Files
modeling-app/src/clientSideScene/CameraControls.ts

899 lines
28 KiB
TypeScript
Raw Normal View History

import { MouseGuard } from 'lib/cameraControls'
import {
Euler,
MathUtils,
Matrix4,
OrthographicCamera,
PerspectiveCamera,
Quaternion,
Spherical,
Vector2,
Vector3,
} from 'three'
import {
DEBUG_SHOW_INTERSECTION_PLANE,
INTERSECTION_PLANE_LAYER,
SKETCH_LAYER,
ZOOM_MAGIC_NUMBER,
} from './sceneInfra'
import { EngineCommand, engineCommandManager } from 'lang/std/engineConnection'
import { v4 as uuidv4 } from 'uuid'
import { deg2Rad } from 'lib/utils2d'
import { isReducedMotion, roundOff, throttle } from 'lib/utils'
import * as TWEEN from '@tweenjs/tween.js'
import { isQuaternionVertical } from './helpers'
const ORTHOGRAPHIC_CAMERA_SIZE = 20
const FRAMES_TO_ANIMATE_IN = 30
const tempQuaternion = new Quaternion() // just used for maths
interface ThreeCamValues {
position: Vector3
quaternion: Quaternion
zoom: number
isPerspective: boolean
target: Vector3
}
export type ReactCameraProperties =
| {
type: 'perspective'
fov?: number
position: [number, number, number]
quaternion: [number, number, number, number]
}
| {
type: 'orthographic'
zoom?: number
position: [number, number, number]
quaternion: [number, number, number, number]
}
const lastCmdDelay = 50
const throttledUpdateEngineCamera = throttle((threeValues: ThreeCamValues) => {
const cmd: EngineCommand = {
type: 'modeling_cmd_req',
cmd_id: uuidv4(),
cmd: {
type: 'default_camera_look_at',
...convertThreeCamValuesToEngineCam(threeValues),
},
}
engineCommandManager.sendSceneCommand(cmd)
}, 1000 / 15)
let lastPerspectiveCmd: EngineCommand | null = null
let lastPerspectiveCmdTime: number = Date.now()
let lastPerspectiveCmdTimeoutId: number | null = null
const sendLastPerspectiveReliableChannel = () => {
if (
lastPerspectiveCmd &&
Date.now() - lastPerspectiveCmdTime >= lastCmdDelay
) {
engineCommandManager.sendSceneCommand(lastPerspectiveCmd, true)
lastPerspectiveCmdTime = Date.now()
}
}
const throttledUpdateEngineFov = throttle(
(vals: {
position: Vector3
quaternion: Quaternion
zoom: number
fov: number
target: Vector3
}) => {
const cmd: EngineCommand = {
type: 'modeling_cmd_req',
cmd_id: uuidv4(),
cmd: {
type: 'default_camera_perspective_settings',
...convertThreeCamValuesToEngineCam({
...vals,
isPerspective: true,
}),
fov_y: vals.fov,
...calculateNearFarFromFOV(vals.fov),
},
}
engineCommandManager.sendSceneCommand(cmd)
lastPerspectiveCmd = cmd
lastPerspectiveCmdTime = Date.now()
if (lastPerspectiveCmdTimeoutId !== null) {
clearTimeout(lastPerspectiveCmdTimeoutId)
}
lastPerspectiveCmdTimeoutId = setTimeout(
sendLastPerspectiveReliableChannel,
lastCmdDelay
) as any as number
},
1000 / 15
)
export class CameraControls {
camera: PerspectiveCamera | OrthographicCamera
target: Vector3
domElement: HTMLCanvasElement
isDragging: boolean
mouseDownPosition: Vector2
mouseNewPosition: Vector2
rotationSpeed = 0.3
enableRotate = true
enablePan = true
enableZoom = true
lastPerspectiveFov: number = 45
pendingZoom: number | null = null
pendingRotation: Vector2 | null = null
pendingPan: Vector2 | null = null
interactionGuards: MouseGuard = {
pan: {
description: 'Right click + Shift + drag or middle click + drag',
callback: (e) => !!(e.buttons & 4) && !e.ctrlKey,
},
zoom: {
description: 'Scroll wheel or Right click + Ctrl + drag',
dragCallback: (e) => e.button === 2 && e.ctrlKey,
scrollCallback: () => true,
},
rotate: {
description: 'Right click + drag',
callback: (e) => {
console.log('event', e)
return !!(e.buttons & 2)
},
},
}
isFovAnimationInProgress = false
fovBeforeOrtho = 45
get isPerspective() {
return this.camera instanceof PerspectiveCamera
}
