Files
modeling-app/src/wasm-lib/kcl/src/execution/geometry.rs

1052 lines
31 KiB
Rust
Raw Normal View History

use anyhow::Result;
use indexmap::IndexMap;
use kittycad_modeling_cmds as kcmc;
use kittycad_modeling_cmds::length_unit::LengthUnit;
use parse_display::{Display, FromStr};
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use super::ArtifactId;
use crate::{
errors::KclError,
execution::{ExecState, Metadata, TagEngineInfo, TagIdentifier, UnitLen},
parsing::ast::types::{Node, NodeRef, TagDeclarator, TagNode},
};
type Point2D = kcmc::shared::Point2d<f64>;
type Point3D = kcmc::shared::Point3d<f64>;
/// A geometry.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
pub enum Geometry {
Sketch(Box<Sketch>),
Solid(Box<Solid>),
}
impl Geometry {
pub fn id(&self) -> uuid::Uuid {
match self {
Geometry::Sketch(s) => s.id,
Geometry::Solid(e) => e.id,
}
}
}
/// A set of geometry.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
#[allow(clippy::vec_box)]
pub enum Geometries {
Sketches(Vec<Box<Sketch>>),
Solids(Vec<Box<Solid>>),
}
impl From<Geometry> for Geometries {
fn from(value: Geometry) -> Self {
match value {
Geometry::Sketch(x) => Self::Sketches(vec![x]),
Geometry::Solid(x) => Self::Solids(vec![x]),
}
}
}
/// A sketch or a group of sketches.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
#[allow(clippy::vec_box)]
pub enum SketchSet {
Sketch(Box<Sketch>),
Sketches(Vec<Box<Sketch>>),
}
impl SketchSet {
pub fn meta(&self) -> Vec<Metadata> {
match self {
SketchSet::Sketch(sg) => sg.meta.clone(),
SketchSet::Sketches(sg) => sg.iter().flat_map(|sg| sg.meta.clone()).collect(),
}
}
}
impl From<SketchSet> for Vec<Sketch> {
fn from(value: SketchSet) -> Self {
match value {
SketchSet::Sketch(sg) => vec![*sg],
SketchSet::Sketches(sgs) => sgs.into_iter().map(|sg| *sg).collect(),
}
}
}
impl From<Sketch> for SketchSet {
fn from(sg: Sketch) -> Self {
SketchSet::Sketch(Box::new(sg))
}
}
impl From<Box<Sketch>> for SketchSet {
fn from(sg: Box<Sketch>) -> Self {
SketchSet::Sketch(sg)
}
}
impl From<Vec<Sketch>> for SketchSet {
fn from(sg: Vec<Sketch>) -> Self {
if sg.len() == 1 {
SketchSet::Sketch(Box::new(sg[0].clone()))
} else {
SketchSet::Sketches(sg.into_iter().map(Box::new).collect())
}
}
}
impl From<Vec<Box<Sketch>>> for SketchSet {
fn from(sg: Vec<Box<Sketch>>) -> Self {
if sg.len() == 1 {
SketchSet::Sketch(sg[0].clone())
} else {
SketchSet::Sketches(sg)
}
}
}
impl From<SketchSet> for Vec<Box<Sketch>> {
fn from(sg: SketchSet) -> Self {
match sg {
SketchSet::Sketch(sg) => vec![sg],
SketchSet::Sketches(sgs) => sgs,
}
}
}
impl From<&Sketch> for Vec<Box<Sketch>> {
fn from(sg: &Sketch) -> Self {
vec![Box::new(sg.clone())]
}
}
impl From<Box<Sketch>> for Vec<Box<Sketch>> {
fn from(sg: Box<Sketch>) -> Self {
vec![sg]
}
}
/// A solid or a group of solids.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
#[allow(clippy::vec_box)]
pub enum SolidSet {
Solid(Box<Solid>),
Solids(Vec<Box<Solid>>),
}
impl From<Solid> for SolidSet {
fn from(eg: Solid) -> Self {
SolidSet::Solid(Box::new(eg))
}
}
impl From<Box<Solid>> for SolidSet {
fn from(eg: Box<Solid>) -> Self {
SolidSet::Solid(eg)
}
}
impl From<Vec<Solid>> for SolidSet {
fn from(eg: Vec<Solid>) -> Self {
if eg.len() == 1 {
SolidSet::Solid(Box::new(eg[0].clone()))
} else {
SolidSet::Solids(eg.into_iter().map(Box::new).collect())
}
}
}
impl From<Vec<Box<Solid>>> for SolidSet {
fn from(eg: Vec<Box<Solid>>) -> Self {
if eg.len() == 1 {
SolidSet::Solid(eg[0].clone())
} else {
SolidSet::Solids(eg)
}
}
}
impl From<SolidSet> for Vec<Box<Solid>> {
fn from(eg: SolidSet) -> Self {
match eg {
SolidSet::Solid(eg) => vec![eg],
