|
|
|
|
start = (
|
|
x_radius * math.cos(angle1 * DEG2RAD),
|
|
y_radius * math.sin(angle1 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
end = (
|
|
x_radius * math.cos(angle2 * DEG2RAD),
|
|
y_radius * math.sin(angle2 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
self.assertTupleAlmostEquals(start, arcEllipseEdge.startPoint().toTuple(), 3)
|
|
self.assertTupleAlmostEquals(end, arcEllipseEdge.endPoint().toTuple(), 3)
|
|
|
|
def testEdgeWrapperMakeCircleWithEllipse(self):
|
|
# Check x_radius == y_radius
|
|
x_radius, y_radius = 20, 20
|
|
angle1, angle2 = 15.0, 60.0
|
|
arcEllipseEdge = Edge.makeEllipse(
|
|
x_radius=x_radius,
|
|
y_radius=y_radius,
|
|
pnt=(0, 0, 0),
|
|
dir=(0, 0, 1),
|
|
angle1=angle1,
|
|
angle2=angle2,
|
|
)
|
|
|
|
start = (
|
|
x_radius * math.cos(angle1 * DEG2RAD),
|
|
y_radius * math.sin(angle1 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
end = (
|
|
x_radius * math.cos(angle2 * DEG2RAD),
|
|
y_radius * math.sin(angle2 * DEG2RAD),
|
|
0.0,
|
|
)
|
|
self.assertTupleAlmostEquals(start, arcEllipseEdge.startPoint().toTuple(), 3)
|
|
self.assertTupleAlmostEquals(end, arcEllipseEdge.endPoint().toTuple(), 3)
|
|
|
|
def testFaceWrapperMakePlane(self):
|
|
mplane = Face.makePlane(10, 10)
|
|
|
|
self.assertTupleAlmostEquals((0.0, 0.0, 1.0), mplane.normalAt().toTuple(), 3)
|
|
|
|
def testMatrixOfInertia(self):
|
|
"""
|
|
Tests the calculation of the matrix of inertia for a solid
|
|
"""
|
|
radius = 1.0
|
|
height = 2.0
|
|
cylinder = Solid.makeCylinder(radius=radius, height=height)
|
|
moi = Shape.matrixOfInertia(cylinder)
|
|
two_pi = 2 * math.pi
|
|
true_moi = (
|
|
two_pi * (radius ** 2 / 4 + height ** 2 / 12),
|
|
two_pi * (radius ** 2 / 4 + height ** 2 / 12),
|
|
two_pi * radius ** 2 / 2,
|
|
)
|
|
self.assertTupleAlmostEquals((moi[0][0], moi[1][1], moi[2][2]), true_moi, 3)
|
|
|
|
def testVertexMatrixOfInertiaNotImplemented(self):
|
|
with self.assertRaises(NotImplementedError):
|
|
vertex = Vertex.makeVertex(1, 1, 1)
|
|
Shape.matrixOfInertia(vertex)
|
|
|
|
def testCenterOfBoundBox(self):
|
|
pass
|
|
|
|
def testCombinedCenterOfBoundBox(self):
|
|
pass
|
|
|
|
def testCompoundCenter(self):
|
|
"""
|
|
Tests whether or not a proper weighted center can be found for a compound
|
|
"""
|
|
|
|
def cylinders(self, radius, height):
|
|
|
|
c = Solid.makeCylinder(radius, height, Vector())
|
|
|
|
# Combine all the cylinders into a single compound
|
|
r = self.eachpoint(lambda loc: c.located(loc), True).combineSolids()
|
|
|
|
return r
|
|
|
|
Workplane.cyl = cylinders
|
|
|
|
# Now test. here we want weird workplane to see if the objects are transformed right
|
|
s = (
|
|
Workplane("XY")
|
|
.rect(2.0, 3.0, forConstruction=True)
|
|
.vertices()
|
|
.cyl(0.25, 0.5)
|
|
)
|
|
|
|
self.assertEqual(4, len(s.val().Solids()))
|
|
self.assertTupleAlmostEquals((0.0, 0.0, 0.25), s.val().Center().toTuple(), 3)
|
|
|
|
def testDot(self):
|
|
v1 = Vector(2, 2, 2)
|
|
v2 = Vector(1, -1, 1)
|
|
