Files
modeling-app/rust/kcl-lib/src/execution/kcl_value.rs

1366 lines
46 KiB
Rust
Raw Normal View History

use std::{collections::HashMap, fmt};
use anyhow::Result;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use super::{
memory::{self, EnvironmentRef},
MetaSettings, Point3d,
};
use crate::{
errors::KclErrorDetails,
Enhance helixes (#4973) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * allow a helix to go into a sweep Signed-off-by: Jess Frazelle <github@jessfraz.com> * fix clippy Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * udpates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * snapshots Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * fix Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * em,pty * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> --------- Signed-off-by: Jess Frazelle <github@jessfraz.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-01-07 19:10:53 -08:00
execution::{
ExecState, ExecutorContext, Face, Helix, ImportedGeometry, Metadata, Plane, Sketch, Solid, TagIdentifier,
Enhance helixes (#4973) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * allow a helix to go into a sweep Signed-off-by: Jess Frazelle <github@jessfraz.com> * fix clippy Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * udpates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * snapshots Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * fix Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * docs Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * em,pty * A snapshot a day keeps the bugs away! 📷🐛 (OS: namespace-profile-ubuntu-8-cores) * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> --------- Signed-off-by: Jess Frazelle <github@jessfraz.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-01-07 19:10:53 -08:00
},
parsing::{
ast::types::{
DefaultParamVal, FunctionExpression, KclNone, Literal, LiteralValue, Node,
PrimitiveType as AstPrimitiveType, TagDeclarator, TagNode, Type,
},
token::NumericSuffix,
},
std::{
args::{Arg, FromKclValue},
StdFnProps,
},
CompilationError, KclError, ModuleId, SourceRange,
};
pub type KclObjectFields = HashMap<String, KclValue>;
/// Any KCL value.
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
pub enum KclValue {
Uuid {
value: ::uuid::Uuid,
#[serde(skip)]
meta: Vec<Metadata>,
},
Bool {
value: bool,
#[serde(skip)]
meta: Vec<Metadata>,
},
Number {
value: f64,
ty: NumericType,
#[serde(skip)]
meta: Vec<Metadata>,
},
String {
value: String,
#[serde(skip)]
meta: Vec<Metadata>,
},
MixedArray {
value: Vec<KclValue>,
#[serde(skip)]
meta: Vec<Metadata>,
},
// An array where all values have a shared type (not necessarily the same principal type).
HomArray {
value: Vec<KclValue>,
// The type of values, not the array type.
#[serde(skip)]
ty: PrimitiveType,
},
Object {
value: KclObjectFields,
#[serde(skip)]
meta: Vec<Metadata>,
},
TagIdentifier(Box<TagIdentifier>),
TagDeclarator(crate::parsing::ast::types::BoxNode<TagDeclarator>),
Plane {
value: Box<Plane>,
},
Face {
value: Box<Face>,
},
Sketch {
value: Box<Sketch>,
},
Solid {
value: Box<Solid>,
},
Helix {
value: Box<Helix>,
},
ImportedGeometry(ImportedGeometry),
#[ts(skip)]
Function {
#[serde(skip)]
value: FunctionSource,
#[serde(skip)]
meta: Vec<Metadata>,
},
Module {
value: ModuleId,
#[serde(skip)]
meta: Vec<Metadata>,
},
#[ts(skip)]
Type {
#[serde(skip)]
value: Option<(PrimitiveType, StdFnProps)>,
#[serde(skip)]
meta: Vec<Metadata>,
},
KclNone {
value: KclNone,
#[serde(skip)]
meta: Vec<Metadata>,
},
}
#[derive(Debug, Clone, PartialEq, Default)]
pub enum FunctionSource {
#[default]
None,
Std {
func: crate::std::StdFn,
props: StdFnProps,
},
User {
ast: crate::parsing::ast::types::BoxNode<FunctionExpression>,
settings: MetaSettings,
memory: EnvironmentRef,
},
}
impl JsonSchema for FunctionSource {
fn schema_name() -> String {
"FunctionSource".to_owned()
}
fn json_schema(gen: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
// TODO: Actually generate a reasonable schema.