SolidSet::Solids(egs) => egs,
}
}
}
impl From<&Solid> for Vec<Box<Solid>> {
fn from(eg: &Solid) -> Self {
vec![Box::new(eg.clone())]
}
}
impl From<Box<Solid>> for Vec<Box<Solid>> {
fn from(eg: Box<Solid>) -> Self {
vec![eg]
}
}
/// Data for an imported geometry.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct ImportedGeometry {
/// The ID of the imported geometry.
pub id: uuid::Uuid,
/// The original file paths.
pub value: Vec<String>,
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
/// A helix.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct Helix {
/// The id of the helix.
pub value: uuid::Uuid,
/// The artifact ID.
pub artifact_id: ArtifactId,
/// Number of revolutions.
pub revolutions: f64,
/// Start angle (in degrees).
pub angle_start: f64,
/// Is the helix rotation counter clockwise?
pub ccw: bool,
pub units: UnitLen,
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
/// A plane.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct Plane {
/// The id of the plane.
pub id: uuid::Uuid,
/// The artifact ID.
pub artifact_id: ArtifactId,
// The code for the plane either a string or custom.
pub value: PlaneType,
/// Origin of the plane.
pub origin: Point3d,
/// What should the planes X axis be?
pub x_axis: Point3d,
/// What should the planes Y axis be?
pub y_axis: Point3d,
/// The z-axis (normal).
pub z_axis: Point3d,
pub units: UnitLen,
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
impl Plane {
pub(crate) fn from_plane_data(value: crate::std::sketch::PlaneData, exec_state: &mut ExecState) -> Self {
let id = exec_state.global.id_generator.next_uuid();
match value {
crate::std::sketch::PlaneData::XY => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(1.0, 0.0, 0.0),
y_axis: Point3d::new(0.0, 1.0, 0.0),
z_axis: Point3d::new(0.0, 0.0, 1.0),
value: PlaneType::XY,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::NegXY => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(1.0, 0.0, 0.0),
y_axis: Point3d::new(0.0, 1.0, 0.0),
z_axis: Point3d::new(0.0, 0.0, -1.0),
value: PlaneType::XY,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::XZ => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(1.0, 0.0, 0.0),
y_axis: Point3d::new(0.0, 0.0, 1.0),
z_axis: Point3d::new(0.0, -1.0, 0.0),
value: PlaneType::XZ,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::NegXZ => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(-1.0, 0.0, 0.0),
y_axis: Point3d::new(0.0, 0.0, 1.0),
z_axis: Point3d::new(0.0, 1.0, 0.0),
value: PlaneType::XZ,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::YZ => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(0.0, 1.0, 0.0),
y_axis: Point3d::new(0.0, 0.0, 1.0),
z_axis: Point3d::new(1.0, 0.0, 0.0),
value: PlaneType::YZ,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::NegYZ => Plane {
id,
artifact_id: id.into(),
origin: Point3d::new(0.0, 0.0, 0.0),
x_axis: Point3d::new(0.0, 1.0, 0.0),
y_axis: Point3d::new(0.0, 0.0, 1.0),
z_axis: Point3d::new(-1.0, 0.0, 0.0),
value: PlaneType::YZ,
units: exec_state.length_unit(),
meta: vec![],
},
crate::std::sketch::PlaneData::Plane {
origin,
x_axis,
y_axis,
z_axis,
} => Plane {
id,
artifact_id: id.into(),
origin: *origin,
x_axis: *x_axis,
y_axis: *y_axis,
z_axis: *z_axis,
value: PlaneType::Custom,
units: exec_state.length_unit(),
meta: vec![],
},
}
}
/// The standard planes are XY, YZ and XZ (in both positive and negative)
pub fn is_standard(&self) -> bool {
!self.is_custom()
}
/// The standard planes are XY, YZ and XZ (in both positive and negative)
/// Custom planes are any other plane that the user might specify.
