kittycad.models.path_segment
Classes
|
A circular arc segment. |
|
Adds an arc from the current position that goes through the given interior point and ends at the given end position |
|
A cubic bezier curve segment. |
|
A straight line segment. |
|
Adds a tangent arc from current pen position with the given radius and angle. |
|
Adds a tangent arc from current pen position to the new position. |
- class kittycad.models.path_segment.OptionArc(**data)[source][source]
A circular arc segment. Arcs can be drawn clockwise when start > end.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'center': <class 'kittycad.models.point2d.Point2d'>, 'end': <class 'kittycad.models.angle.Angle'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'radius': <class 'kittycad.models.length_unit.LengthUnit'>, 'relative': <class 'bool'>, 'start': <class 'kittycad.models.angle.Angle'>, 'type': typing.Literal['arc']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.angle.Angle'>, 'config': {'title': 'Angle'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.angle.Angle'>>]}, 'ref': 'kittycad.models.angle.Angle:94250672058048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'unit': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.unit_angle.UnitAngle:94250676395408', 'type': 'definition-ref'}, 'type': 'model-field'}, 'value': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Angle', 'type': 'model-fields'}, 'type': 'model'}, {'cls': <enum 'UnitAngle'>, 'members': [UnitAngle.DEGREES, UnitAngle.RADIANS], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_angle.UnitAngle:94250676395408', 'sub_type': 'str', 'type': 'enum'}], 'schema': {'cls': <class 'kittycad.models.path_segment.OptionArc'>, 'config': {'title': 'OptionArc'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionArc'>>]}, 'ref': 'kittycad.models.path_segment.OptionArc:94250679769056', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'center': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point2d.Point2d'>, 'config': {'title': 'Point2d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point2d.Point2d'>>]}, 'ref': 'kittycad.models.point2d.Point2d:94250679674304', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}}, 'model_name': 'Point2d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'end': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.angle.Angle:94250672058048', 'type': 'definition-ref'}, 'type': 'model-field'}, 'radius': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'start': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.angle.Angle:94250672058048', 'type': 'definition-ref'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'arc', 'schema': {'expected': ['arc'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionArc', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'center': FieldInfo(annotation=Point2d, required=True), 'end': FieldInfo(annotation=Angle, required=True), 'radius': FieldInfo(annotation=LengthUnit, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'start': FieldInfo(annotation=Angle, required=True), 'type': FieldInfo(annotation=Literal['arc'], required=False, default='arc')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b8724997e0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "center": SerField { key_py: Py( 0x00007fc70fb08150, ), alias: None, alias_py: None, serializer: Some( Model( ModelSerializer { class: Py( 0x000055b8724825c0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "y": SerField { key_py: Py( 0x00007fc710624450, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "x": SerField { key_py: Py( 0x00007fc710624420, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 2, }, ), has_extra: false, root_model: false, name: "Point2d", }, ), ), required: true, }, "start": SerField { key_py: Py( 0x00007fc710621fc8, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "end": SerField { key_py: Py( 0x00007fc71061e648, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "relative": SerField { key_py: Py( 0x00007fc70ee5ecf0, ), alias: None, alias_py: None, serializer: Some( Bool( BoolSerializer, ), ), required: true, }, "radius": SerField { key_py: Py( 0x00007fc70b9f1260, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70d939920, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "arc", }, expected_py: None, name: "literal['arc']", }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 6, }, ), has_extra: false, root_model: false, name: "OptionArc", }, ), definitions=[Model(ModelSerializer { class: Py(0x55b871d3eec0), serializer: Fields(GeneralFieldsSerializer { fields: {"unit": SerField { key_py: Py(0x7fc70ed61a10), alias: None, alias_py: None, serializer: Some(Recursive(DefinitionRefSerializer { definition: "...", retry_with_lax_check: false })), required: true }, "value": SerField { key_py: Py(0x7fc710622a48), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 2 }), has_extra: false, root_model: false, name: "Angle" }), Enum(EnumSerializer { class: Py(0x55b872161d90), serializer: Some(Str(StrSerializer)) })])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionArc", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "center", lookup_key: Simple { key: "center", py_key: Py( 0x00007fc70b9a09c0, ), path: LookupPath( [ S( "center", Py( 