516 lines
8.6 KiB
Markdown
516 lines
8.6 KiB
Markdown
![]() |
```mermaid
|
||
|
flowchart LR
|
||
|
subgraph path3 [Path]
|
||
|
3["Path<br>[541, 569, 0]"]
|
||
|
12["Segment<br>[575, 626, 0]"]
|
||
|
13["Segment<br>[632, 680, 0]"]
|
||
|
14["Segment<br>[686, 737, 0]"]
|
||
|
15["Segment<br>[743, 791, 0]"]
|
||
|
16["Segment<br>[797, 848, 0]"]
|
||
|
17["Segment<br>[854, 902, 0]"]
|
||
|
18["Segment<br>[908, 959, 0]"]
|
||
|
19["Segment<br>[965, 1007, 0]"]
|
||
|
20["Segment<br>[1013, 1071, 0]"]
|
||
|
21["Segment<br>[1077, 1132, 0]"]
|
||
|
22["Segment<br>[1138, 1196, 0]"]
|
||
|
23["Segment<br>[1202, 1257, 0]"]
|
||
|
24["Segment<br>[1263, 1306, 0]"]
|
||
|
25["Segment<br>[1312, 1368, 0]"]
|
||
|
26["Segment<br>[1374, 1429, 0]"]
|
||
|
27["Segment<br>[1435, 1491, 0]"]
|
||
|
28["Segment<br>[1497, 1504, 0]"]
|
||
|
45[Solid2d]
|
||
|
end
|
||
|
subgraph path4 [Path]
|
||
|
4["Path<br>[1668, 1730, 0]"]
|
||
|
29["Segment<br>[1668, 1730, 0]"]
|
||
|
44[Solid2d]
|
||
|
end
|
||
|
subgraph path5 [Path]
|
||
|
5["Path<br>[1768, 1829, 0]"]
|
||
|
30["Segment<br>[1768, 1829, 0]"]
|
||
|
40[Solid2d]
|
||
|
end
|
||
|
subgraph path6 [Path]
|
||
|
6["Path<br>[1867, 1929, 0]"]
|
||
|
31["Segment<br>[1867, 1929, 0]"]
|
||
|
41[Solid2d]
|
||
|
end
|
||
|
subgraph path7 [Path]
|
||
|
7["Path<br>[1967, 2026, 0]"]
|
||
|
32["Segment<br>[1967, 2026, 0]"]
|
||
|
42[Solid2d]
|
||
|
end
|
||
|
subgraph path8 [Path]
|
||
|
8["Path<br>[2064, 2124, 0]"]
|
||
|
33["Segment<br>[2064, 2124, 0]"]
|
||
|
37[Solid2d]
|
||
|
end
|
||
|
subgraph path9 [Path]
|
||
|
9["Path<br>[2162, 2222, 0]"]
|
||
|
34["Segment<br>[2162, 2222, 0]"]
|
||
|
38[Solid2d]
|
||
|
end
|
||
|
subgraph path10 [Path]
|
||
|
10["Path<br>[2260, 2322, 0]"]
|
||
|
35["Segment<br>[2260, 2322, 0]"]
|
||
|
39[Solid2d]
|
||
|
end
|
||
|
subgraph path11 [Path]
|
||
|
11["Path<br>[2360, 2421, 0]"]
|
||
|
36["Segment<br>[2360, 2421, 0]"]
|
||
|
43[Solid2d]
|
||
|
end
|
||
|
1["Plane<br>[518, 535, 0]"]
|
||
|
2["Plane<br>[1641, 1658, 0]"]
|
||
|
46["Sweep Revolve<br>[1510, 1557, 0]"]
|
||
|
47["Sweep Extrusion<br>[1736, 1758, 0]"]
|
||
|
48["Sweep Extrusion<br>[1835, 1857, 0]"]
|
||
|
49["Sweep Extrusion<br>[1935, 1957, 0]"]
|
||
|
50["Sweep Extrusion<br>[2032, 2054, 0]"]
|
||
|