private debounceTimer = 0
handleStart = () => {
if (this.debounceTimer) clearTimeout(this.debounceTimer)
this._isCamMovingCallback(true, false)
}
handleEnd = () => {
this.debounceTimer = setTimeout(() => {
this._isCamMovingCallback(false, false)
}, 400) as any as number
}
// reacts hooks into some of this singleton's properties
reactCameraProperties: ReactCameraProperties = {
type: 'perspective',
fov: 12,
position: [0, 0, 0],
quaternion: [0, 0, 0, 1],
}
setCam = (camProps: ReactCameraProperties) => {
if (
camProps.type === 'perspective' &&
this.camera instanceof OrthographicCamera
) {
this.usePerspectiveCamera()
} else if (
camProps.type === 'orthographic' &&
this.camera instanceof PerspectiveCamera
) {
this.useOrthographicCamera()
}
this.camera.position.set(...camProps.position)
this.camera.quaternion.set(...camProps.quaternion)
if (
camProps.type === 'perspective' &&
this.camera instanceof PerspectiveCamera
) {
// not sure what to do here, calling dollyZoom here is buggy because it updates the position
// at the same time
} else if (
camProps.type === 'orthographic' &&
this.camera instanceof OrthographicCamera
) {
this.camera.zoom = camProps.zoom || 1
}
this.camera.updateProjectionMatrix()
this.update(true)
}
constructor(isOrtho = false, domElement: HTMLCanvasElement) {
this.camera = isOrtho ? new OrthographicCamera() : new PerspectiveCamera()
this.camera.up.set(0, 0, 1)
this.camera.far = 20000
this.target = new Vector3()
this.domElement = domElement
this.isDragging = false
this.mouseDownPosition = new Vector2()
this.mouseNewPosition = new Vector2()
this.domElement.addEventListener('pointerdown', this.onMouseDown)
this.domElement.addEventListener('pointermove', this.onMouseMove)
this.domElement.addEventListener('pointerup', this.onMouseUp)
this.domElement.addEventListener('wheel', this.onMouseWheel)
window.addEventListener('resize', this.onWindowResize)
this.onWindowResize()
this.update()
this._usePerspectiveCamera()
}
private _isCamMovingCallback: (isMoving: boolean, isTween: boolean) => void =
() => {}
setIsCamMovingCallback(cb: (isMoving: boolean, isTween: boolean) => void) {
this._isCamMovingCallback = cb
}
private _camChangeCallbacks: { [key: string]: () => void } = {}
subscribeToCamChange(cb: () => void) {
const cbId = uuidv4()
this._camChangeCallbacks[cbId] = cb
const unsubscribe = () => {
delete this._camChangeCallbacks[cbId]
}
return unsubscribe
}
onWindowResize = () => {
if (this.camera instanceof PerspectiveCamera) {
this.camera.aspect = window.innerWidth / window.innerHeight
} else if (this.camera instanceof OrthographicCamera) {
const aspect = window.innerWidth / window.innerHeight
this.camera.left = -ORTHOGRAPHIC_CAMERA_SIZE * aspect
this.camera.right = ORTHOGRAPHIC_CAMERA_SIZE * aspect
this.camera.top = ORTHOGRAPHIC_CAMERA_SIZE
this.camera.bottom = -ORTHOGRAPHIC_CAMERA_SIZE
}
this.camera.updateProjectionMatrix()
}
onMouseDown = (event: MouseEvent) => {
this.isDragging = true
this.mouseDownPosition.set(event.clientX, event.clientY)
this.handleStart()
}
onMouseMove = (event: MouseEvent) => {
if (this.isDragging) {
this.mouseNewPosition.set(event.clientX, event.clientY)
const deltaMove = this.mouseNewPosition
.clone()
.sub(this.mouseDownPosition)
this.mouseDownPosition.copy(this.mouseNewPosition)
let state: 'pan' | 'rotate' | 'zoom' = 'pan'
if (this.interactionGuards.pan.callback(event as any)) {
if (this.enablePan === false) return
// handleMouseDownPan(event)
state = 'pan'
} else if (this.interactionGuards.rotate.callback(event as any)) {
if (this.enableRotate === false) return
// handleMouseDownRotate(event)
state = 'rotate'
} else if (this.interactionGuards.zoom.dragCallback(event as any)) {