0x00007fc70b9a09f0, ), ), ], ), }, name_py: Py( 0x00007fc70fb08150, ), validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "x", lookup_key: Simple { key: "x", py_key: Py( 0x00007fc710624420, ), path: LookupPath( [ S( "x", Py( 0x00007fc710624420, ), ), ], ), }, name_py: Py( 0x00007fc710624420, ), validator: FunctionAfter( FunctionAfterValidator { validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), func: Py( 0x000055b87230c5c0, ), config: Py( 0x00007fc70b94de80, ), name: "function-after[LengthUnit(), float]", field_name: None, info_arg: false, }, ), frozen: false, }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py( 0x00007fc710624450, ), path: LookupPath( [ S( "y", Py( 0x00007fc710624450, ), ), ], ), }, name_py: Py( 0x00007fc710624450, ), validator: FunctionAfter( FunctionAfterValidator { validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), func: Py( 0x000055b87230c5c0, ), config: Py( 0x00007fc70b94de80, ), name: "function-after[LengthUnit(), float]", field_name: None, info_arg: false, }, ), frozen: false, }, ], model_name: "Point2d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8724825c0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Point2d", }, ), frozen: false, }, Field { name: "end", lookup_key: Simple { key: "end", py_key: Py( 0x00007fc70b9a0a20, ), path: LookupPath( [ S( "end", Py( 0x00007fc70b9a0a50, ), ), ], ), }, name_py: Py( 0x00007fc71061e648, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "radius", lookup_key: Simple { key: "radius", py_key: Py( 0x00007fc70b9a0a80, ), path: LookupPath( [ S( "radius", Py( 0x00007fc70b9a0ab0, ), ), ], ), }, name_py: Py( 0x00007fc70b9f1260, ), validator: FunctionAfter( FunctionAfterValidator { validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), func: Py( 0x000055b87230c5c0, ), config: Py( 0x00007fc70b94eac0, ), name: "function-after[LengthUnit(), float]", field_name: None, info_arg: false, }, ), frozen: false, }, Field { name: "relative", lookup_key: Simple { key: "relative", py_key: Py( 0x00007fc70b97baf0, ), path: LookupPath( [ S( "relative", Py( 0x00007fc70b97b970, ), ), ], ), }, name_py: Py( 0x00007fc70ee5ecf0, ), validator: Bool( BoolValidator { strict: false, }, ), frozen: false, }, Field { name: "start", lookup_key: Simple { key: "start", py_key: Py( 0x00007fc70b9a0ae0, ), path: LookupPath( [ S( "start", Py( 0x00007fc70b9a0b10, ), ), ], ), }, name_py: Py( 0x00007fc710621fc8, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a0b40, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a0b70, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70d939920, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "arc": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b97bd80, ), ), values: [ Py( 0x00007fc70d939920, ), ], }, expected_repr: "'arc'", name: "literal['arc']", }, ), validate_default: false, copy_default: false, name: "default[literal['arc']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionArc", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8724997e0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionArc", }, ), definitions=[StrEnum(EnumValidator { phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>, class: Py(0x55b872161d90), lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some({"degrees": 0, "radians": 1}), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some(Py(0x7fc70b97bf40)), values: [Py(0x7fc70bd734d0), Py(0x7fc70bd73530)] }, missing: None, expected_repr: "'degrees' or 'radians'", strict: false, class_repr: "UnitAngle", name: "str-enum[UnitAngle]" }), Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "unit", lookup_key: Simple { key: "unit", py_key: Py(0x7fc70b9a0900), path: LookupPath([S("unit", Py(0x7fc70b9a0930))]) }, name_py: Py(0x7fc70ed61a10), validator: DefinitionRef(DefinitionRefValidator { definition: "..." }), frozen: false }, Field { name: "value", lookup_key: Simple { key: "value", py_key: Py(0x7fc70b9a0960), path: LookupPath([S("value", Py(0x7fc70b9a0990))]) }, name_py: Py(0x7fc710622a48), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Angle", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b871d3eec0), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fc70e4ea3d0), name: "Angle" })], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, center: kittycad.models.point2d.Point2d, end: kittycad.models.angle.Angle, radius: kittycad.models.length_unit.LengthUnit, relative: bool, start: kittycad.models.angle.Angle, type: Literal['arc'] = 'arc') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'center': FieldInfo(annotation=Point2d, required=True), 'end': FieldInfo(annotation=Angle, required=True), 'radius': FieldInfo(annotation=LengthUnit, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'start': FieldInfo(annotation=Angle, required=True), 'type': FieldInfo(annotation=Literal['arc'], required=False, default='arc')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
-
radius:
LengthUnit[source]
- class kittycad.models.path_segment.OptionArcTo(**data)[source][source]
Adds an arc from the current position that goes through the given interior point and ends at the given end position