pub fn is_custom(&self) -> bool {
matches!(self.value, PlaneType::Custom)
}
}
/// A face.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct Face {
/// The id of the face.
pub id: uuid::Uuid,
/// The artifact ID.
pub artifact_id: ArtifactId,
/// The tag of the face.
pub value: String,
/// What should the faces X axis be?
pub x_axis: Point3d,
/// What should the faces Y axis be?
pub y_axis: Point3d,
/// The z-axis (normal).
pub z_axis: Point3d,
/// The solid the face is on.
pub solid: Box<Solid>,
pub units: UnitLen,
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
/// Type for a plane.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema, FromStr, Display)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
#[display(style = "camelCase")]
pub enum PlaneType {
#[serde(rename = "XY", alias = "xy")]
#[display("XY")]
XY,
#[serde(rename = "XZ", alias = "xz")]
#[display("XZ")]
XZ,
#[serde(rename = "YZ", alias = "yz")]
#[display("YZ")]
YZ,
/// A custom plane.
#[serde(rename = "Custom")]
#[display("Custom")]
Custom,
}
/// A sketch is a collection of paths.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
pub struct Sketch {
/// The id of the sketch (this will change when the engine's reference to it changes).
pub id: uuid::Uuid,
/// The paths in the sketch.
pub paths: Vec<Path>,
/// What the sketch is on (can be a plane or a face).
pub on: SketchSurface,
/// The starting path.
pub start: BasePath,
/// Tag identifiers that have been declared in this sketch.
#[serde(default, skip_serializing_if = "IndexMap::is_empty")]
pub tags: IndexMap<String, TagIdentifier>,
/// The original id of the sketch. This stays the same even if the sketch is
/// is sketched on face etc.
pub artifact_id: ArtifactId,
pub units: UnitLen,
/// Metadata.
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
/// A sketch type.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
pub enum SketchSurface {
Plane(Box<Plane>),
Face(Box<Face>),
}
impl SketchSurface {
pub(crate) fn id(&self) -> uuid::Uuid {
match self {
SketchSurface::Plane(plane) => plane.id,
SketchSurface::Face(face) => face.id,
}
}
pub(crate) fn x_axis(&self) -> Point3d {
match self {
SketchSurface::Plane(plane) => plane.x_axis,
SketchSurface::Face(face) => face.x_axis,
}
}
pub(crate) fn y_axis(&self) -> Point3d {
match self {
SketchSurface::Plane(plane) => plane.y_axis,
SketchSurface::Face(face) => face.y_axis,
}
}
pub(crate) fn z_axis(&self) -> Point3d {
match self {
SketchSurface::Plane(plane) => plane.z_axis,
SketchSurface::Face(face) => face.z_axis,
}
}
}
#[derive(Debug, Clone)]
pub(crate) enum GetTangentialInfoFromPathsResult {
PreviousPoint([f64; 2]),
Arc { center: [f64; 2], ccw: bool },
Circle { center: [f64; 2], ccw: bool, radius: f64 },
}
impl GetTangentialInfoFromPathsResult {
pub(crate) fn tan_previous_point(&self, last_arc_end: crate::std::utils::Coords2d) -> [f64; 2] {
match self {
GetTangentialInfoFromPathsResult::PreviousPoint(p) => *p,
GetTangentialInfoFromPathsResult::Arc { center, ccw, .. } => {
crate::std::utils::get_tangent_point_from_previous_arc(*center, *ccw, last_arc_end)
}
// The circle always starts at 0 degrees, so a suitable tangent
// point is either directly above or below.