if (this.enableZoom === false) return
// handleMouseDownDolly(event)
state = 'zoom'
} else {
return
}
// Implement camera movement logic here based on deltaMove
// For example, for rotating the camera around the target:
if (state === 'rotate') {
this.pendingRotation = this.pendingRotation
? this.pendingRotation
: new Vector2()
this.pendingRotation.x += deltaMove.x
this.pendingRotation.y += deltaMove.y
} else if (state === 'zoom') {
this.pendingZoom = this.pendingZoom ? this.pendingZoom : 1
this.pendingZoom *= 1 + deltaMove.y * 0.01
} else if (state === 'pan') {
this.pendingPan = this.pendingPan ? this.pendingPan : new Vector2()
let distance = this.camera.position.distanceTo(this.target)
if (this.camera instanceof OrthographicCamera) {
const zoomFudgeFactor = 2280
distance = zoomFudgeFactor / (this.camera.zoom * 45)
}
const panSpeed = (distance / 1000 / 45) * this.fovBeforeOrtho
this.pendingPan.x += -deltaMove.x * panSpeed
this.pendingPan.y += deltaMove.y * panSpeed
}
}
}
onMouseUp = (event: MouseEvent) => {
this.isDragging = false
this.handleEnd()
}
onMouseWheel = (event: WheelEvent) => {
// Assume trackpad if the deltas are small and integers
this.handleStart()
const isTrackpad = Math.abs(event.deltaY) <= 1 || event.deltaY % 1 === 0
const zoomSpeed = isTrackpad ? 0.02 : 0.1 // Reduced zoom speed for trackpad
this.pendingZoom = this.pendingZoom ? this.pendingZoom : 1
this.pendingZoom *= 1 + (event.deltaY > 0 ? zoomSpeed : -zoomSpeed)
this.handleEnd()
}
useOrthographicCamera = () => {
if (this.camera instanceof OrthographicCamera) return
const { x: px, y: py, z: pz } = this.camera.position
const { x: qx, y: qy, z: qz, w: qw } = this.camera.quaternion
const aspect = window.innerWidth / window.innerHeight
this.lastPerspectiveFov = this.camera.fov
const { z_near, z_far } = calculateNearFarFromFOV(this.lastPerspectiveFov)
this.camera = new OrthographicCamera(
-ORTHOGRAPHIC_CAMERA_SIZE * aspect,
ORTHOGRAPHIC_CAMERA_SIZE * aspect,
ORTHOGRAPHIC_CAMERA_SIZE,
-ORTHOGRAPHIC_CAMERA_SIZE,
z_near,
z_far
)
this.camera.up.set(0, 0, 1)
this.camera.layers.enable(SKETCH_LAYER)
if (DEBUG_SHOW_INTERSECTION_PLANE)
this.camera.layers.enable(INTERSECTION_PLANE_LAYER)
this.camera.position.set(px, py, pz)
const distance = this.camera.position.distanceTo(this.target.clone())
const fovFactor = 45 / this.lastPerspectiveFov
this.camera.zoom = (ZOOM_MAGIC_NUMBER * fovFactor * 0.8) / distance
this.camera.quaternion.set(qx, qy, qz, qw)
this.camera.updateProjectionMatrix()
engineCommandManager.sendSceneCommand({
type: 'modeling_cmd_req',
cmd_id: uuidv4(),
cmd: {
type: 'default_camera_set_orthographic',
},
})
this.onCameraChange()
}
private createPerspectiveCamera = () => {
const { z_near, z_far } = calculateNearFarFromFOV(this.lastPerspectiveFov)
this.camera = new PerspectiveCamera(
this.lastPerspectiveFov,
window.innerWidth / window.innerHeight,
z_near,
z_far
)
this.camera.up.set(0, 0, 1)
this.camera.layers.enable(SKETCH_LAYER)
if (DEBUG_SHOW_INTERSECTION_PLANE)
this.camera.layers.enable(INTERSECTION_PLANE_LAYER)
return this.camera
}
_usePerspectiveCamera = () => {
const { x: px, y: py, z: pz } = this.camera.position
const { x: qx, y: qy, z: qz, w: qw } = this.camera.quaternion
const zoom = this.camera.zoom
this.camera = this.createPerspectiveCamera()
this.camera.position.set(px, py, pz)
this.camera.quaternion.set(qx, qy, qz, qw)
const zoomFudgeFactor = 2280
const distance = zoomFudgeFactor / (zoom * this.lastPerspectiveFov)
const direction = new Vector3().subVectors(
this.camera.position,
this.target
)
direction.normalize()
this.camera.position.copy(this.target).addScaledVector(direction, distance)