51["Sweep Extrusion<br>[2130, 2152, 0]"]
|
||
|
52["Sweep Extrusion<br>[2228, 2250, 0]"]
|
||
|
53["Sweep Extrusion<br>[2328, 2350, 0]"]
|
||
|
54["Sweep Extrusion<br>[2427, 2449, 0]"]
|
||
|
55["CompositeSolid Subtract<br>[2517, 2574, 0]"]
|
||
|
56["CompositeSolid Union<br>[2550, 2573, 0]"]
|
||
|
57["CompositeSolid Union<br>[2680, 2703, 0]"]
|
||
|
58["CompositeSolid Union<br>[2615, 2638, 0]"]
|
||
|
59["CompositeSolid Subtract<br>[2651, 2704, 0]"]
|
||
|
60["CompositeSolid Subtract<br>[2716, 2769, 0]"]
|
||
|
61["CompositeSolid Union<br>[2745, 2768, 0]"]
|
||
|
62["CompositeSolid Subtract<br>[2586, 2639, 0]"]
|
||
|
63[Wall]
|
||
|
64[Wall]
|
||
|
65[Wall]
|
||
|
66[Wall]
|
||
|
67[Wall]
|
||
|
68[Wall]
|
||
|
69[Wall]
|
||
|
70[Wall]
|
||
|
71[Wall]
|
||
|
72[Wall]
|
||
|
73[Wall]
|
||
|
74[Wall]
|
||
|
75[Wall]
|
||
|
76[Wall]
|
||
|
77[Wall]
|
||
|
78[Wall]
|
||
|
79[Wall]
|
||
|
80[Wall]
|
||
|
81[Wall]
|
||
|
82[Wall]
|
||
|
83[Wall]
|
||
|
84[Wall]
|
||
|
85[Wall]
|
||
|
86[Wall]
|
||
|
87["Cap Start"]
|
||
|
88["Cap Start"]
|
||
|
89["Cap Start"]
|
||
|
90["Cap Start"]
|
||
|
91["Cap Start"]
|
||
|
92["Cap Start"]
|
||
|
93["Cap Start"]
|
||
|
94["Cap Start"]
|
||
|
95["Cap Start"]
|
||
|
96["Cap End"]
|
||
|
97["Cap End"]
|
||
|
98["Cap End"]
|
||
|
99["Cap End"]
|
||
|
100["Cap End"]
|
||
|
101["Cap End"]
|
||
|
102["Cap End"]
|
||
|
103["Cap End"]
|
||
|
104["Cap End"]
|
||
|
105["SweepEdge Opposite"]
|
||
|
106["SweepEdge Opposite"]
|
||
|
107["SweepEdge Opposite"]
|
||
|
108["SweepEdge Opposite"]
|
||
|
109["SweepEdge Opposite"]
|
||
|
110["SweepEdge Opposite"]
|
||
|
111["SweepEdge Opposite"]
|
||
|
112["SweepEdge Opposite"]
|
||
|
113["SweepEdge Opposite"]
|
||
|
114["SweepEdge Opposite"]
|
||
|
115["SweepEdge Opposite"]
|
||
|
116["SweepEdge Opposite"]
|
||
|
117["SweepEdge Opposite"]
|
||
|
118["SweepEdge Opposite"]
|
||
|
119["SweepEdge Opposite"]
|
||
|
120["SweepEdge Opposite"]
|
||
|
121["SweepEdge Opposite"]
|
||
|
122["SweepEdge Opposite"]
|
||
|
123["SweepEdge Opposite"]
|
||
|
124["SweepEdge Opposite"]
|
||
|
125["SweepEdge Opposite"]
|
||
|
126["SweepEdge Opposite"]
|
||
|
127["SweepEdge Opposite"]
|
||
|
128["SweepEdge Opposite"]
|
||
|
129["SweepEdge Adjacent"]
|
||
|
130["SweepEdge Adjacent"]
|
||
|