self.assertEqual(2.0, v1.dot(v2))
|
|
|
|
def testVectorAdd(self):
|
|
result = Vector(1, 2, 0) + Vector(0, 0, 3)
|
|
self.assertTupleAlmostEquals((1.0, 2.0, 3.0), result.toTuple(), 3)
|
|
|
|
def testVectorOperators(self):
|
|
result = Vector(1, 1, 1) + Vector(2, 2, 2)
|
|
self.assertEqual(Vector(3, 3, 3), result)
|
|
|
|
result = Vector(1, 2, 3) - Vector(3, 2, 1)
|
|
self.assertEqual(Vector(-2, 0, 2), result)
|
|
|
|
result = Vector(1, 2, 3) * 2
|
|
self.assertEqual(Vector(2, 4, 6), result)
|
|
|
|
result = 3 * Vector(1, 2, 3)
|
|
self.assertEqual(Vector(3, 6, 9), result)
|
|
|
|
result = Vector(2, 4, 6) / 2
|
|
self.assertEqual(Vector(1, 2, 3), result)
|
|
|
|
self.assertEqual(Vector(-1, -1, -1), -Vector(1, 1, 1))
|
|
|
|
self.assertEqual(0, abs(Vector(0, 0, 0)))
|
|
self.assertEqual(1, abs(Vector(1, 0, 0)))
|
|
self.assertEqual((1 + 4 + 9) ** 0.5, abs(Vector(1, 2, 3)))
|
|
|
|
def testVectorEquals(self):
|
|
a = Vector(1, 2, 3)
|
|
b = Vector(1, 2, 3)
|
|
c = Vector(1, 2, 3.000001)
|
|
self.assertEqual(a, b)
|
|
self.assertEqual(a, c)
|
|
|
|
def testVectorProject(self):
|
|
"""
|
|
Test line projection and plane projection methods of cq.Vector
|
|
"""
|
|
decimal_places = 9
|
|
|
|
normal = Vector(1, 2, 3)
|
|
base = Vector(5, 7, 9)
|
|
x_dir = Vector(1, 0, 0)
|
|
|
|
# test passing Plane object
|
|
point = Vector(10, 11, 12).projectToPlane(Plane(base, x_dir, normal))
|
|
self.assertTupleAlmostEquals(
|
|
point.toTuple(), (59 / 7, 55 / 7, 51 / 7), decimal_places
|
|
)
|
|
|
|
# test line projection
|
|
vec = Vector(10, 10, 10)
|
|
line = Vector(3, 4, 5)
|
|
angle = vec.getAngle(line)
|
|
|
|
vecLineProjection = vec.projectToLine(line)
|
|
|
|
self.assertTupleAlmostEquals(
|
|
vecLineProjection.normalized().toTuple(),
|
|
line.normalized().toTuple(),
|
|
decimal_places,
|
|
)
|
|
self.assertAlmostEqual(
|
|
vec.Length * math.cos(angle), vecLineProjection.Length, decimal_places
|
|
)
|
|
|
|
def testVectorNotImplemented(self):
|
|
v = Vector(1, 2, 3)
|
|
with self.assertRaises(NotImplementedError):
|
|
v.distanceToLine()
|
|
with self.assertRaises(NotImplementedError):
|
|
v.distanceToPlane()
|
|
|
|
def testVectorSpecialMethods(self):
|
|
v = Vector(1, 2, 3)
|
|
self.assertEqual(repr(v), "Vector: (1.0, 2.0, 3.0)")
|
|
self.assertEqual(str(v), "Vector: (1.0, 2.0, 3.0)")
|
|
|
|
def testMatrixCreationAndAccess(self):
|
|
def matrix_vals(m):
|
|
return [[m[r, c] for c in range(4)] for r in range(4)]
|
|
|
|
# default constructor creates a 4x4 identity matrix
|
|
m = Matrix()
|
|
identity = [
|
|
[1.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0, 0.0],
|
|
[0.0, 0.0, 1.0, 0.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
]
|
|
self.assertEqual(identity, matrix_vals(m))
|
|
|
|
vals4x4 = [
|
|
[1.0, 0.0, 0.0, 1.0],
|
|
[0.0, 1.0, 0.0, 2.0],
|
|
[0.0, 0.0, 1.0, 3.0],
|
|
[0.0, 0.0, 0.0, 1.0],
|
|
]
|
|
vals4x4_tuple = tuple(tuple(r) for r in vals4x4)
|
|
|
|
# test constructor with 16-value input
|
|
m = Matrix(vals4x4)
|
|
self.assertEqual(vals4x4, matrix_vals(m))