}
usePerspectiveCamera = () => {
this._usePerspectiveCamera()
engineCommandManager.sendSceneCommand({
type: 'modeling_cmd_req',
cmd_id: uuidv4(),
cmd: {
type: 'default_camera_set_perspective',
parameters: {
fov_y:
this.camera instanceof PerspectiveCamera ? this.camera.fov : 45,
...calculateNearFarFromFOV(this.lastPerspectiveFov),
},
},
})
this.onCameraChange()
this.update()
return this.camera
}
dollyZoom = (newFov: number) => {
if (!(this.camera instanceof PerspectiveCamera)) {
console.warn('Dolly zoom is only applicable to perspective cameras.')
return
}
this.lastPerspectiveFov = newFov
// Calculate the direction vector from the camera towards the controls target
const direction = new Vector3()
.subVectors(this.target, this.camera.position)
.normalize()
// Calculate the distance to the controls target before changing the FOV
const distanceBefore = this.camera.position.distanceTo(this.target)
// Calculate the scale factor for the new FOV compared to the old one
// This needs to be calculated before updating the camera's FOV
const oldFov = this.camera.fov
const viewHeightFactor = (fov: number) => {
/* *
/|
/ |
/ |
/ |
/ | viewHeight/2
/ |
/ |
/fov/2 |
/________|
\ |
\._._._.|
*/
return Math.tan(deg2Rad(fov / 2))
}
const scaleFactor = viewHeightFactor(oldFov) / viewHeightFactor(newFov)
this.camera.fov = newFov
this.camera.updateProjectionMatrix()
const distanceAfter = distanceBefore * scaleFactor
const newPosition = this.target
.clone()
.add(direction.multiplyScalar(-distanceAfter))
this.camera.position.copy(newPosition)
const { z_near, z_far } = calculateNearFarFromFOV(this.lastPerspectiveFov)
this.camera.near = z_near
this.camera.far = z_far
throttledUpdateEngineFov({
fov: newFov,
position: newPosition,
quaternion: this.camera.quaternion,
zoom: this.camera.zoom,
target: this.target,
})
}
update = (forceUpdate = false) => {
// If there are any changes that need to be applied to the camera, apply them here.
let didChange = forceUpdate
if (this.pendingRotation) {
this.rotateCamera(this.pendingRotation.x, this.pendingRotation.y)
this.pendingRotation = null // Clear the pending rotation after applying it
didChange = true
}
if (this.pendingZoom) {
if (this.camera instanceof PerspectiveCamera) {
// move camera towards or away from the target
const distance = this.camera.position.distanceTo(this.target)
const newDistance = distance * this.pendingZoom
const direction = this.camera.position
.clone()
.sub(this.target)
.normalize()
const newPosition = this.target
.clone()
.add(direction.multiplyScalar(newDistance))
this.camera.position.copy(newPosition)
this.camera.updateProjectionMatrix()
this.pendingZoom = null // Clear the pending zoom after applying it
} else {
// TODO change ortho zoom
this.camera.zoom = this.camera.zoom / this.pendingZoom
this.pendingZoom = null
}
didChange = true
}
if (this.pendingPan) {
// move camera left/right and up/down
const offset = this.camera.position.clone().sub(this.target)
const direction = offset.clone().normalize()
const cameraQuaternion = this.camera.quaternion
const up = new Vector3(0, 1, 0).applyQuaternion(cameraQuaternion)
const right = new Vector3().crossVectors(up, direction)
right.multiplyScalar(this.pendingPan.x)
up.multiplyScalar(this.pendingPan.y)
const newPosition = this.camera.position.clone().add(right).add(up)
this.target.add(right)
this.target.add(up)
this.camera.position.copy(newPosition)
this.pendingPan = null
didChange = true
}
this.safeLookAtTarget()
// Update the camera's matrices
this.camera.updateMatrixWorld()
if (didChange) {
this.onCameraChange()
}
// damping would be implemented here in update if we choose to add it.