gen.subschema_for::<()>()
}
}
impl From<Vec<Sketch>> for KclValue {
fn from(mut eg: Vec<Sketch>) -> Self {
if eg.len() == 1 {
KclValue::Sketch {
value: Box::new(eg.pop().unwrap()),
}
} else {
KclValue::HomArray {
value: eg
.into_iter()
.map(|s| KclValue::Sketch { value: Box::new(s) })
.collect(),
ty: crate::execution::PrimitiveType::Sketch,
}
}
}
}
impl From<Vec<Solid>> for KclValue {
fn from(mut eg: Vec<Solid>) -> Self {
if eg.len() == 1 {
KclValue::Solid {
value: Box::new(eg.pop().unwrap()),
}
} else {
KclValue::HomArray {
value: eg.into_iter().map(|s| KclValue::Solid { value: Box::new(s) }).collect(),
ty: crate::execution::PrimitiveType::Solid,
}
}
}
}
impl From<KclValue> for Vec<SourceRange> {
fn from(item: KclValue) -> Self {
match item {
KclValue::TagDeclarator(t) => vec![SourceRange::new(t.start, t.end, t.module_id)],
KclValue::TagIdentifier(t) => to_vec_sr(&t.meta),
KclValue::Solid { value } => to_vec_sr(&value.meta),
KclValue::Sketch { value } => to_vec_sr(&value.meta),
KclValue::Helix { value } => to_vec_sr(&value.meta),
KclValue::ImportedGeometry(i) => to_vec_sr(&i.meta),
KclValue::Function { meta, .. } => to_vec_sr(&meta),
KclValue::Plane { value } => to_vec_sr(&value.meta),
KclValue::Face { value } => to_vec_sr(&value.meta),
KclValue::Bool { meta, .. } => to_vec_sr(&meta),
KclValue::Number { meta, .. } => to_vec_sr(&meta),
KclValue::String { meta, .. } => to_vec_sr(&meta),
KclValue::MixedArray { meta, .. } => to_vec_sr(&meta),
KclValue::HomArray { value, .. } => value.iter().flat_map(Into::<Vec<SourceRange>>::into).collect(),
KclValue::Object { meta, .. } => to_vec_sr(&meta),
KclValue::Module { meta, .. } => to_vec_sr(&meta),
KclValue::Uuid { meta, .. } => to_vec_sr(&meta),
KclValue::Type { meta, .. } => to_vec_sr(&meta),
KclValue::KclNone { meta, .. } => to_vec_sr(&meta),
}
}
}
fn to_vec_sr(meta: &[Metadata]) -> Vec<SourceRange> {
meta.iter().map(|m| m.source_range).collect()
}
impl From<&KclValue> for Vec<SourceRange> {
fn from(item: &KclValue) -> Self {
match item {
KclValue::TagDeclarator(t) => vec![SourceRange::new(t.start, t.end, t.module_id)],
KclValue::TagIdentifier(t) => to_vec_sr(&t.meta),
KclValue::Solid { value } => to_vec_sr(&value.meta),
KclValue::Sketch { value } => to_vec_sr(&value.meta),
KclValue::Helix { value } => to_vec_sr(&value.meta),
KclValue::ImportedGeometry(i) => to_vec_sr(&i.meta),
KclValue::Function { meta, .. } => to_vec_sr(meta),
KclValue::Plane { value } => to_vec_sr(&value.meta),
KclValue::Face { value } => to_vec_sr(&value.meta),
KclValue::Bool { meta, .. } => to_vec_sr(meta),
KclValue::Number { meta, .. } => to_vec_sr(meta),
KclValue::String { meta, .. } => to_vec_sr(meta),
KclValue::Uuid { meta, .. } => to_vec_sr(meta),
KclValue::MixedArray { meta, .. } => to_vec_sr(meta),
KclValue::HomArray { value, .. } => value.iter().flat_map(Into::<Vec<SourceRange>>::into).collect(),
KclValue::Object { meta, .. } => to_vec_sr(meta),
KclValue::Module { meta, .. } => to_vec_sr(meta),
KclValue::KclNone { meta, .. } => to_vec_sr(meta),
KclValue::Type { meta, .. } => to_vec_sr(meta),
}
}
}
impl From<&KclValue> for SourceRange {
fn from(item: &KclValue) -> Self {
let v: Vec<_> = item.into();
v.into_iter().next().unwrap_or_default()
}
}
impl KclValue {
pub(crate) fn metadata(&self) -> Vec<Metadata> {
match self {
KclValue::Uuid { value: _, meta } => meta.clone(),
KclValue::Bool { value: _, meta } => meta.clone(),
KclValue::Number { meta, .. } => meta.clone(),
KclValue::String { value: _, meta } => meta.clone(),
KclValue::MixedArray { value: _, meta } => meta.clone(),
KclValue::HomArray { value, .. } => value.iter().flat_map(|v| v.metadata()).collect(),
KclValue::Object { value: _, meta } => meta.clone(),
KclValue::TagIdentifier(x) => x.meta.clone(),
KclValue::TagDeclarator(x) => vec![x.metadata()],
KclValue::Plane { value } => value.meta.clone(),
KclValue::Face { value } => value.meta.clone(),
KclValue::Sketch { value } => value.meta.clone(),
KclValue::Solid { value } => value.meta.clone(),
KclValue::Helix { value } => value.meta.clone(),
KclValue::ImportedGeometry(x) => x.meta.clone(),
KclValue::Function { meta, .. } => meta.clone(),
KclValue::Module { meta, .. } => meta.clone(),
KclValue::KclNone { meta, .. } => meta.clone(),
KclValue::Type { meta, .. } => meta.clone(),
}
}
pub(crate) fn function_def_source_range(&self) -> Option<SourceRange> {
let KclValue::Function {
value: FunctionSource::User { ast, .. },
..
