from typing import Any, Dict, List, Type, TypeVar, Union import attr from pydantic import BaseModel, GetCoreSchemaHandler from pydantic_core import CoreSchema, core_schema from ..models.ice_server import IceServer from ..models.ok_modeling_cmd_response import OkModelingCmdResponse from ..models.raw_file import RawFile from ..models.rtc_ice_candidate_init import RtcIceCandidateInit from ..models.rtc_session_description import RtcSessionDescription class IceServerInfoData(BaseModel): """""" ice_servers: List[IceServer] class ice_server_info(BaseModel): """Information about the ICE servers.""" data: IceServerInfoData type: str = "ice_server_info" class TrickleIceData(BaseModel): """""" candidate: RtcIceCandidateInit class trickle_ice(BaseModel): """The trickle ICE candidate response.""" data: TrickleIceData type: str = "trickle_ice" class SdpAnswerData(BaseModel): """""" answer: RtcSessionDescription class sdp_answer(BaseModel): """The SDP answer response.""" data: SdpAnswerData type: str = "sdp_answer" class ModelingData(BaseModel): """""" modeling_response: OkModelingCmdResponse class modeling(BaseModel): """The modeling command response.""" data: ModelingData type: str = "modeling" class ExportData(BaseModel): """""" files: List[RawFile] class export(BaseModel): """The exported files.""" data: ExportData type: str = "export" class MetricsRequestData(BaseModel): """""" class metrics_request(BaseModel): """Request a collection of metrics, to include WebRTC.""" data: MetricsRequestData type: str = "metrics_request" GY = TypeVar("GY", bound="OkWebSocketResponseData") @attr.s(auto_attribs=True) class OkWebSocketResponseData: """The websocket messages this server sends.""" type: Union[ ice_server_info, trickle_ice, sdp_answer, modeling, export, metrics_request, ] def __init__( self, type: Union[ ice_server_info, trickle_ice, sdp_answer, modeling, export, metrics_request, ], ): self.type = type def model_dump(self) -> Dict[str, Any]: if isinstance(self.type, ice_server_info): VY: ice_server_info = self.type return VY.model_dump() elif isinstance(self.type, trickle_ice): MC: trickle_ice = self.type return MC.model_dump() elif isinstance(self.type, sdp_answer): BR: sdp_answer = self.type return BR.model_dump() elif isinstance(self.type, modeling): OK: modeling = self.type return OK.model_dump() elif isinstance(self.type, export): OP: export = self.type return OP.model_dump() elif isinstance(self.type, metrics_request): LV: metrics_request = self.type return LV.model_dump() raise Exception("Unknown type") @classmethod def from_dict(cls: Type[GY], d: Dict[str, Any]) -> GY: if d.get("type") == "ice_server_info": DW: ice_server_info = ice_server_info(**d) return cls(type=DW) elif d.get("type") == "trickle_ice": AV: trickle_ice = trickle_ice(**d) return cls(type=AV) elif d.get("type") == "sdp_answer": WM: sdp_answer = sdp_answer(**d) return cls(type=WM) elif d.get("type") == "modeling": MU: modeling = modeling(**d) return cls(type=MU) elif d.get("type") == "export": WW: export = export(**d) return cls(type=WW) elif d.get("type") == "metrics_request": II: metrics_request = metrics_request(**d) return cls(type=II) raise Exception("Unknown type") @classmethod def __get_pydantic_core_schema__( cls, source_type: Any, handler: GetCoreSchemaHandler ) -> CoreSchema: return core_schema.no_info_after_validator_function( cls, handler( Union[ ice_server_info, trickle_ice, sdp_answer, modeling, export, metrics_request, ] ), )