131["SweepEdge Adjacent"]
|
||
|
132["SweepEdge Adjacent"]
|
||
|
133["SweepEdge Adjacent"]
|
||
|
134["SweepEdge Adjacent"]
|
||
|
135["SweepEdge Adjacent"]
|
||
|
136["SweepEdge Adjacent"]
|
||
|
137["SweepEdge Adjacent"]
|
||
|
138["SweepEdge Adjacent"]
|
||
|
139["SweepEdge Adjacent"]
|
||
|
140["SweepEdge Adjacent"]
|
||
|
141["SweepEdge Adjacent"]
|
||
|
142["SweepEdge Adjacent"]
|
||
|
143["SweepEdge Adjacent"]
|
||
|
144["SweepEdge Adjacent"]
|
||
|
145["SweepEdge Adjacent"]
|
||
|
146["SweepEdge Adjacent"]
|
||
|
147["SweepEdge Adjacent"]
|
||
|
148["SweepEdge Adjacent"]
|
||
|
149["SweepEdge Adjacent"]
|
||
|
150["SweepEdge Adjacent"]
|
||
|
151["SweepEdge Adjacent"]
|
||
|
152["SweepEdge Adjacent"]
|
||
|
1 --- 3
|
||
|
2 --- 4
|
||
|
2 --- 5
|
||
|
2 --- 6
|
||
|
2 --- 7
|
||
|
2 --- 8
|
||
|
2 --- 9
|
||
|
2 --- 10
|
||
|
2 --- 11
|
||
|
3 --- 12
|
||
|
3 --- 13
|
||
|
3 --- 14
|
||
|
3 --- 15
|
||
|
3 --- 16
|
||
|
3 --- 17
|
||
|
3 --- 18
|
||
|
3 --- 19
|
||
|
3 --- 20
|
||
|
3 --- 21
|
||
|
3 --- 22
|
||
|
3 --- 23
|
||
|
3 --- 24
|
||
|
3 --- 25
|
||
|
3 --- 26
|
||
|
3 --- 27
|
||
|
3 --- 28
|
||
|
3 --- 45
|
||
|
3 ---- 46
|
||
|
3 --- 55
|
||
|
4 --- 29
|
||
|
4 --- 44
|
||
|
4 ---- 47
|
||
|
4 --- 56
|
||
|
5 --- 30
|
||
|
5 --- 40
|
||
|
5 ---- 48
|
||
|
5 --- 56
|
||
|
6 --- 31
|
||
|
6 --- 41
|
||
|
6 ---- 49
|
||
|
6 --- 58
|
||
|
7 --- 32
|
||
|
7 --- 42
|
||
|
7 ---- 50
|
||
|
7 --- 58
|
||
|
8 --- 33
|
||
|
8 --- 37
|
||
|
8 ---- 51
|
||
|
8 --- 57
|
||
|
9 --- 34
|
||
|
9 --- 38
|
||
|
9 ---- 52
|
||
|
9 --- 57
|
||
|
10 --- 35
|
||
|
10 --- 39
|
||
|
10 ---- 53
|
||
|
10 --- 61
|
||
|
11 --- 36
|
||
|
11 --- 43
|
||
|
11 ---- 54
|
||
|
11 --- 61
|
||
|
12 --- 81
|
||
|
12 x--> 97
|
||
|
12 --- 121
|
||
|
12 --- 144
|
||
|
13 --- 76
|
||
|
13 x--> 97
|
||
|
13 --- 115
|
||
|
13 --- 135
|
||
|
14 --- 75
|
||
|
14 x--> 97
|
||
|
14 --- 116
|
||
|
14 --- 142
|
||
|
15 --- 77
|
||
|
15 x--> 97
|
||
|
15 --- 123
|
||
|
15 --- 145
|
||
|
16 --- 73
|
||
|
16 x--> 97
|
||
|
16 --- 126
|
||
|
16 --- 138
|
||
|
17 --- 72
|
||
|
17 x--> 97
|
||
|
17 --- 125
|
||
|
17 --- 147
|
||
|
18 --- 80
|
||
|
18 x--> 97
|
||
|
18 --- 114
|
||
|
18 --- 143
|
||
|
19 --- 83
|
||
|
19 x--> 97
|
||
|
19 --- 119
|
||
|
19 --- 141