} = self
else {
return None;
};
// TODO: It would be nice if we could extract the source range starting
// at the fn, but that's the variable declaration.
Some(ast.as_source_range())
}
#[allow(unused)]
pub(crate) fn none() -> Self {
Self::KclNone {
value: Default::default(),
meta: Default::default(),
}
}
/// Human readable type name used in error messages. Should not be relied
/// on for program logic.
pub(crate) fn human_friendly_type(&self) -> &'static str {
match self {
KclValue::Uuid { .. } => "Unique ID (uuid)",
KclValue::TagDeclarator(_) => "TagDeclarator",
KclValue::TagIdentifier(_) => "TagIdentifier",
KclValue::Solid { .. } => "Solid",
KclValue::Sketch { .. } => "Sketch",
KclValue::Helix { .. } => "Helix",
KclValue::ImportedGeometry(_) => "ImportedGeometry",
KclValue::Function { .. } => "Function",
KclValue::Plane { .. } => "Plane",
KclValue::Face { .. } => "Face",
KclValue::Bool { .. } => "boolean (true/false value)",
KclValue::Number { .. } => "number",
KclValue::String { .. } => "string (text)",
KclValue::MixedArray { .. } => "array (list)",
KclValue::HomArray { .. } => "array (list)",
KclValue::Object { .. } => "object",
KclValue::Module { .. } => "module",
KclValue::Type { .. } => "type",
KclValue::KclNone { .. } => "None",
}
}
pub(crate) fn from_literal(literal: Node<Literal>, settings: &MetaSettings) -> Self {
let meta = vec![literal.metadata()];
match literal.inner.value {
LiteralValue::Number { value, suffix } => KclValue::Number {
value,
meta,
ty: NumericType::from_parsed(suffix, settings),
},
LiteralValue::String(value) => KclValue::String { value, meta },
LiteralValue::Bool(value) => KclValue::Bool { value, meta },
}
}
pub(crate) fn from_default_param(param: DefaultParamVal, settings: &MetaSettings) -> Self {
match param {
DefaultParamVal::Literal(lit) => Self::from_literal(lit, settings),
DefaultParamVal::KclNone(none) => KclValue::KclNone {
value: none,
meta: Default::default(),
},
}
}
pub(crate) fn map_env_ref(&self, old_env: usize, new_env: usize) -> Self {
let mut result = self.clone();
if let KclValue::Function {
value: FunctionSource::User { ref mut memory, .. },
..
} = result
{
memory.replace_env(old_env, new_env);
}
result
}
/// Put the number into a KCL value.
pub const fn from_number(f: f64, meta: Vec<Metadata>) -> Self {
Self::Number {
value: f,
meta,
ty: NumericType::Unknown,
}
}
pub const fn from_number_with_type(f: f64, ty: NumericType, meta: Vec<Metadata>) -> Self {
Self::Number { value: f, meta, ty }
}
/// Put the point into a KCL value.