GetTangentialInfoFromPathsResult::Circle {
center, radius, ccw, ..
} => [center[0] + radius, center[1] + if *ccw { -1.0 } else { 1.0 }],
}
}
}
impl Sketch {
pub(crate) fn add_tag(&mut self, tag: NodeRef<'_, TagDeclarator>, current_path: &Path) {
let mut tag_identifier: TagIdentifier = tag.into();
let base = current_path.get_base();
tag_identifier.info = Some(TagEngineInfo {
id: base.geo_meta.id,
sketch: self.id,
path: Some(current_path.clone()),
surface: None,
});
self.tags.insert(tag.name.to_string(), tag_identifier);
}
/// Get the path most recently sketched.
pub(crate) fn latest_path(&self) -> Option<&Path> {
self.paths.last()
}
/// The "pen" is an imaginary pen drawing the path.
/// This gets the current point the pen is hovering over, i.e. the point
/// where the last path segment ends, and the next path segment will begin.
pub(crate) fn current_pen_position(&self) -> Result<Point2d, KclError> {
let Some(path) = self.latest_path() else {
return Ok(self.start.to.into());
};
let base = path.get_base();
Ok(base.to.into())
}
pub(crate) fn get_tangential_info_from_paths(&self) -> GetTangentialInfoFromPathsResult {
let Some(path) = self.latest_path() else {
return GetTangentialInfoFromPathsResult::PreviousPoint(self.start.to);
};
path.get_tangential_info()
}
}
/// An solid is a collection of extrude surfaces.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
pub struct Solid {
/// The id of the solid.
pub id: uuid::Uuid,
/// The artifact ID of the solid. Unlike `id`, this doesn't change.
pub artifact_id: ArtifactId,
/// The extrude surfaces.
pub value: Vec<ExtrudeSurface>,
/// The sketch.
pub sketch: Sketch,
/// The height of the solid.
pub height: f64,
/// The id of the extrusion start cap
pub start_cap_id: Option<uuid::Uuid>,
/// The id of the extrusion end cap
pub end_cap_id: Option<uuid::Uuid>,
/// Chamfers or fillets on this solid.
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_cuts: Vec<EdgeCut>,
pub units: UnitLen,
/// Metadata.
#[serde(rename = "__meta")]
pub meta: Vec<Metadata>,
}
impl Solid {
pub(crate) fn get_all_edge_cut_ids(&self) -> Vec<uuid::Uuid> {
self.edge_cuts.iter().map(|foc| foc.id()).collect()
}
}
/// An solid ID and its fillet and chamfer IDs. This is needed for lazy
/// fillet evaluation.
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
pub struct SolidLazyIds {
pub solid_id: uuid::Uuid,
pub sketch_id: uuid::Uuid,
/// Chamfers or fillets on this solid.
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_cuts: Vec<uuid::Uuid>,
}
impl From<&Solid> for SolidLazyIds {
fn from(eg: &Solid) -> Self {
Self {
solid_id: eg.id,
sketch_id: eg.sketch.id,
edge_cuts: eg.edge_cuts.iter().map(|foc| foc.id()).collect(),
}
}
}
/// A fillet or a chamfer.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
pub enum EdgeCut {
/// A fillet.
Fillet {
/// The id of the engine command that called this fillet.
id: uuid::Uuid,
radius: f64,
/// The engine id of the edge to fillet.
#[serde(rename = "edgeId")]
edge_id: uuid::Uuid,
tag: Box<Option<TagNode>>,
},
/// A chamfer.
Chamfer {
/// The id of the engine command that called this chamfer.
id: uuid::Uuid,
length: f64,
/// The engine id of the edge to chamfer.