}
rotateCamera = (deltaX: number, deltaY: number) => {
const quat = new Quaternion().setFromUnitVectors(
new Vector3(0, 0, 1),
new Vector3(0, 1, 0)
)
const quatInverse = quat.clone().invert()
const angleX = deltaX * this.rotationSpeed // rotationSpeed is a constant that defines how fast the camera rotates
const angleY = deltaY * this.rotationSpeed
// Convert angles to radians
const radianX = MathUtils.degToRad(angleX)
const radianY = MathUtils.degToRad(angleY)
// Get the offset from the camera to the target
const offset = new Vector3().subVectors(this.camera.position, this.target)
// spherical is a y-up paradigm, need to conform to that for now
offset.applyQuaternion(quat)
// Convert offset to spherical coordinates
const spherical = new Spherical().setFromVector3(offset)
// Apply the rotations
spherical.theta -= radianX
spherical.phi -= radianY
// Restrict the phi angle to avoid the camera flipping at the poles
spherical.phi = Math.max(0.1, Math.min(Math.PI - 0.1, spherical.phi))
// Convert back to Cartesian coordinates
offset.setFromSpherical(spherical)
// put the offset back into the z-up paradigm
offset.applyQuaternion(quatInverse)
// Update the camera's position
this.camera.position.copy(this.target).add(offset)
// Look at the target
this.camera.updateMatrixWorld()
}
safeLookAtTarget(up = new Vector3(0, 0, 1)) {
const quaternion = _lookAt(this.camera.position, this.target, up)
this.camera.quaternion.copy(quaternion)
this.camera.updateMatrixWorld()
}
tweenCamToNegYAxis(
// -90 degrees from the x axis puts the camera on the negative y axis
targetAngle = -Math.PI / 2,
duration = 500
): Promise<void> {
// should tween the camera so that it has an xPosition of 0, and forcing it's yPosition to be negative
// zPosition should stay the same
const xyRadius = Math.sqrt(
(this.target.x - this.camera.position.x) ** 2 +
(this.target.y - this.camera.position.y) ** 2
)
const xyAngle = Math.atan2(
this.camera.position.y - this.target.y,
this.camera.position.x - this.target.x
)
this._isCamMovingCallback(true, true)
return new Promise((resolve) => {
new TWEEN.Tween({ angle: xyAngle })
.to({ angle: targetAngle }, duration)
.onUpdate((obj) => {
const x = xyRadius * Math.cos(obj.angle)
const y = xyRadius * Math.sin(obj.angle)
this.camera.position.set(
this.target.x + x,
this.target.y + y,
this.camera.position.z
)
this.update()
this.onCameraChange()
})
.onComplete((obj) => {
const x = xyRadius * Math.cos(obj.angle)
const y = xyRadius * Math.sin(obj.angle)
this.camera.position.set(
this.target.x + x,
this.target.y + y,
this.camera.position.z
)
this.update()
this.onCameraChange()
this._isCamMovingCallback(false, true)
// resolve after a couple of frames
requestAnimationFrame(() => {
requestAnimationFrame(() => resolve())
})
})
.start()
})
}
async tweenCameraToQuaternion(
targetQuaternion: Quaternion,
duration = 500,
toOrthographic = true
): Promise<void> {
const isVertical = isQuaternionVertical(targetQuaternion)
let remainingDuration = duration
if (isVertical) {
remainingDuration = duration * 0.5
const orbitRotationDuration = duration * 0.65
let targetAngle = -Math.PI / 2
const v = new Vector3(0, 0, 1).applyQuaternion(targetQuaternion)
if (v.z < 0) targetAngle = Math.PI / 2
await this.tweenCamToNegYAxis(targetAngle, orbitRotationDuration)
}
await this._tweenCameraToQuaternion(
targetQuaternion,
remainingDuration,
toOrthographic
)
}
_tweenCameraToQuaternion(
targetQuaternion: Quaternion,
duration = 500,
toOrthographic = false
): Promise<void> {