pub fn from_point2d(p: [f64; 2], ty: NumericType, meta: Vec<Metadata>) -> Self {
Self::MixedArray {
value: vec![
Self::Number {
value: p[0],
meta: meta.clone(),
ty: ty.clone(),
},
Self::Number {
value: p[1],
meta: meta.clone(),
ty,
},
],
meta,
}
}
pub(crate) fn as_usize(&self) -> Option<usize> {
match self {
KclValue::Number { value, .. } => crate::try_f64_to_usize(*value),
_ => None,
}
}
pub fn as_int(&self) -> Option<i64> {
match self {
KclValue::Number { value, .. } => crate::try_f64_to_i64(*value),
_ => None,
}
}
pub fn as_object(&self) -> Option<&KclObjectFields> {
if let KclValue::Object { value, meta: _ } = &self {
Some(value)
} else {
None
}
}
pub fn into_object(self) -> Option<KclObjectFields> {
if let KclValue::Object { value, meta: _ } = self {
Some(value)
} else {
None
}
}
pub fn as_str(&self) -> Option<&str> {
if let KclValue::String { value, meta: _ } = &self {
Some(value)
} else {
None
}
}
pub fn as_array(&self) -> Option<&[KclValue]> {
if let KclValue::MixedArray { value, meta: _ } = &self {
Some(value)
} else {
None
}
}
pub fn as_point2d(&self) -> Option<[f64; 2]> {
let arr = self.as_array()?;
if arr.len() != 2 {
return None;
}
let x = arr[0].as_f64()?;
let y = arr[1].as_f64()?;
Some([x, y])
}
pub fn as_uuid(&self) -> Option<uuid::Uuid> {
if let KclValue::Uuid { value, meta: _ } = &self {
Some(*value)
} else {
None
}
}
pub fn as_plane(&self) -> Option<&Plane> {
if let KclValue::Plane { value } = &self {
Some(value)
} else {
None
}
}
pub fn as_solid(&self) -> Option<&Solid> {
if let KclValue::Solid { value } = &self {
Some(value)
} else {
None
}
}
pub fn as_sketch(&self) -> Option<&Sketch> {
if let KclValue::Sketch { value } = self {
Some(value)
} else {
None
}
}
pub fn as_mut_sketch(&mut self) -> Option<&mut Sketch> {
if let KclValue::Sketch { value } = self {
Some(value)
} else {
None
}
}
pub fn as_mut_tag(&mut self) -> Option<&mut TagIdentifier> {
if let KclValue::TagIdentifier(value) = self {
Some(value)
} else {
None
}
}
pub fn as_f64(&self) -> Option<f64> {
if let KclValue::Number { value, .. } = &self {
Some(*value)
} else {
None
}
}
pub fn as_bool(&self) -> Option<bool> {
if let KclValue::Bool { value, meta: _ } = &self {
Some(*value)
} else {
None
}
}
/// If this value fits in a u32, return it.
pub fn get_u32(&self, source_ranges: Vec<SourceRange>) -> Result<u32, KclError> {
let u = self.as_int().and_then(|n| u64::try_from(n).ok()).ok_or_else(|| {
KclError::Semantic(KclErrorDetails {
message: "Expected an integer >= 0".to_owned(),
source_ranges: source_ranges.clone(),
})
})?;
u32::try_from(u).map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: "Number was too big".to_owned(),
source_ranges,
})
})
}
/// If this value is of type function, return it.
pub fn get_function(&self) -> Option<&FunctionSource> {
match self {
KclValue::Function { value, .. } => Some(value),
_ => None,
}
}
/// Get a tag identifier from a memory item.
pub fn get_tag_identifier(&self) -> Result<TagIdentifier, KclError> {
match self {
KclValue::TagIdentifier(t) => Ok(*t.clone()),
_ => Err(KclError::Semantic(KclErrorDetails {
message: format!("Not a tag identifier: {:?}", self),
source_ranges: self.clone().into(),
})),
}
}
/// Get a tag declarator from a memory item.
pub fn get_tag_declarator(&self) -> Result<TagNode, KclError> {
match self {
KclValue::TagDeclarator(t) => Ok((**t).clone()),
_ => Err(KclError::Semantic(KclErrorDetails {
message: format!("Not a tag declarator: {:?}", self),
source_ranges: self.clone().into(),
})),
}
}
/// If this KCL value is a bool, retrieve it.
pub fn get_bool(&self) -> Result<bool, KclError> {
let Self::Bool { value: b, .. } = self else {
return Err(KclError::Type(KclErrorDetails {
source_ranges: self.into(),
message: format!("Expected bool, found {}", self.human_friendly_type()),
}));
};
Ok(*b)
}
/// True if `self` has a type which is a subtype of `ty` without coercion.
pub fn has_type(&self, ty: &RuntimeType) -> bool {
let Some(self_ty) = self.principal_type() else {
return false;
};
self_ty.subtype(ty)
}
/// Coerce `self` to a new value which has `ty` as it's closest supertype.