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'end': <class 'kittycad.models.point3d.Point3d'>, 'interior': <class 'kittycad.models.point3d.Point3d'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'relative': <class 'bool'>, 'type': typing.Literal['arc_to']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94250662434656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.path_segment.OptionArcTo'>, 'config': {'title': 'OptionArcTo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionArcTo'>>]}, 'ref': 'kittycad.models.path_segment.OptionArcTo:94250679725760', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'end': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94250662434656', 'type': 'definition-ref'}, 'type': 'model-field'}, 'interior': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94250662434656', 'type': 'definition-ref'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'arc_to', 'schema': {'expected': ['arc_to'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionArcTo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'end': FieldInfo(annotation=Point3d, required=True), 'interior': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['arc_to'], required=False, default='arc_to')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b87248eec0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "interior": SerField { key_py: Py( 0x00007fc70b83da70, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "relative": SerField { key_py: Py( 0x00007fc70ee5ecf0, ), alias: None, alias_py: None, serializer: Some( Bool( BoolSerializer, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70b9a13b0, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "arc_to", }, expected_py: None, name: "literal['arc_to']", }, ), }, ), ), required: true, }, "end": SerField { key_py: Py( 0x00007fc71061e648, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 4, }, ), has_extra: false, root_model: false, name: "OptionArcTo", }, ), definitions=[Model(ModelSerializer { class: Py(0x55b871411760), serializer: Fields(GeneralFieldsSerializer { fields: {"x": SerField { key_py: Py(0x7fc710624420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fc710624480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "y": SerField { key_py: Py(0x7fc710624450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionArcTo", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "end", lookup_key: Simple { key: "end", py_key: Py( 0x00007fc70b9a1320, ), path: LookupPath( [ S( "end", Py( 0x00007fc70b9a1350, ), ), ], ), }, name_py: Py( 0x00007fc71061e648, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "interior", lookup_key: Simple { key: "interior", py_key: Py( 0x00007fc70b83dc30, ), path: LookupPath( [ S( "interior", Py( 0x00007fc70b83dbf0, ), ), ], ), }, name_py: Py( 0x00007fc70b83da70, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "relative", lookup_key: Simple { key: "relative", py_key: Py( 0x00007fc70b83dcf0, ), path: LookupPath( [ S( "relative", Py( 0x00007fc70b83dcb0, ), ), ], ), }, name_py: Py( 0x00007fc70ee5ecf0, ), validator: Bool( BoolValidator { strict: false, }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a1380, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a13e0, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70b9a13b0, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "arc_to": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b83dd80, ), ), values: [ Py( 0x00007fc70b9a13b0, ), ], }, expected_repr: "'arc_to'", name: "literal['arc_to']", }, ), validate_default: false, copy_default: false, name: "default[literal['arc_to']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionArcTo", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b87248eec0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionArcTo", }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fc710624420), path: LookupPath([S("x", Py(0x7fc710624420))]) }, name_py: Py(0x7fc710624420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fc710624450), path: LookupPath([S("y", Py(0x7fc710624450))]) }, name_py: Py(0x7fc710624450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fc710624480), path: LookupPath([S("z", Py(0x7fc710624480))]) }, name_py: Py(0x7fc710624480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b871411760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fc70e4ea3d0), name: "Point3d" })], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, end: kittycad.models.point3d.Point3d, interior: kittycad.models.point3d.Point3d, relative: bool, type: Literal['arc_to'] = 'arc_to') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'end': FieldInfo(annotation=Point3d, required=True), 'interior': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['arc_to'], required=False, default='arc_to')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- class kittycad.models.path_segment.OptionBezier(**data)[source][source]