return new Promise((resolve) => {
const camera = this.camera
this._isCamMovingCallback(true, true)
const initialQuaternion = camera.quaternion.clone()
const isVertical = isQuaternionVertical(targetQuaternion)
let tweenEnd = isVertical ? 0.99 : 1
const controlsTarget = this.target.clone()
const initialDistance = controlsTarget.distanceTo(camera.position.clone())
const cameraAtTime = (animationProgress: number /* 0 - 1 */) => {
const currentQ = tempQuaternion.slerpQuaternions(
initialQuaternion,
targetQuaternion,
animationProgress
)
if (this.camera instanceof PerspectiveCamera)
// changing the camera position back when it's orthographic doesn't do anything
// and it messes up animating back to perspective later
this.camera.position
.set(0, 0, 1)
.applyQuaternion(currentQ)
.multiplyScalar(initialDistance)
.add(controlsTarget)
this.camera.up.set(0, 1, 0).applyQuaternion(currentQ).normalize()
this.camera.quaternion.copy(currentQ)
this.target.copy(controlsTarget)
// this.controls.update()
this.camera.updateProjectionMatrix()
this.update()
this.onCameraChange()
}
const onComplete = async () => {
if (isReducedMotion() && toOrthographic) {
cameraAtTime(0.99)
this.useOrthographicCamera()
} else if (toOrthographic) {
await this.animateToOrthographic()
}
this.enableRotate = false
this._isCamMovingCallback(false, true)
resolve()
}
if (isReducedMotion()) {
onComplete()
return
}
new TWEEN.Tween({ t: 0 })
.to({ t: tweenEnd }, duration)
.easing(TWEEN.Easing.Quadratic.InOut)
.onUpdate(({ t }) => cameraAtTime(t))
.onComplete(onComplete)
.start()
})
}
animateToOrthographic = () =>
new Promise((resolve) => {
this.isFovAnimationInProgress = true
let currentFov = this.lastPerspectiveFov
this.fovBeforeOrtho = currentFov
const targetFov = 4
const fovAnimationStep = (currentFov - targetFov) / FRAMES_TO_ANIMATE_IN
let frameWaitOnFinish = 10
const animateFovChange = () => {
if (this.camera instanceof PerspectiveCamera) {
if (this.camera.fov > targetFov) {
// Decrease the FOV
currentFov = Math.max(currentFov - fovAnimationStep, targetFov)
this.camera.updateProjectionMatrix()
this.dollyZoom(currentFov)
requestAnimationFrame(animateFovChange) // Continue the animation
} else if (frameWaitOnFinish > 0) {
frameWaitOnFinish--
requestAnimationFrame(animateFovChange) // Continue the animation
} else {
// Once the target FOV is reached, switch to the orthographic camera
// Needs to wait a couple frames after the FOV animation is complete
this.useOrthographicCamera()
this.isFovAnimationInProgress = false
resolve(true)
}
}
}
animateFovChange() // Start the animation
})
animateToPerspective = () =>
new Promise((resolve) => {
this.isFovAnimationInProgress = true
// Immediately set the camera to perspective with a very low FOV
const targetFov = this.fovBeforeOrtho // Target FOV for perspective
this.lastPerspectiveFov = 4
let currentFov = 4
this.camera.updateProjectionMatrix()
const fovAnimationStep = (targetFov - currentFov) / FRAMES_TO_ANIMATE_IN
this.usePerspectiveCamera()
const animateFovChange = () => {
if (this.camera instanceof OrthographicCamera) return
if (this.camera.fov < targetFov) {
// Increase the FOV
currentFov = Math.min(currentFov + fovAnimationStep, targetFov)
// this.camera.fov = currentFov
this.camera.updateProjectionMatrix()
this.dollyZoom(currentFov)
requestAnimationFrame(animateFovChange) // Continue the animation
} else {
// Set the flag to false as the FOV animation is complete
this.isFovAnimationInProgress = false
resolve(true)
}
}
animateFovChange() // Start the animation