///
/// If the result is Some, then:
/// - result.principal_type().unwrap().subtype(ty)
///
/// If self.principal_type() == ty then result == self
pub fn coerce(&self, ty: &RuntimeType, exec_state: &mut ExecState) -> Option<KclValue> {
match ty {
RuntimeType::Primitive(ty) => self.coerce_to_primitive_type(ty, exec_state),
RuntimeType::Array(ty, len) => self.coerce_to_array_type(ty, *len, exec_state),
RuntimeType::Tuple(tys) => self.coerce_to_tuple_type(tys, exec_state),
RuntimeType::Union(tys) => self.coerce_to_union_type(tys, exec_state),
RuntimeType::Object(tys) => self.coerce_to_object_type(tys, exec_state),
}
}
fn coerce_to_primitive_type(&self, ty: &PrimitiveType, exec_state: &mut ExecState) -> Option<KclValue> {
let value = match self {
KclValue::MixedArray { value, .. } | KclValue::HomArray { value, .. } if value.len() == 1 => &value[0],
_ => self,
};
match ty {
// TODO numeric type coercions
PrimitiveType::Number(_ty) => match value {
KclValue::Number { .. } => Some(value.clone()),
_ => None,
},
PrimitiveType::String => match value {
KclValue::String { .. } => Some(value.clone()),
_ => None,
},
PrimitiveType::Boolean => match value {
KclValue::Bool { .. } => Some(value.clone()),
_ => None,
},
PrimitiveType::Sketch => match value {
KclValue::Sketch { .. } => Some(value.clone()),
_ => None,
},
PrimitiveType::Solid => match value {
KclValue::Solid { .. } => Some(value.clone()),
_ => None,
},
PrimitiveType::Plane => match value {
KclValue::Plane { .. } => Some(value.clone()),
KclValue::Object { value, meta } => {
let origin = value.get("origin").and_then(Point3d::from_kcl_val)?;
let x_axis = value.get("xAxis").and_then(Point3d::from_kcl_val)?;
let y_axis = value.get("yAxis").and_then(Point3d::from_kcl_val)?;
let z_axis = value.get("zAxis").and_then(Point3d::from_kcl_val)?;
let id = exec_state.mod_local.id_generator.next_uuid();
let plane = Plane {
id,
artifact_id: id.into(),
origin,
x_axis,
y_axis,
z_axis,
value: super::PlaneType::Uninit,
// TODO use length unit from origin
units: exec_state.length_unit(),
meta: meta.clone(),
};
Some(KclValue::Plane { value: Box::new(plane) })
}
_ => None,
},
PrimitiveType::ImportedGeometry => match value {
KclValue::ImportedGeometry { .. } => Some(value.clone()),
_ => None,
},
}
}
fn coerce_to_array_type(&self, ty: &PrimitiveType, len: ArrayLen, exec_state: &mut ExecState) -> Option<KclValue> {
match self {
KclValue::HomArray { value, ty: aty } => {
// TODO could check types of values individually
if aty != ty {
return None;
}
let value = match len {
ArrayLen::None => value.clone(),
ArrayLen::NonEmpty => {
if value.is_empty() {
return None;
}
value.clone()
}
ArrayLen::Known(n) => {
if n != value.len() {
return None;
}
value[..n].to_vec()
}
};
Some(KclValue::HomArray { value, ty: ty.clone() })
}
KclValue::MixedArray { value, .. } => {
let value = match len {
ArrayLen::None => value.clone(),
ArrayLen::NonEmpty => {
if value.is_empty() {
return None;
}
value.clone()
}
ArrayLen::Known(n) => {
if n != value.len() {
return None;
}
value[..n].to_vec()
}
};
let rt = RuntimeType::Primitive(ty.clone());
let value = value
.iter()
.map(|v| v.coerce(&rt, exec_state))
.collect::<Option<Vec<_>>>()?;
Some(KclValue::HomArray { value, ty: ty.clone() })
}
KclValue::KclNone { .. } if len.satisfied(0) => Some(KclValue::HomArray {
value: Vec::new(),
ty: ty.clone(),
}),
value if len.satisfied(1) => {
if value.has_type(&RuntimeType::Primitive(ty.clone())) {
Some(KclValue::HomArray {
value: vec![value.clone()],
ty: ty.clone(),
})
} else {
None
}
}
_ => None,
}
}