|
|
m = Matrix(vals4x4_tuple)
|
|
self.assertEqual(vals4x4, matrix_vals(m))
|
|
|
|
# test constructor with 12-value input (the last 4 are an implied
|
|
# [0,0,0,1])
|
|
m = Matrix(vals4x4[:3])
|
|
self.assertEqual(vals4x4, matrix_vals(m))
|
|
m = Matrix(vals4x4_tuple[:3])
|
|
self.assertEqual(vals4x4, matrix_vals(m))
|
|
|
|
# Test 16-value input with invalid values for the last 4
|
|
invalid = [
|
|
[1.0, 0.0, 0.0, 1.0],
|
|
[0.0, 1.0, 0.0, 2.0],
|
|
[0.0, 0.0, 1.0, 3.0],
|
|
[1.0, 2.0, 3.0, 4.0],
|
|
]
|
|
with self.assertRaises(ValueError):
|
|
Matrix(invalid)
|
|
# Test input with invalid type
|
|
with self.assertRaises(TypeError):
|
|
Matrix("invalid")
|
|
# Test input with invalid size / nested types
|
|
with self.assertRaises(TypeError):
|
|
Matrix([[1, 2, 3, 4], [1, 2, 3], [1, 2, 3, 4]])
|
|
with self.assertRaises(TypeError):
|
|
Matrix([1, 2, 3])
|
|
|
|
# Invalid sub-type
|
|
with self.assertRaises(TypeError):
|
|
Matrix([[1, 2, 3, 4], "abc", [1, 2, 3, 4]])
|
|
|
|
# test out-of-bounds access
|
|
m = Matrix()
|
|
with self.assertRaises(IndexError):
|
|
m[0, 4]
|
|
with self.assertRaises(IndexError):
|
|
m[4, 0]
|
|
with self.assertRaises(IndexError):
|
|
m["ab"]
|
|
|
|
# test __repr__ methods
|
|
m = Matrix(vals4x4)
|
|
mRepr = "Matrix([[1.0, 0.0, 0.0, 1.0],\n [0.0, 1.0, 0.0, 2.0],\n [0.0, 0.0, 1.0, 3.0],\n [0.0, 0.0, 0.0, 1.0]])"
|
|
self.assertEqual(repr(m), mRepr)
|
|
self.assertEqual(str(eval(repr(m))), mRepr)
|
|
|
|
def testMatrixFunctionality(self):
|
|
# Test rotate methods
|
|
def matrix_almost_equal(m, target_matrix):
|
|
for r, row in enumerate(target_matrix):
|
|
for c, target_value in enumerate(row):
|
|
self.assertAlmostEqual(m[r, c], target_value)
|
|
|
|
root_3_over_2 = math.sqrt(3) / 2
|
|
m_rotate_x_30 = [
|
|
[1, 0, 0, 0],
|
|
[0, root_3_over_2, -1 / 2, 0],
|
|
[0, 1 / 2, root_3_over_2, 0],
|
|
[0, 0, 0, 1],
|
|
]
|
|
mx = Matrix()
|
|
mx.rotateX(30 * DEG2RAD)
|
|
matrix_almost_equal(mx, m_rotate_x_30)
|
|
|
|
m_rotate_y_30 = [
|
|
[root_3_over_2, 0, 1 / 2, 0],
|
|
[0, 1, 0, 0],
|
|
[-1 / 2, 0, root_3_over_2, 0],
|
|
[0, 0, 0, 1],
|
|
]
|
|
my = Matrix()
|
|
my.rotateY(30 * DEG2RAD)
|
|
matrix_almost_equal(my, m_rotate_y_30)
|
|
|
|
m_rotate_z_30 = [
|
|
[root_3_over_2, -1 / 2, 0, 0],
|
|
[1 / 2, root_3_over_2, 0, 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1],
|
|
]
|
|
mz = Matrix()
|
|
mz.rotateZ(30 * DEG2RAD)
|
|
matrix_almost_equal(mz, m_rotate_z_30)
|
|
|
|
# Test matrix multipy vector
|
|
v = Vector(1, 0, 0)
|
|
self.assertTupleAlmostEquals(
|
|
mz.multiply(v).toTuple(), (root_3_over_2, 1 / 2, 0), 7
|
|
)
|
|
|
|
# Test matrix multipy matrix
|
|
m_rotate_xy_30 = [
|
|
[root_3_over_2, 0, 1 / 2, 0],
|
|
[1 / 4, root_3_over_2, -root_3_over_2 / 2, 0],
|
|
[-root_3_over_2 / 2, 1 / 2, 3 / 4, 0],
|
|
[0, 0, 0, 1],
|
|
]
|
|
mxy = mx.multiply(my)
|
|
matrix_almost_equal(mxy, m_rotate_xy_30)
|
|
|
|
# Test matrix inverse
|
|
vals4x4 = [[1, 2, 3, 4], [5, 1, 6, 7], [8, 9, 1, 10], [0, 0, 0, 1]]