})
reactCameraPropertiesCallback: (a: ReactCameraProperties) => void = () => {}
setReactCameraPropertiesCallback = (
cb: (a: ReactCameraProperties) => void
) => {
this.reactCameraPropertiesCallback = cb
}
deferReactUpdate = throttle((a: ReactCameraProperties) => {
this.reactCameraPropertiesCallback(a)
}, 200)
onCameraChange = () => {
const distance = this.target.distanceTo(this.camera.position)
if (this.camera.far / 2.1 < distance || this.camera.far / 1.9 > distance) {
this.camera.far = distance * 2
this.camera.near = distance / 10
this.camera.updateProjectionMatrix()
}
throttledUpdateEngineCamera({
quaternion: this.camera.quaternion,
position: this.camera.position,
zoom: this.camera.zoom,
isPerspective: this.isPerspective,
target: this.target,
})
this.deferReactUpdate({
type: this.isPerspective ? 'perspective' : 'orthographic',
[this.isPerspective ? 'fov' : 'zoom']:
this.camera instanceof PerspectiveCamera
? this.camera.fov
: this.camera.zoom,
position: [
roundOff(this.camera.position.x, 2),
roundOff(this.camera.position.y, 2),
roundOff(this.camera.position.z, 2),
],
quaternion: [
roundOff(this.camera.quaternion.x, 2),
roundOff(this.camera.quaternion.y, 2),
roundOff(this.camera.quaternion.z, 2),
roundOff(this.camera.quaternion.w, 2),
],
})
Object.values(this._camChangeCallbacks).forEach((cb) => cb())
}
}
// currently duplicated, delete one
function calculateNearFarFromFOV(fov: number) {
const nearFarRatio = (fov - 3) / (45 - 3)
// const z_near = 0.1 + nearFarRatio * (5 - 0.1)
const z_far = 1000 + nearFarRatio * (100000 - 1000)
return { z_near: 0.1, z_far }
}
// currently duplicated, delete one
function convertThreeCamValuesToEngineCam({
target,
position,
quaternion,
zoom,
isPerspective,
}: ThreeCamValues): {
center: Vector3
up: Vector3
vantage: Vector3
} {
// Something to consider is that the orbit controls have a target,
// we're kind of deriving the target/lookAtVector here when it might not be needed
// leaving for now since it's working but maybe revisit later
const euler = new Euler().setFromQuaternion(quaternion, 'XYZ')
const lookAtVector = new Vector3(0, 0, -1)
.applyEuler(euler)
.normalize()
.add(position)
const upVector = new Vector3(0, 1, 0).applyEuler(euler).normalize()
if (isPerspective) {
return {
center: target,
up: upVector,
vantage: position,
}
}
const fudgeFactor2 = zoom * 0.9979224466814468 - 0.03473692325839295
const zoomFactor = (-ZOOM_MAGIC_NUMBER + fudgeFactor2) / zoom
const direction = lookAtVector.clone().sub(position).normalize()
const newVantage = position.clone().add(direction.multiplyScalar(zoomFactor))
return {
center: lookAtVector,
up: upVector,
vantage: newVantage,
}
}
// Pure function helpers
function _lookAt(position: Vector3, target: Vector3, up: Vector3): Quaternion {
// Direction from position to target, normalized.
let direction = new Vector3().subVectors(target, position).normalize()
// Calculate a new "effective" up vector that is orthogonal to the direction.
// This step ensures that the up vector does not affect the direction the camera is looking.
let right = new Vector3().crossVectors(direction, up).normalize()
let orthogonalUp = new Vector3().crossVectors(right, direction).normalize()
// Create a lookAt matrix using the position, and the recalculated orthogonal up vector.
let lookAtMatrix = new Matrix4()
lookAtMatrix.lookAt(position, target, orthogonalUp)
// Create a quaternion from the lookAt matrix.
let quaternion = new Quaternion().setFromRotationMatrix(lookAtMatrix)
return quaternion
}