A cubic bezier curve segment. Start at the end of the current line, go through control point 1 and 2, then end at a given point.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'control1': <class 'kittycad.models.point3d.Point3d'>, 'control2': <class 'kittycad.models.point3d.Point3d'>, 'end': <class 'kittycad.models.point3d.Point3d'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'relative': <class 'bool'>, 'type': typing.Literal['bezier']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'definitions': [{'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94250662434656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}], 'schema': {'cls': <class 'kittycad.models.path_segment.OptionBezier'>, 'config': {'title': 'OptionBezier'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionBezier'>>]}, 'ref': 'kittycad.models.path_segment.OptionBezier:94250679979232', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'control1': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94250662434656', 'type': 'definition-ref'}, 'type': 'model-field'}, 'control2': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94250662434656', 'type': 'definition-ref'}, 'type': 'model-field'}, 'end': {'metadata': {}, 'schema': {'schema_ref': 'kittycad.models.point3d.Point3d:94250662434656', 'type': 'definition-ref'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'bezier', 'schema': {'expected': ['bezier'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionBezier', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'definitions'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'control1': FieldInfo(annotation=Point3d, required=True), 'control2': FieldInfo(annotation=Point3d, required=True), 'end': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['bezier'], required=False, default='bezier')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b8724ccce0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "control2": SerField { key_py: Py( 0x00007fc70b9f5a70, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "control1": SerField { key_py: Py( 0x00007fc70b97beb0, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "end": SerField { key_py: Py( 0x00007fc71061e648, ), alias: None, alias_py: None, serializer: Some( Recursive( DefinitionRefSerializer { definition: "...", retry_with_lax_check: true, }, ), ), required: true, }, "relative": SerField { key_py: Py( 0x00007fc70ee5ecf0, ), alias: None, alias_py: None, serializer: Some( Bool( BoolSerializer, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70e4e7780, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "bezier", }, expected_py: None, name: "literal['bezier']", }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 5, }, ), has_extra: false, root_model: false, name: "OptionBezier", }, ), definitions=[Model(ModelSerializer { class: Py(0x55b871411760), serializer: Fields(GeneralFieldsSerializer { fields: {"y": SerField { key_py: Py(0x7fc710624450), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "z": SerField { key_py: Py(0x7fc710624480), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }, "x": SerField { key_py: Py(0x7fc710624420), alias: None, alias_py: None, serializer: Some(Float(FloatSerializer { inf_nan_mode: Null })), required: true }}, computed_fields: Some(ComputedFields([])), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None }, required_fields: 3 }), has_extra: false, root_model: false, name: "Point3d" })])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionBezier", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "control1", lookup_key: Simple { key: "control1", py_key: Py( 0x00007fc70bafe2f0, ), path: LookupPath( [ S( "control1", Py( 0x00007fc70bafd070, ), ), ], ), }, name_py: Py( 0x00007fc70b97beb0, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "control2", lookup_key: Simple { key: "control2", py_key: Py( 0x00007fc70bb15bb0, ), path: LookupPath( [ S( "control2", Py( 0x00007fc70bb15970, ), ), ], ), }, name_py: Py( 0x00007fc70b9f5a70, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "end", lookup_key: Simple { key: "end", py_key: Py( 0x00007fc70b9a0ed0, ), path: LookupPath( [ S( "end", Py( 0x00007fc70b9a0f00, ), ), ], ), }, name_py: Py( 0x00007fc71061e648, ), validator: DefinitionRef( DefinitionRefValidator { definition: "...", }, ), frozen: false, }, Field { name: "relative", lookup_key: Simple { key: "relative", py_key: Py( 0x00007fc70bb15ab0, ), path: LookupPath( [ S( "relative", Py( 0x00007fc70b964ef0, ), ), ], ), }, name_py: Py( 0x00007fc70ee5ecf0, ), validator: Bool( BoolValidator { strict: false, }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a0f30, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a0f60, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70e4e7780, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "bezier": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b964d80, ), ), values: [ Py( 0x00007fc70e4e7780, ), ], }, expected_repr: "'bezier'", name: "literal['bezier']", }, ), validate_default: false, copy_default: false, name: "default[literal['bezier']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionBezier", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8724ccce0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionBezier", }, ), definitions=[Model(ModelValidator { revalidate: Never, validator: ModelFields(ModelFieldsValidator { fields: [Field { name: "x", lookup_key: Simple { key: "x", py_key: Py(0x7fc710624420), path: LookupPath([S("x", Py(0x7fc710624420))]) }, name_py: Py(0x7fc710624420), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py(0x7fc710624450), path: LookupPath([S("y", Py(0x7fc710624450))]) }, name_py: Py(0x7fc710624450), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py(0x7fc710624480), path: LookupPath([S("z", Py(0x7fc710624480))]) }, name_py: Py(0x7fc710624480), validator: Float(FloatValidator { strict: false, allow_inf_nan: true }), frozen: false }], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true }), class: Py(0x55b871411760), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py(0x7fc70e4ea3d0), name: "Point3d" })], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, control1: kittycad.models.point3d.Point3d, control2: kittycad.models.point3d.Point3d, end: kittycad.models.point3d.Point3d, relative: bool, type: Literal['bezier'] = 'bezier') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'control1': FieldInfo(annotation=Point3d, required=True), 'control2': FieldInfo(annotation=Point3d, required=True), 'end': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['bezier'], required=False, default='bezier')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- class kittycad.models.path_segment.OptionLine(**data)[source][source]
A straight line segment. Goes from the current path “pen” to the given endpoint.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'end': <class 'kittycad.models.point3d.Point3d'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'relative': <class 'bool'>, 'type': typing.Literal['line']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.path_segment.OptionLine'>, 'config': {'title': 'OptionLine'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionLine'>>]}, 'ref': 'kittycad.models.path_segment.OptionLine:94250679756512', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'end': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94250662434656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'relative': {'metadata': {}, 'schema': {'type': 'bool'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'line', 'schema': {'expected': ['line'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionLine', 'type': 'model-fields'}, 'type': 'model'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'end': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['line'], required=False, default='line')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b8724966e0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "relative": SerField { key_py: Py( 0x00007fc70ee5ecf0, ), alias: None, alias_py: None, serializer: Some( Bool( BoolSerializer, ), ), required: true, }, "end": SerField { key_py: Py( 0x00007fc71061e648, ), alias: None, alias_py: None, serializer: Some( Model( ModelSerializer { class: Py( 0x000055b871411760, ), serializer: Fields( GeneralFieldsSerializer { fields: { "x": SerField { key_py: Py( 0x00007fc710624420, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "z": SerField { key_py: Py( 0x00007fc710624480, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "y": SerField { key_py: Py( 0x00007fc710624450, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "Point3d", }, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc71061ff18, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "line", }, expected_py: None, name: "literal['line']", }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "OptionLine", }, ), definitions=[])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionLine", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "end", lookup_key: Simple { key: "end", py_key: Py( 0x00007fc70b9a04e0, ), path: LookupPath( [ S( "end", Py( 0x00007fc70b9a0510, ), ), ], ), }, name_py: Py( 0x00007fc71061e648, ), validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "x", lookup_key: Simple { key: "x", py_key: Py( 0x00007fc710624420, ), path: LookupPath( [ S( "x", Py( 0x00007fc710624420, ), ), ], ), }, name_py: Py( 0x00007fc710624420, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py( 0x00007fc710624450, ), path: LookupPath( [ S( "y", Py( 0x00007fc710624450, ), ), ], ), }, name_py: Py( 0x00007fc710624450, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py( 0x00007fc710624480, ), path: LookupPath( [ S( "z", Py( 0x00007fc710624480, ), ), ], ), }, name_py: Py( 0x00007fc710624480, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, ], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871411760, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Point3d", }, ), frozen: false, }, Field { name: "relative", lookup_key: Simple { key: "relative", py_key: Py( 0x00007fc70b9f61f0, ), path: LookupPath( [ S( "relative", Py( 0x00007fc70b9f6230, ), ), ], ), }, name_py: Py( 0x00007fc70ee5ecf0, ), validator: Bool( BoolValidator { strict: false, }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a0540, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a0570, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc71061ff18, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "line": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b9f61c0, ), ), values: [ Py( 0x00007fc71061ff18, ), ], }, expected_repr: "'line'", name: "literal['line']", }, ), validate_default: false, copy_default: false, name: "default[literal['line']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionLine", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8724966e0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionLine", }, ), definitions=[], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, end: kittycad.models.point3d.Point3d, relative: bool, type: Literal['line'] = 'line') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'end': FieldInfo(annotation=Point3d, required=True), 'relative': FieldInfo(annotation=bool, required=True), 'type': FieldInfo(annotation=Literal['line'], required=False, default='line')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- class kittycad.models.path_segment.OptionTangentialArc(**data)[source][source]