|
||
|
20 --- 82
|
||
|
20 x--> 97
|
||
|
20 --- 124
|
||
|
20 --- 146
|
||
|
21 --- 70
|
||
|
21 x--> 97
|
||
|
21 --- 118
|
||
|
21 --- 139
|
||
|
22 --- 71
|
||
|
22 x--> 97
|
||
|
22 --- 120
|
||
|
22 --- 148
|
||
|
23 --- 84
|
||
|
23 x--> 97
|
||
|
23 --- 111
|
||
|
23 --- 140
|
||
|
24 --- 78
|
||
|
24 x--> 97
|
||
|
24 --- 113
|
||
|
24 --- 137
|
||
|
25 --- 74
|
||
|
25 x--> 97
|
||
|
25 --- 117
|
||
|
25 --- 150
|
||
|
26 --- 69
|
||
|
26 x--> 97
|
||
|
26 --- 112
|
||
|
26 --- 136
|
||
|
27 --- 79
|
||
|
27 x--> 97
|
||
|
27 --- 122
|
||
|
27 --- 149
|
||
|
29 --- 68
|
||
|
29 x--> 103
|
||
|
29 --- 110
|
||
|
29 --- 134
|
||
|
30 --- 63
|
||
|
30 x--> 102
|
||
|
30 --- 105
|
||
|
30 --- 129
|
||
|
31 --- 85
|
||
|
31 x--> 101
|
||
|
31 --- 127
|
||
|
31 --- 151
|
||
|
32 --- 65
|
||
|
32 x--> 100
|
||
|
32 --- 107
|
||
|
32 --- 131
|
||
|
33 --- 67
|
||
|
33 x--> 98
|
||
|
33 --- 109
|
||
|
33 --- 133
|
||
|
34 --- 86
|
||
|
34 x--> 104
|
||
|
34 --- 128
|
||
|
34 --- 152
|
||
|
35 --- 64
|
||
|
35 x--> 99
|
||
|
35 --- 106
|
||
|
35 --- 130
|
||
|
36 --- 66
|
||
|
36 x--> 96
|
||
|
36 --- 108
|
||
|
36 --- 132
|
||
|
46 --- 69
|
||
|
46 --- 70
|
||
|
46 --- 71
|
||
|
46 --- 72
|
||
|
46 --- 73
|
||
|
46 --- 74
|
||
|
46 --- 75
|
||
|
46 --- 76
|
||
|
46 --- 77
|
||
|
46 --- 78
|
||
|
46 --- 79
|
||
|
46 --- 80
|
||
|
46 --- 81
|
||
|
46 --- 82
|
||
|
46 --- 83
|
||
|
46 --- 84
|
||
|
46 --- 88
|
||
|
46 --- 97
|
||
|
46 --- 111
|
||
|
46 --- 112
|
||
|
46 --- 113
|
||
|
46 --- 114
|
||
|
46 --- 115
|
||
|
46 --- 116
|
||
|
46 --- 117
|
||
|
46 --- 118
|
||
|
46 --- 119
|
||
|
46 --- 120
|
||
|
46 --- 121
|
||
|
46 --- 122
|
||
|
46 --- 123
|
||
|
46 --- 124
|
||
|
46 --- 125
|
||
|
46 --- 126
|
||
|
46 --- 135
|
||
|
46 --- 136
|
||
|
46 --- 137
|
||
|
46 --- 138
|
||
|
46 --- 139
|
||
|
46 --- 140
|
||
|
46 --- 141
|
||
|
46 --- 142
|
||
|
46 --- 143
|
||
|
46 --- 144
|
||
|
46 --- 145
|
||
|
46 --- 146
|
||
|
46 --- 147
|
||
|
46 --- 148
|
||
|
46 --- 149
|
||
|
46 --- 150
|
||
|
47 --- 68
|
||
|
47 --- 94
|
||
|
47 --- 103
|
||
|
47 --- 110
|
||
|
47 --- 134
|
||
|
48 --- 63
|
||
|
48 --- 93
|
||
|
48 --- 102
|
||
|
48 --- 105
|
||
|
48 --- 129
|
||
|
49 --- 85
|
||
|
49 --- 92
|
||
|
49 --- 101
|
||
|