#[serde(rename = "edgeId")]
edge_id: uuid::Uuid,
tag: Box<Option<TagNode>>,
},
}
impl EdgeCut {
pub fn id(&self) -> uuid::Uuid {
match self {
EdgeCut::Fillet { id, .. } => *id,
EdgeCut::Chamfer { id, .. } => *id,
}
}
pub fn edge_id(&self) -> uuid::Uuid {
match self {
EdgeCut::Fillet { edge_id, .. } => *edge_id,
EdgeCut::Chamfer { edge_id, .. } => *edge_id,
}
}
pub fn tag(&self) -> Option<TagNode> {
match self {
EdgeCut::Fillet { tag, .. } => *tag.clone(),
EdgeCut::Chamfer { tag, .. } => *tag.clone(),
}
}
}
#[derive(Debug, Deserialize, Serialize, PartialEq, Clone, Copy, ts_rs::TS, JsonSchema)]
#[ts(export)]
pub struct Point2d {
pub x: f64,
pub y: f64,
}
impl From<[f64; 2]> for Point2d {
fn from(p: [f64; 2]) -> Self {
Self { x: p[0], y: p[1] }
}
}
impl From<&[f64; 2]> for Point2d {
fn from(p: &[f64; 2]) -> Self {
Self { x: p[0], y: p[1] }
}
}
impl From<Point2d> for [f64; 2] {
fn from(p: Point2d) -> Self {
[p.x, p.y]
}
}
impl From<Point2d> for Point2D {
fn from(p: Point2d) -> Self {
Self { x: p.x, y: p.y }
}
}
impl Point2d {
pub const ZERO: Self = Self { x: 0.0, y: 0.0 };
pub fn scale(self, scalar: f64) -> Self {
Self {
x: self.x * scalar,
y: self.y * scalar,
}
}
}
#[derive(Debug, Deserialize, Serialize, PartialEq, Clone, Copy, ts_rs::TS, JsonSchema, Default)]
#[ts(export)]
pub struct Point3d {
pub x: f64,
pub y: f64,
pub z: f64,
}
impl Point3d {
pub const ZERO: Self = Self { x: 0.0, y: 0.0, z: 0.0 };
pub fn new(x: f64, y: f64, z: f64) -> Self {
Self { x, y, z }
}
}
impl From<Point3d> for Point3D {
fn from(p: Point3d) -> Self {
Self { x: p.x, y: p.y, z: p.z }
}
}
impl From<Point3d> for kittycad_modeling_cmds::shared::Point3d<LengthUnit> {
fn from(p: Point3d) -> Self {
Self {
x: LengthUnit(p.x),
y: LengthUnit(p.y),
z: LengthUnit(p.z),
}
}
}
/// A base path.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct BasePath {
/// The from point.
#[ts(type = "[number, number]")]
pub from: [f64; 2],
/// The to point.
#[ts(type = "[number, number]")]
pub to: [f64; 2],
/// The tag of the path.
pub tag: Option<TagNode>,
/// Metadata.
#[serde(rename = "__geoMeta")]
pub geo_meta: GeoMeta,
}
/// Geometry metadata.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct GeoMeta {
/// The id of the geometry.
pub id: uuid::Uuid,
/// Metadata.
#[serde(flatten)]
pub metadata: Metadata,
}
/// A path.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
pub enum Path {
/// A path that goes to a point.
ToPoint {
#[serde(flatten)]
base: BasePath,
},
/// A arc that is tangential to the last path segment that goes to a point
TangentialArcTo {
#[serde(flatten)]
base: BasePath,
/// the arc's center
#[ts(type = "[number, number]")]
center: [f64; 2],
/// arc's direction
ccw: bool,
},
/// A arc that is tangential to the last path segment
TangentialArc {
#[serde(flatten)]
base: BasePath,
/// the arc's center
#[ts(type = "[number, number]")]
center: [f64; 2],
/// arc's direction
ccw: bool,
},
// TODO: consolidate segment enums, remove Circle. https://github.com/KittyCAD/modeling-app/issues/3940
/// a complete arc
Circle {
#[serde(flatten)]
base: BasePath,
/// the arc's center
#[ts(type = "[number, number]")]
center: [f64; 2],
/// the arc's radius
radius: f64,
/// arc's direction
/// This is used to compute the tangential angle.
ccw: bool,
},
/// A path that is horizontal.
Horizontal {
#[serde(flatten)]
base: BasePath,
/// The x coordinate.
x: f64,
},
/// An angled line to.