fn coerce_to_tuple_type(&self, tys: &[PrimitiveType], exec_state: &mut ExecState) -> Option<KclValue> {
match self {
KclValue::MixedArray { value, .. } | KclValue::HomArray { value, .. } => {
if value.len() < tys.len() {
return None;
}
let mut result = Vec::new();
for (i, t) in tys.iter().enumerate() {
result.push(value[i].coerce_to_primitive_type(t, exec_state)?);
}
Some(KclValue::MixedArray {
value: result,
meta: Vec::new(),
})
}
KclValue::KclNone { meta, .. } if tys.is_empty() => Some(KclValue::MixedArray {
value: Vec::new(),
meta: meta.clone(),
}),
value if tys.len() == 1 => {
if value.has_type(&RuntimeType::Primitive(tys[0].clone())) {
Some(KclValue::MixedArray {
value: vec![value.clone()],
meta: Vec::new(),
})
} else {
None
}
}
_ => None,
}
}
fn coerce_to_union_type(&self, tys: &[RuntimeType], exec_state: &mut ExecState) -> Option<KclValue> {
for t in tys {
if let Some(v) = self.coerce(t, exec_state) {
return Some(v);
}
}
None
}
fn coerce_to_object_type(&self, tys: &[(String, RuntimeType)], _exec_state: &mut ExecState) -> Option<KclValue> {
match self {
KclValue::Object { value, .. } => {
for (s, t) in tys {
// TODO coerce fields
if !value.get(s)?.has_type(t) {
return None;
}
}
// TODO remove non-required fields
Some(self.clone())
}
_ => None,
}
}
pub fn principal_type(&self) -> Option<RuntimeType> {
match self {
KclValue::Bool { .. } => Some(RuntimeType::Primitive(PrimitiveType::Boolean)),
KclValue::Number { ty, .. } => Some(RuntimeType::Primitive(PrimitiveType::Number(ty.clone()))),
KclValue::String { .. } => Some(RuntimeType::Primitive(PrimitiveType::String)),
KclValue::Object { value, .. } => {
let properties = value
.iter()
.map(|(k, v)| v.principal_type().map(|t| (k.clone(), t)))
.collect::<Option<Vec<_>>>()?;
Some(RuntimeType::Object(properties))
}
KclValue::Plane { .. } => Some(RuntimeType::Primitive(PrimitiveType::Plane)),
KclValue::Sketch { .. } => Some(RuntimeType::Primitive(PrimitiveType::Sketch)),
KclValue::Solid { .. } => Some(RuntimeType::Primitive(PrimitiveType::Solid)),
KclValue::ImportedGeometry(..) => Some(RuntimeType::Primitive(PrimitiveType::ImportedGeometry)),
KclValue::MixedArray { value, .. } => Some(RuntimeType::Tuple(
value
.iter()
.map(|v| v.principal_type().and_then(RuntimeType::primitive))
.collect::<Option<Vec<_>>>()?,
)),
KclValue::HomArray { ty, value, .. } => Some(RuntimeType::Array(ty.clone(), ArrayLen::Known(value.len()))),
KclValue::Face { .. } => None,
KclValue::Helix { .. }
| KclValue::Function { .. }
| KclValue::Module { .. }
| KclValue::TagIdentifier(_)
| KclValue::TagDeclarator(_)
| KclValue::KclNone { .. }
| KclValue::Type { .. }
| KclValue::Uuid { .. } => None,
}
}
/// If this memory item is a function, call it with the given arguments, return its val as Ok.
/// If it's not a function, return Err.
pub async fn call_fn(
&self,
args: Vec<Arg>,
exec_state: &mut ExecState,
ctx: ExecutorContext,
source_range: SourceRange,
) -> Result<Option<KclValue>, KclError> {
match self {
KclValue::Function {
value: FunctionSource::Std { func, props },
..
} => {
if props.deprecated {
exec_state.warn(CompilationError::err(
source_range,
format!(
"`{}` is deprecated, see the docs for a recommended replacement",
props.name
),
));
}
exec_state.mut_stack().push_new_env_for_rust_call();
let args = crate::std::Args::new(
args,
source_range,
ctx.clone(),
exec_state
.mod_local
.pipe_value
.clone()
.map(|v| Arg::new(v, source_range)),
);
let result = func(exec_state, args).await.map(Some);
exec_state.mut_stack().pop_env();
result
}
KclValue::Function {
value: FunctionSource::User { ast, memory, .. },
..