|
|
vals4x4_invert = [
|
|
[-53 / 144, 25 / 144, 1 / 16, -53 / 144],
|
|
[43 / 144, -23 / 144, 1 / 16, -101 / 144],
|
|
[37 / 144, 7 / 144, -1 / 16, -107 / 144],
|
|
[0, 0, 0, 1],
|
|
]
|
|
m = Matrix(vals4x4).inverse()
|
|
matrix_almost_equal(m, vals4x4_invert)
|
|
|
|
def testTranslate(self):
|
|
e = Edge.makeCircle(2, (1, 2, 3))
|
|
e2 = e.translate(Vector(0, 0, 1))
|
|
|
|
self.assertTupleAlmostEquals((1.0, 2.0, 4.0), e2.Center().toTuple(), 3)
|
|
|
|
def testVertices(self):
|
|
e = Shape.cast(BRepBuilderAPI_MakeEdge(gp_Pnt(0, 0, 0), gp_Pnt(1, 1, 0)).Edge())
|
|
self.assertEqual(2, len(e.Vertices()))
|
|
|
|
def testPlaneEqual(self):
|
|
# default orientation
|
|
self.assertEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
)
|
|
# moved origin
|
|
self.assertEqual(
|
|
Plane(origin=(2, 1, -1), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(2, 1, -1), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
)
|
|
# moved x-axis
|
|
self.assertEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 1, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(0, 0, 0), xDir=(1, 1, 0), normal=(0, 0, 1)),
|
|
)
|
|
# moved z-axis
|
|
self.assertEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 1, 1)),
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 1, 1)),
|
|
)
|
|
|
|
def testPlaneNotEqual(self):
|
|
# type difference
|
|
for value in [None, 0, 1, "abc"]:
|
|
self.assertNotEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)), value
|
|
)
|
|
# origin difference
|
|
self.assertNotEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(0, 0, 1), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
)
|
|
# x-axis difference
|
|
self.assertNotEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(0, 0, 0), xDir=(1, 1, 0), normal=(0, 0, 1)),
|
|
)
|
|
# z-axis difference
|
|
self.assertNotEqual(
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 1)),
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 1, 1)),
|
|
)
|
|
|
|
def testInvalidPlane(self):
|
|
# Test plane creation error handling
|
|
with self.assertRaises(ValueError):
|
|
Plane.named("XX", (0, 0, 0))
|
|
with self.assertRaises(ValueError):
|
|
Plane(origin=(0, 0, 0), xDir=(0, 0, 0), normal=(0, 1, 1))
|
|
with self.assertRaises(ValueError):
|
|
Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 0, 0))
|
|
|
|
def testPlaneMethods(self):
|
|
# Test error checking
|
|
p = Plane(origin=(0, 0, 0), xDir=(1, 0, 0), normal=(0, 1, 0))
|
|
with self.assertRaises(ValueError):
|
|
p.toLocalCoords("box")
|
|
with self.assertRaises(NotImplementedError):
|
|
p.mirrorInPlane([Solid.makeBox(1, 1, 1)], "Z")
|
|
|
|
# Test translation to local coordinates
|
|
local_box = Workplane(p.toLocalCoords(Solid.makeBox(1, 1, 1)))
|
|
local_box_vertices = [(v.X, v.Y, v.Z) for v in local_box.vertices().vals()]
|
|
target_vertices = [
|
|
(0, -1, 0),
|
|
(0, 0, 0),
|
|
(0, -1, 1),
|
|
(0, 0, 1),
|
|
(1, -1, 0),
|
|
(1, 0, 0),
|
|
(1, -1, 1),
|
|
(1, 0, 1),
|
|
]
|
|
for i, target_point in enumerate(target_vertices):