AngledLineTo {
#[serde(flatten)]
base: BasePath,
/// The x coordinate.
x: Option<f64>,
/// The y coordinate.
y: Option<f64>,
},
/// A base path.
Base {
#[serde(flatten)]
base: BasePath,
},
/// A circular arc, not necessarily tangential to the current point.
Arc {
#[serde(flatten)]
base: BasePath,
/// Center of the circle that this arc is drawn on.
center: [f64; 2],
/// Radius of the circle that this arc is drawn on.
radius: f64,
/// True if the arc is counterclockwise.
ccw: bool,
},
}
/// What kind of path is this?
#[derive(Display)]
enum PathType {
ToPoint,
Base,
TangentialArc,
TangentialArcTo,
Circle,
Horizontal,
AngledLineTo,
Arc,
}
impl From<&Path> for PathType {
fn from(value: &Path) -> Self {
match value {
Path::ToPoint { .. } => Self::ToPoint,
Path::TangentialArcTo { .. } => Self::TangentialArcTo,
Path::TangentialArc { .. } => Self::TangentialArc,
Path::Circle { .. } => Self::Circle,
Path::Horizontal { .. } => Self::Horizontal,
Path::AngledLineTo { .. } => Self::AngledLineTo,
Path::Base { .. } => Self::Base,
Path::Arc { .. } => Self::Arc,
}
}
}
impl Path {
pub fn get_id(&self) -> uuid::Uuid {
match self {
Path::ToPoint { base } => base.geo_meta.id,
Path::Horizontal { base, .. } => base.geo_meta.id,
Path::AngledLineTo { base, .. } => base.geo_meta.id,
Path::Base { base } => base.geo_meta.id,
Path::TangentialArcTo { base, .. } => base.geo_meta.id,
Path::TangentialArc { base, .. } => base.geo_meta.id,
Path::Circle { base, .. } => base.geo_meta.id,
Path::Arc { base, .. } => base.geo_meta.id,
}
}
pub fn get_tag(&self) -> Option<TagNode> {
match self {
Path::ToPoint { base } => base.tag.clone(),
Path::Horizontal { base, .. } => base.tag.clone(),
Path::AngledLineTo { base, .. } => base.tag.clone(),
Path::Base { base } => base.tag.clone(),
Path::TangentialArcTo { base, .. } => base.tag.clone(),
Path::TangentialArc { base, .. } => base.tag.clone(),
Path::Circle { base, .. } => base.tag.clone(),
Path::Arc { base, .. } => base.tag.clone(),
}
}
pub fn get_base(&self) -> &BasePath {
match self {
Path::ToPoint { base } => base,
Path::Horizontal { base, .. } => base,
Path::AngledLineTo { base, .. } => base,
Path::Base { base } => base,
Path::TangentialArcTo { base, .. } => base,
Path::TangentialArc { base, .. } => base,
Path::Circle { base, .. } => base,
Path::Arc { base, .. } => base,
}
}
/// Where does this path segment start?
pub fn get_from(&self) -> &[f64; 2] {
&self.get_base().from
}
/// Where does this path segment end?
pub fn get_to(&self) -> &[f64; 2] {
&self.get_base().to
}
/// Length of this path segment, in cartesian plane.
pub fn length(&self) -> f64 {
match self {
Self::ToPoint { .. } | Self::Base { .. } | Self::Horizontal { .. } | Self::AngledLineTo { .. } => {
linear_distance(self.get_from(), self.get_to())
}
Self::TangentialArc {
base: _,
center,
ccw: _,
}
| Self::TangentialArcTo {
base: _,
center,
ccw: _,
} => {
// The radius can be calculated as the linear distance between `to` and `center`,
// or between `from` and `center`. They should be the same.
let radius = linear_distance(self.get_from(), center);
debug_assert_eq!(radius, linear_distance(self.get_to(), center));
// TODO: Call engine utils to figure this out.
linear_distance(self.get_from(), self.get_to())
}
Self::Circle { radius, .. } => 2.0 * std::f64::consts::PI * radius,
Self::Arc { .. } => {
// TODO: Call engine utils to figure this out.