} => crate::execution::exec_ast::call_user_defined_function(args, *memory, ast, exec_state, &ctx).await,
_ => Err(KclError::Semantic(KclErrorDetails {
message: "cannot call this because it isn't a function".to_string(),
source_ranges: vec![source_range],
})),
}
}
/// If this is a function, call it by applying keyword arguments.
/// If it's not a function, returns an error.
pub async fn call_fn_kw(
&self,
args: crate::std::Args,
exec_state: &mut ExecState,
ctx: ExecutorContext,
callsite: SourceRange,
) -> Result<Option<KclValue>, KclError> {
match self {
KclValue::Function {
value: FunctionSource::Std { func: _, props },
..
} => {
if props.deprecated {
exec_state.warn(CompilationError::err(
callsite,
format!(
"`{}` is deprecated, see the docs for a recommended replacement",
props.name
),
));
}
todo!("Implement KCL stdlib fns with keyword args");
}
KclValue::Function {
value: FunctionSource::User { ast, memory, .. },
..
} => {
crate::execution::exec_ast::call_user_defined_function_kw(args.kw_args, *memory, ast, exec_state, &ctx)
.await
}
_ => Err(KclError::Semantic(KclErrorDetails {
message: "cannot call this because it isn't a function".to_string(),
source_ranges: vec![callsite],
})),
}
}
pub fn value_str(&self) -> Option<String> {
match self {
KclValue::Bool { value, .. } => Some(format!("{value}")),
KclValue::Number { value, .. } => Some(format!("{value}")),
KclValue::String { value, .. } => Some(format!("'{value}'")),
KclValue::Uuid { value, .. } => Some(format!("{value}")),
KclValue::TagDeclarator(tag) => Some(format!("${}", tag.name)),
KclValue::TagIdentifier(tag) => Some(format!("${}", tag.value)),
// TODO better Array and Object stringification
KclValue::MixedArray { .. } => Some("[...]".to_owned()),
KclValue::HomArray { .. } => Some("[...]".to_owned()),
KclValue::Object { .. } => Some("{ ... }".to_owned()),
KclValue::Module { .. }
| KclValue::Solid { .. }
| KclValue::Sketch { .. }
| KclValue::Helix { .. }
| KclValue::ImportedGeometry(_)
| KclValue::Function { .. }
| KclValue::Plane { .. }
| KclValue::Face { .. }
| KclValue::KclNone { .. }
| KclValue::Type { .. } => None,
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum RuntimeType {
Primitive(PrimitiveType),
Array(PrimitiveType, ArrayLen),
Union(Vec<RuntimeType>),
Tuple(Vec<PrimitiveType>),
Object(Vec<(String, RuntimeType)>),
}
impl RuntimeType {
pub fn from_parsed(
value: Type,
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<Option<Self>, CompilationError> {
Ok(match value {
Type::Primitive(pt) => {
PrimitiveType::from_parsed(pt, exec_state, source_range)?.map(RuntimeType::Primitive)
}
Type::Array(pt) => {
PrimitiveType::from_parsed(pt, exec_state, source_range)?.map(|t| RuntimeType::Array(t, ArrayLen::None))
}
Type::Object { properties } => properties
.into_iter()
.map(|p| {
let pt = match p.type_ {
Some(t) => t,
None => return Ok(None),
};
Ok(RuntimeType::from_parsed(pt.inner, exec_state, source_range)?
.map(|ty| (p.identifier.inner.name, ty)))
})
.collect::<Result<Option<Vec<_>>, CompilationError>>()?
.map(RuntimeType::Object),
})
}
pub fn human_friendly_type(&self) -> String {
match self {
RuntimeType::Primitive(ty) => ty.to_string(),
RuntimeType::Array(ty, ArrayLen::None) => format!("an array of {}", ty.display_multiple()),
RuntimeType::Array(ty, ArrayLen::NonEmpty) => format!("one or more {}", ty.display_multiple()),
RuntimeType::Array(ty, ArrayLen::Known(n)) => format!("an array of {n} {}", ty.display_multiple()),
RuntimeType::Union(tys) => tys
.iter()
.map(Self::human_friendly_type)
.collect::<Vec<_>>()
.join(" or "),
RuntimeType::Tuple(tys) => format!(
"an array with values of types ({})",
tys.iter().map(PrimitiveType::to_string).collect::<Vec<_>>().join(", ")
),
RuntimeType::Object(_) => format!("an object with fields {}", self),
}
}
// Subtype with no coercion, including refining numeric types.