49 --- 127
|
||
|
49 --- 151
|
||
|
50 --- 65
|
||
|
50 --- 91
|
||
|
50 --- 100
|
||
|
50 --- 107
|
||
|
50 --- 131
|
||
|
51 --- 67
|
||
|
51 --- 89
|
||
|
51 --- 98
|
||
|
51 --- 109
|
||
|
51 --- 133
|
||
|
52 --- 86
|
||
|
52 --- 95
|
||
|
52 --- 104
|
||
|
52 --- 128
|
||
|
52 --- 152
|
||
|
53 --- 64
|
||
|
53 --- 90
|
||
|
53 --- 99
|
||
|
53 --- 106
|
||
|
53 --- 130
|
||
|
54 --- 66
|
||
|
54 --- 87
|
||
|
54 --- 96
|
||
|
54 --- 108
|
||
|
54 --- 132
|
||
|
56 --- 55
|
||
|
55 --- 62
|
||
|
57 --- 59
|
||
|
58 --- 62
|
||
|
59 --- 60
|
||
|
62 --- 59
|
||
|
61 --- 60
|
||
|
105 <--x 63
|
||
|
129 <--x 63
|
||
|
106 <--x 64
|
||
|
130 <--x 64
|
||
|
107 <--x 65
|
||
|
131 <--x 65
|
||
|
108 <--x 66
|
||
|
132 <--x 66
|
||
|
109 <--x 67
|
||
|
133 <--x 67
|
||
|
110 <--x 68
|
||
|
134 <--x 68
|
||
|
112 <--x 69
|
||
|
136 <--x 69
|
||
|
150 <--x 69
|
||
|
118 <--x 70
|
||
|
139 <--x 70
|
||
|
146 <--x 70
|
||
|
120 <--x 71
|
||
|
139 <--x 71
|
||
|
148 <--x 71
|
||
|
125 <--x 72
|
||
|
138 <--x 72
|
||
|
147 <--x 72
|
||
|
126 <--x 73
|
||
|
138 <--x 73
|
||
|
145 <--x 73
|
||
|
117 <--x 74
|
||
|
137 <--x 74
|
||
|
150 <--x 74
|
||
|
116 <--x 75
|
||
|
135 <--x 75
|
||
|
142 <--x 75
|
||
|
115 <--x 76
|
||
|
135 <--x 76
|
||
|
144 <--x 76
|
||
|
123 <--x 77
|
||
|
142 <--x 77
|
||
|
145 <--x 77
|
||
|
113 <--x 78
|
||
|
137 <--x 78
|
||
|
140 <--x 78
|
||
|
122 <--x 79
|
||
|
136 <--x 79
|
||
|
149 <--x 79
|
||
|
114 <--x 80
|
||
|
143 <--x 80
|
||
|
147 <--x 80
|
||
|
121 <--x 81
|
||
|
144 <--x 81
|
||
|
149 <--x 81
|
||
|
124 <--x 82
|
||
|
141 <--x 82
|
||
|
146 <--x 82
|
||
|
119 <--x 83
|
||
|
141 <--x 83
|
||
|
143 <--x 83
|
||
|
111 <--x 84
|
||
|
140 <--x 84
|
||
|
148 <--x 84
|
||
|
127 <--x 85
|
||
|
151 <--x 85
|
||
|
128 <--x 86
|
||
|
152 <--x 86
|
||
|
108 <--x 87
|
||
|
111 <--x 88
|
||
|
112 <--x 88
|
||
|
113 <--x 88
|
||
|
114 <--x 88
|
||
|
115 <--x 88
|
||
|
116 <--x 88
|
||
|
117 <--x 88
|
||
|
118 <--x 88
|
||
|
119 <--x 88
|
||
|
120 <--x 88
|
||
|
121 <--x 88
|
||
|
122 <--x 88
|
||
|
123 <--x 88
|
||
|
124 <--x 88
|
||
|
125 <--x 88
|
||
|
126 <--x 88
|
||
|
109 <--x 89
|
||
|
106 <--x 90
|
||
|
107 <--x 91
|
||
|
127 <--x 92
|
||
|
105 <--x 93
|
||
|
110 <--x 94
|
||
|
128 <--x 95
|
||
|
```
|