|
|
self.assertTupleAlmostEquals(target_point, local_box_vertices[i], 7)
|
|
|
|
# Test mirrorInPlane
|
|
mirror_box = Workplane(p.mirrorInPlane([Solid.makeBox(1, 1, 1)], "Y")[0])
|
|
mirror_box_vertices = [(v.X, v.Y, v.Z) for v in mirror_box.vertices().vals()]
|
|
target_vertices = [
|
|
(0, 0, 1),
|
|
(0, 0, 0),
|
|
(0, -1, 1),
|
|
(0, -1, 0),
|
|
(-1, 0, 1),
|
|
(-1, 0, 0),
|
|
(-1, -1, 1),
|
|
(-1, -1, 0),
|
|
]
|
|
for i, target_point in enumerate(target_vertices):
|
|
self.assertTupleAlmostEquals(target_point, mirror_box_vertices[i], 7)
|
|
|
|
def testLocation(self):
|
|
|
|
# empty
|
|
loc = Location()
|
|
|
|
T = loc.wrapped.Transformation().TranslationPart()
|
|
self.assertTupleAlmostEquals((T.X(), T.Y(), T.Z()), (0, 0, 0), 6)
|
|
|
|
# Tuple
|
|
loc0 = Location((0, 0, 1))
|
|
|
|
T = loc0.wrapped.Transformation().TranslationPart()
|
|
self.assertTupleAlmostEquals((T.X(), T.Y(), T.Z()), (0, 0, 1), 6)
|
|
|
|
# Vector
|
|
loc1 = Location(Vector(0, 0, 1))
|
|
|
|
T = loc1.wrapped.Transformation().TranslationPart()
|
|
self.assertTupleAlmostEquals((T.X(), T.Y(), T.Z()), (0, 0, 1), 6)
|
|
|
|
# rotation + translation
|
|
loc2 = Location(Vector(0, 0, 1), Vector(0, 0, 1), 45)
|
|
|
|
angle = loc2.wrapped.Transformation().GetRotation().GetRotationAngle() * RAD2DEG
|
|
self.assertAlmostEqual(45, angle)
|
|
|
|
# gp_Trsf
|
|
T = gp_Trsf()
|
|
T.SetTranslation(gp_Vec(0, 0, 1))
|
|
loc3 = Location(T)
|
|
|
|
assert (
|
|
loc1.wrapped.Transformation().TranslationPart().Z()
|
|
== loc3.wrapped.Transformation().TranslationPart().Z()
|
|
)
|
|
|
|
# Test creation from the OCP.gp.gp_Trsf object
|
|
loc4 = Location(gp_Trsf())
|
|
self.assertTupleAlmostEquals(loc4.toTuple()[0], (0, 0, 0), 7)
|
|
self.assertTupleAlmostEquals(loc4.toTuple()[1], (0, 0, 0), 7)
|
|
|
|
# Test composition
|
|
loc4 = Location((0, 0, 0), Vector(0, 0, 1), 15)
|
|
|
|
loc5 = loc1 * loc4
|
|
loc6 = loc4 * loc4
|
|
loc7 = loc4 ** 2
|
|
|
|
T = loc5.wrapped.Transformation().TranslationPart()
|
|
self.assertTupleAlmostEquals((T.X(), T.Y(), T.Z()), (0, 0, 1), 6)
|
|
|
|
angle5 = (
|
|
loc5.wrapped.Transformation().GetRotation().GetRotationAngle() * RAD2DEG
|
|
)
|
|
self.assertAlmostEqual(15, angle5)
|
|
|
|
angle6 = (
|
|
loc6.wrapped.Transformation().GetRotation().GetRotationAngle() * RAD2DEG
|
|
)
|
|
self.assertAlmostEqual(30, angle6)
|
|
|
|
angle7 = (
|
|
loc7.wrapped.Transformation().GetRotation().GetRotationAngle() * RAD2DEG
|
|
)
|
|
self.assertAlmostEqual(30, angle7)
|
|
|
|
# Test error handling on creation
|
|
with self.assertRaises(TypeError):
|
|
Location([0, 0, 1])
|
|
with self.assertRaises(TypeError):
|
|
Location("xy_plane")
|
|
|
|
# test to tuple
|
|
loc8 = Location(z=2, ry=15)
|
|
|
|
trans, rot = loc8.toTuple()
|
|
|
|
self.assertTupleAlmostEquals(trans, (0, 0, 2), 6)
|
|
self.assertTupleAlmostEquals(rot, (0, 15, 0), 6)
|
|
|
|
def testEdgeWrapperRadius(self):
|
|
|
|
# get a radius from a simple circle
|
|
e0 = Edge.makeCircle(2.4)
|
|