Adds a tangent arc from current pen position with the given radius and angle.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'offset': <class 'kittycad.models.angle.Angle'>, 'radius': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': typing.Literal['tangential_arc']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.path_segment.OptionTangentialArc'>, 'config': {'title': 'OptionTangentialArc'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionTangentialArc'>>]}, 'ref': 'kittycad.models.path_segment.OptionTangentialArc:94250679691216', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'offset': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.angle.Angle'>, 'config': {'title': 'Angle'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.angle.Angle'>>]}, 'ref': 'kittycad.models.angle.Angle:94250672058048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitAngle'>, 'members': [UnitAngle.DEGREES, UnitAngle.RADIANS], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_angle.UnitAngle:94250676395408', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'value': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Angle', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'radius': {'metadata': {}, 'schema': {'function': {'function': <class 'kittycad.models.length_unit.LengthUnit'>, 'type': 'no-info'}, 'schema': {'type': 'float'}, 'type': 'function-after'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'tangential_arc', 'schema': {'expected': ['tangential_arc'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionTangentialArc', 'type': 'model-fields'}, 'type': 'model'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'offset': FieldInfo(annotation=Angle, required=True), 'radius': FieldInfo(annotation=LengthUnit, required=True), 'type': FieldInfo(annotation=Literal['tangential_arc'], required=False, default='tangential_arc')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b8724867d0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "offset": SerField { key_py: Py( 0x00007fc710620aa0, ), alias: None, alias_py: None, serializer: Some( Model( ModelSerializer { class: Py( 0x000055b871d3eec0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "unit": SerField { key_py: Py( 0x00007fc70ed61a10, ), alias: None, alias_py: None, serializer: Some( Enum( EnumSerializer { class: Py( 0x000055b872161d90, ), serializer: Some( Str( StrSerializer, ), ), }, ), ), required: true, }, "value": SerField { key_py: Py( 0x00007fc710622a48, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 2, }, ), has_extra: false, root_model: false, name: "Angle", }, ), ), required: true, }, "radius": SerField { key_py: Py( 0x00007fc70b9f1260, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70b9f5c30, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "tangential_arc", }, expected_py: None, name: "literal['tangential_arc']", }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "OptionTangentialArc", }, ), definitions=[])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionTangentialArc", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "offset", lookup_key: Simple { key: "offset", py_key: Py( 0x00007fc70bafbea0, ), path: LookupPath( [ S( "offset", Py( 0x00007fc70b9a11d0, ), ), ], ), }, name_py: Py( 0x00007fc710620aa0, ), validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "unit", lookup_key: Simple { key: "unit", py_key: Py( 0x00007fc70bafbed0, ), path: LookupPath( [ S( "unit", Py( 0x00007fc70bafbf00, ), ), ], ), }, name_py: Py( 0x00007fc70ed61a10, ), validator: StrEnum( EnumValidator { phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>, class: Py( 0x000055b872161d90, ), lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "degrees": 0, "radians": 1, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b9f4840, ), ), values: [ Py( 0x00007fc70bd734d0, ), Py( 0x00007fc70bd73530, ), ], }, missing: None, expected_repr: "'degrees' or 'radians'", strict: false, class_repr: "UnitAngle", name: "str-enum[UnitAngle]", }, ), frozen: false, }, Field { name: "value", lookup_key: Simple { key: "value", py_key: Py( 0x00007fc70bafbde0, ), path: LookupPath( [ S( "value", Py( 0x00007fc70bafbe70, ), ), ], ), }, name_py: Py( 0x00007fc710622a48, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, ], model_name: "Angle", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871d3eec0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Angle", }, ), frozen: false, }, Field { name: "radius", lookup_key: Simple { key: "radius", py_key: Py( 0x00007fc70b9a0e40, ), path: LookupPath( [ S( "radius", Py( 0x00007fc70b9a0e70, ), ), ], ), }, name_py: Py( 0x00007fc70b9f1260, ), validator: FunctionAfter( FunctionAfterValidator { validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), func: Py( 0x000055b87230c5c0, ), config: Py( 0x00007fc70b9f5940, ), name: "function-after[LengthUnit(), float]", field_name: None, info_arg: false, }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a0e10, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a0de0, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70b9f5c30, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "tangential_arc": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b9f4b80, ), ), values: [ Py( 0x00007fc70b9f5c30, ), ], }, expected_repr: "'tangential_arc'", name: "literal['tangential_arc']", }, ), validate_default: false, copy_default: false, name: "default[literal['tangential_arc']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionTangentialArc", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8724867d0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionTangentialArc", }, ), definitions=[], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, offset: kittycad.models.angle.Angle, radius: kittycad.models.length_unit.LengthUnit, type: Literal['tangential_arc'] = 'tangential_arc') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'offset': FieldInfo(annotation=Angle, required=True), 'radius': FieldInfo(annotation=LengthUnit, required=True), 'type': FieldInfo(annotation=Literal['tangential_arc'], required=False, default='tangential_arc')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
-
radius:
LengthUnit[source]
- class kittycad.models.path_segment.OptionTangentialArcTo(**data)[source][source]
Adds a tangent arc from current pen position to the new position. Arcs will choose a clockwise or counter-clockwise direction based on the arc end position.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'angle_snap_increment': typing.Optional[kittycad.models.angle.Angle], 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'to': <class 'kittycad.models.point3d.Point3d'>, 'type': typing.Literal['tangential_arc_to']}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.path_segment.OptionTangentialArcTo'>, 'config': {'title': 'OptionTangentialArcTo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.path_segment.OptionTangentialArcTo'>>]}, 'ref': 'kittycad.models.path_segment.OptionTangentialArcTo:94250679705472', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'angle_snap_increment': {'metadata': {}, 'schema': {'default': None, 'schema': {'schema': {'cls': <class 'kittycad.models.angle.Angle'>, 'config': {'title': 'Angle'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.angle.Angle'>>]}, 'ref': 'kittycad.models.angle.Angle:94250672058048', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'unit': {'metadata': {}, 'schema': {'cls': <enum 'UnitAngle'>, 'members': [UnitAngle.DEGREES, UnitAngle.RADIANS], 'metadata': {'pydantic_js_functions': [<function GenerateSchema._enum_schema.<locals>.get_json_schema>]}, 'ref': 'kittycad.models.unit_angle.UnitAngle:94250676395408', 'sub_type': 'str', 'type': 'enum'}, 'type': 'model-field'}, 'value': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Angle', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'nullable'}, 'type': 'default'}, 'type': 'model-field'}, 'to': {'metadata': {}, 'schema': {'cls': <class 'kittycad.models.point3d.Point3d'>, 'config': {'title': 'Point3d'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.point3d.Point3d'>>]}, 'ref': 'kittycad.models.point3d.Point3d:94250662434656', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'x': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'y': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}, 'z': {'metadata': {}, 'schema': {'type': 'float'}, 'type': 'model-field'}}, 'model_name': 'Point3d', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'model-field'}, 'type': {'metadata': {}, 'schema': {'default': 'tangential_arc_to', 'schema': {'expected': ['tangential_arc_to'], 'type': 'literal'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'OptionTangentialArcTo', 'type': 'model-fields'}, 'type': 'model'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'angle_snap_increment': FieldInfo(annotation=Union[Angle, NoneType], required=False, default=None), 'to': FieldInfo(annotation=Point3d, required=True), 'type': FieldInfo(annotation=Literal['tangential_arc_to'], required=False, default='tangential_arc_to')}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b872489f80, ), serializer: Fields( GeneralFieldsSerializer { fields: { "to": SerField { key_py: Py( 0x00007fc70f78b1e0, ), alias: None, alias_py: None, serializer: Some( Model( ModelSerializer { class: Py( 0x000055b871411760, ), serializer: Fields( GeneralFieldsSerializer { fields: { "x": SerField { key_py: Py( 0x00007fc710624420, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "y": SerField { key_py: Py( 0x00007fc710624450, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "z": SerField { key_py: Py( 0x00007fc710624480, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "Point3d", }, ), ), required: true, }, "type": SerField { key_py: Py( 0x00007fc710622880, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70b83d930, ), ), serializer: Literal( LiteralSerializer { expected_int: {}, expected_str: { "tangential_arc_to", }, expected_py: None, name: "literal['tangential_arc_to']", }, ), }, ), ), required: true, }, "angle_snap_increment": SerField { key_py: Py( 0x00007fc70b9f5d70, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc71052d100, ), ), serializer: Nullable( NullableSerializer { serializer: Model( ModelSerializer { class: Py( 0x000055b871d3eec0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "value": SerField { key_py: Py( 0x00007fc710622a48, ), alias: None, alias_py: None, serializer: Some( Float( FloatSerializer { inf_nan_mode: Null, }, ), ), required: true, }, "unit": SerField { key_py: Py( 0x00007fc70ed61a10, ), alias: None, alias_py: None, serializer: Some( Enum( EnumSerializer { class: Py( 0x000055b872161d90, ), serializer: Some( Str( StrSerializer, ), ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 2, }, ), has_extra: false, root_model: false, name: "Angle", }, ), }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "OptionTangentialArcTo", }, ), definitions=[])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="OptionTangentialArcTo", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "angle_snap_increment", lookup_key: Simple { key: "angle_snap_increment", py_key: Py( 0x00007fc70b83cd30, ), path: LookupPath( [ S( "angle_snap_increment", Py( 0x00007fc70b83cd70, ), ), ], ), }, name_py: Py( 0x00007fc70b9f5d70, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc71052d100, ), ), on_error: Raise, validator: Nullable( NullableValidator { validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "unit", lookup_key: Simple { key: "unit", py_key: Py( 0x00007fc70b9a06c0, ), path: LookupPath( [ S( "unit", Py( 0x00007fc70b9a0690, ), ), ], ), }, name_py: Py( 0x00007fc70ed61a10, ), validator: StrEnum( EnumValidator { phantom: PhantomData<_pydantic_core::validators::enum_::StrEnumValidator>, class: Py( 0x000055b872161d90, ), lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "degrees": 0, "radians": 1, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b83ce00, ), ), values: [ Py( 0x00007fc70bd734d0, ), Py( 0x00007fc70bd73530, ), ], }, missing: None, expected_repr: "'degrees' or 'radians'", strict: false, class_repr: "UnitAngle", name: "str-enum[UnitAngle]", }, ), frozen: false, }, Field { name: "value", lookup_key: Simple { key: "value", py_key: Py( 0x00007fc70b9a0420, ), path: LookupPath( [ S( "value", Py( 0x00007fc70b9a0450, ), ), ], ), }, name_py: Py( 0x00007fc710622a48, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, ], model_name: "Angle", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871d3eec0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Angle", }, ), name: "nullable[Angle]", }, ), validate_default: false, copy_default: false, name: "default[nullable[Angle]]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "to", lookup_key: Simple { key: "to", py_key: Py( 0x00007fc70b9a03f0, ), path: LookupPath( [ S( "to", Py( 0x00007fc70b9a03c0, ), ), ], ), }, name_py: Py( 0x00007fc70f78b1e0, ), validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "x", lookup_key: Simple { key: "x", py_key: Py( 0x00007fc710624420, ), path: LookupPath( [ S( "x", Py( 0x00007fc710624420, ), ), ], ), }, name_py: Py( 0x00007fc710624420, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, Field { name: "y", lookup_key: Simple { key: "y", py_key: Py( 0x00007fc710624450, ), path: LookupPath( [ S( "y", Py( 0x00007fc710624450, ), ), ], ), }, name_py: Py( 0x00007fc710624450, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, Field { name: "z", lookup_key: Simple { key: "z", py_key: Py( 0x00007fc710624480, ), path: LookupPath( [ S( "z", Py( 0x00007fc710624480, ), ), ], ), }, name_py: Py( 0x00007fc710624480, ), validator: Float( FloatValidator { strict: false, allow_inf_nan: true, }, ), frozen: false, }, ], model_name: "Point3d", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871411760, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Point3d", }, ), frozen: false, }, Field { name: "type", lookup_key: Simple { key: "type", py_key: Py( 0x00007fc70b9a0390, ), path: LookupPath( [ S( "type", Py( 0x00007fc70b9a0480, ), ), ], ), }, name_py: Py( 0x00007fc710622880, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70b83d930, ), ), on_error: Raise, validator: Literal( LiteralValidator { lookup: LiteralLookup { expected_bool: None, expected_int: None, expected_str: Some( { "tangential_arc_to": 0, }, ), expected_py_dict: None, expected_py_values: None, expected_py_primitives: Some( Py( 0x00007fc70b83cd00, ), ), values: [ Py( 0x00007fc70b83d930, ), ], }, expected_repr: "'tangential_arc_to'", name: "literal['tangential_arc_to']", }, ), validate_default: false, copy_default: false, name: "default[literal['tangential_arc_to']]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "OptionTangentialArcTo", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b872489f80, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "OptionTangentialArcTo", }, ), definitions=[], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, angle_snap_increment: Optional[kittycad.models.angle.Angle] = None, to: kittycad.models.point3d.Point3d, type: Literal['tangential_arc_to'] = 'tangential_arc_to') -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'angle_snap_increment': FieldInfo(annotation=Union[Angle, NoneType], required=False, default=None), 'to': FieldInfo(annotation=Point3d, required=True), 'type': FieldInfo(annotation=Literal['tangential_arc_to'], required=False, default='tangential_arc_to')}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self