linear_distance(self.get_from(), self.get_to())
}
}
}
pub fn get_base_mut(&mut self) -> Option<&mut BasePath> {
match self {
Path::ToPoint { base } => Some(base),
Path::Horizontal { base, .. } => Some(base),
Path::AngledLineTo { base, .. } => Some(base),
Path::Base { base } => Some(base),
Path::TangentialArcTo { base, .. } => Some(base),
Path::TangentialArc { base, .. } => Some(base),
Path::Circle { base, .. } => Some(base),
Path::Arc { base, .. } => Some(base),
}
}
pub(crate) fn get_tangential_info(&self) -> GetTangentialInfoFromPathsResult {
match self {
Path::TangentialArc { center, ccw, .. }
| Path::TangentialArcTo { center, ccw, .. }
| Path::Arc { center, ccw, .. } => GetTangentialInfoFromPathsResult::Arc {
center: *center,
ccw: *ccw,
},
Path::Circle {
center, ccw, radius, ..
} => GetTangentialInfoFromPathsResult::Circle {
center: *center,
ccw: *ccw,
radius: *radius,
},
Path::ToPoint { .. } | Path::Horizontal { .. } | Path::AngledLineTo { .. } | Path::Base { .. } => {
let base = self.get_base();
GetTangentialInfoFromPathsResult::PreviousPoint(base.from)
}
}
}
}
/// Compute the straight-line distance between a pair of (2D) points.
#[rustfmt::skip]
fn linear_distance(
[x0, y0]: &[f64; 2],
[x1, y1]: &[f64; 2]
) -> f64 {
let y_sq = (y1 - y0).powi(2);
let x_sq = (x1 - x0).powi(2);
(y_sq + x_sq).sqrt()
}
/// An extrude surface.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type", rename_all = "camelCase")]
pub enum ExtrudeSurface {
/// An extrude plane.
ExtrudePlane(ExtrudePlane),
ExtrudeArc(ExtrudeArc),
Chamfer(ChamferSurface),
Fillet(FilletSurface),
}
// Chamfer surface.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct ChamferSurface {
/// The id for the chamfer surface.
pub face_id: uuid::Uuid,
/// The tag.
pub tag: Option<Node<TagDeclarator>>,
/// Metadata.
#[serde(flatten)]
pub geo_meta: GeoMeta,
}
// Fillet surface.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct FilletSurface {
/// The id for the fillet surface.
pub face_id: uuid::Uuid,
/// The tag.
pub tag: Option<Node<TagDeclarator>>,
/// Metadata.
#[serde(flatten)]
pub geo_meta: GeoMeta,
}
/// An extruded plane.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct ExtrudePlane {
/// The face id for the extrude plane.
pub face_id: uuid::Uuid,
/// The tag.
pub tag: Option<Node<TagDeclarator>>,
/// Metadata.
#[serde(flatten)]
pub geo_meta: GeoMeta,
}
/// An extruded arc.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct ExtrudeArc {
/// The face id for the extrude plane.
pub face_id: uuid::Uuid,
/// The tag.
pub tag: Option<Node<TagDeclarator>>,
/// Metadata.
#[serde(flatten)]
pub geo_meta: GeoMeta,
}
impl ExtrudeSurface {
pub fn get_id(&self) -> uuid::Uuid {
match self {
ExtrudeSurface::ExtrudePlane(ep) => ep.geo_meta.id,
ExtrudeSurface::ExtrudeArc(ea) => ea.geo_meta.id,
ExtrudeSurface::Fillet(f) => f.geo_meta.id,
ExtrudeSurface::Chamfer(c) => c.geo_meta.id,
}
}
pub fn get_tag(&self) -> Option<Node<TagDeclarator>> {
match self {
ExtrudeSurface::ExtrudePlane(ep) => ep.tag.clone(),
ExtrudeSurface::ExtrudeArc(ea) => ea.tag.clone(),
ExtrudeSurface::Fillet(f) => f.tag.clone(),
ExtrudeSurface::Chamfer(c) => c.tag.clone(),
}
}
}