self.assertAlmostEqual(e0.radius(), 2.4)
|
|
|
|
# radius of an arc
|
|
e1 = Edge.makeCircle(1.8, pnt=(5, 6, 7), dir=(1, 1, 1), angle1=20, angle2=30)
|
|
self.assertAlmostEqual(e1.radius(), 1.8)
|
|
|
|
# test value errors
|
|
e2 = Edge.makeEllipse(10, 20)
|
|
with self.assertRaises(ValueError):
|
|
e2.radius()
|
|
|
|
# radius from a wire
|
|
w0 = Wire.makeCircle(10, Vector(1, 2, 3), (-1, 0, 1))
|
|
self.assertAlmostEqual(w0.radius(), 10)
|
|
|
|
# radius from a wire with multiple edges
|
|
rad = 2.3
|
|
pnt = (7, 8, 9)
|
|
direction = (1, 0.5, 0.1)
|
|
w1 = Wire.assembleEdges(
|
|
[
|
|
Edge.makeCircle(rad, pnt, direction, 0, 10),
|
|
Edge.makeCircle(rad, pnt, direction, 10, 25),
|
|
Edge.makeCircle(rad, pnt, direction, 25, 230),
|
|
]
|
|
)
|
|
self.assertAlmostEqual(w1.radius(), rad)
|
|
|
|
# test value error from wire
|
|
w2 = Wire.makePolygon([Vector(-1, 0, 0), Vector(0, 1, 0), Vector(1, -1, 0),])
|
|
with self.assertRaises(ValueError):
|
|
w2.radius()
|
|
|
|
# (I think) the radius of a wire is the radius of it's first edge.
|
|
# Since this is stated in the docstring better make sure.
|
|
no_rad = Wire.assembleEdges(
|
|
[
|
|
Edge.makeLine(Vector(0, 0, 0), Vector(0, 1, 0)),
|
|
Edge.makeCircle(1.0, angle1=90, angle2=270),
|
|
]
|
|
)
|
|
with self.assertRaises(ValueError):
|
|
no_rad.radius()
|
|
yes_rad = Wire.assembleEdges(
|
|
[
|
|
Edge.makeCircle(1.0, angle1=90, angle2=270),
|
|
Edge.makeLine(Vector(0, -1, 0), Vector(0, 1, 0)),
|
|
]
|
|
)
|
|
self.assertAlmostEqual(yes_rad.radius(), 1.0)
|
|
many_rad = Wire.assembleEdges(
|
|
[
|
|
Edge.makeCircle(1.0, angle1=0, angle2=180),
|
|
Edge.makeCircle(3.0, pnt=Vector(2, 0, 0), angle1=180, angle2=359),
|
|
]
|
|
)
|
|
self.assertAlmostEqual(many_rad.radius(), 1.0)
|
|
|
|
def testWireFillet(self):
|
|
points = [
|
|
(0.000, 0.000, 0.000),
|
|
(-0.287, 1.183, -0.592),
|
|
(-1.404, 4.113, -2.787),
|
|
(-1.332, 1.522, 0.553),
|
|
(7.062, 0.433, -0.097),
|
|
(8.539, -0.000, -0.000),
|
|
]
|
|
wire = Wire.makePolygon(points, close=False)
|
|
|
|
# Fillet the wire
|
|
wfillet = wire.fillet(radius=0.560)
|
|
assert len(wfillet.Edges()) == 2 * len(points) - 3
|
|
|
|
# Fillet a single vertex
|
|
wfillet = wire.fillet(radius=0.560, vertices=wire.Vertices()[1:2])
|
|
assert len(wfillet.Edges()) == len(points)
|
|
|
|
# Assert exception if trying to fillet with too big
|
|
# a radius
|
|
with self.assertRaises(ValueError):
|
|
wfillet = wire.fillet(radius=1.0)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"points, close, expected_edges",
|
|
[
|
|
(((0, 0, 0), (0, 1, 0), (1, 0, 0)), False, 2),
|
|
(((0, 0, 0), (0, 1, 0), (1, 0, 0)), True, 3),
|
|
(((0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 0)), False, 3),
|
|
(((0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 0)), True, 3),
|
|
],
|
|
)
|
|
def test_wire_makepolygon(points, close, expected_edges):
|
|
assert len(Wire.makePolygon(points, False, close).Edges()) == expected_edges
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|