fn subtype(&self, sup: &RuntimeType) -> bool {
use RuntimeType::*;
match (self, sup) {
(Primitive(t1), Primitive(t2)) => t1 == t2,
// TODO arrays could be covariant
(Array(t1, l1), Array(t2, l2)) => t1 == t2 && l1.subtype(*l2),
(Tuple(t1), Tuple(t2)) => t1 == t2,
(Tuple(t1), Array(t2, l2)) => (l2.satisfied(t1.len())) && t1.iter().all(|t| t == t2),
(Union(ts1), Union(ts2)) => ts1.iter().all(|t| ts2.contains(t)),
(t1, Union(ts2)) => ts2.contains(t1),
// TODO record subtyping - subtype can be larger, fields can be covariant.
(Object(t1), Object(t2)) => t1 == t2,
_ => false,
}
}
fn primitive(self) -> Option<PrimitiveType> {
match self {
RuntimeType::Primitive(t) => Some(t),
_ => None,
}
}
}
impl fmt::Display for RuntimeType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
RuntimeType::Primitive(t) => t.fmt(f),
RuntimeType::Array(t, l) => match l {
ArrayLen::None => write!(f, "[{t}]"),
ArrayLen::NonEmpty => write!(f, "[{t}; 1+]"),
ArrayLen::Known(n) => write!(f, "[{t}; {n}]"),
},
RuntimeType::Tuple(ts) => write!(
f,
"[{}]",
ts.iter().map(|t| t.to_string()).collect::<Vec<_>>().join(", ")
),
RuntimeType::Union(ts) => write!(
f,
"{}",
ts.iter().map(|t| t.to_string()).collect::<Vec<_>>().join(" | ")
),
RuntimeType::Object(items) => write!(
f,
"{{ {} }}",
items
.iter()
.map(|(n, t)| format!("{n}: {t}"))
.collect::<Vec<_>>()
.join(", ")
),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ArrayLen {
None,
NonEmpty,
Known(usize),
}
impl ArrayLen {
pub fn subtype(self, other: ArrayLen) -> bool {
match (self, other) {
(_, ArrayLen::None) => true,
(ArrayLen::NonEmpty, ArrayLen::NonEmpty) => true,
(ArrayLen::Known(size), ArrayLen::NonEmpty) if size > 0 => true,
(ArrayLen::Known(s1), ArrayLen::Known(s2)) if s1 == s2 => true,
_ => false,
}
}
/// True if the length constraint is satisfied by the supplied length.
fn satisfied(self, len: usize) -> bool {
match self {
ArrayLen::None => true,
ArrayLen::NonEmpty => len > 0,
ArrayLen::Known(s) => len == s,
}
}
}
#[derive(Debug, Clone, PartialEq)]
pub enum PrimitiveType {
Number(NumericType),
String,
Boolean,
Sketch,
Solid,
Plane,
ImportedGeometry,
}
impl PrimitiveType {
fn from_parsed(
value: AstPrimitiveType,
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<Option<Self>, CompilationError> {
Ok(match value {
AstPrimitiveType::String => Some(PrimitiveType::String),
AstPrimitiveType::Boolean => Some(PrimitiveType::Boolean),
AstPrimitiveType::Number(suffix) => Some(PrimitiveType::Number(NumericType::from_parsed(
suffix,
&exec_state.mod_local.settings,
))),
AstPrimitiveType::Named(name) => {
let ty_val = exec_state
.stack()
.get(&format!("{}{}", memory::TYPE_PREFIX, name.name), source_range)
.map_err(|_| CompilationError::err(source_range, format!("Unknown type: {}", name.name)))?;
let (ty, _) = match ty_val {
KclValue::Type { value: Some(ty), .. } => ty,
_ => unreachable!(),
};
Some(ty.clone())
}
_ => None,
})
}
fn display_multiple(&self) -> String {
match self {
PrimitiveType::Number(NumericType::Known(unit)) => format!("numbers({unit})"),
PrimitiveType::Number(_) => "numbers".to_owned(),
PrimitiveType::String => "strings".to_owned(),
PrimitiveType::Boolean => "bools".to_owned(),
PrimitiveType::Sketch => "Sketches".to_owned(),
PrimitiveType::Solid => "Solids".to_owned(),
PrimitiveType::Plane => "Planes".to_owned(),
PrimitiveType::ImportedGeometry => "imported geometries".to_owned(),
}
}
}
impl fmt::Display for PrimitiveType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
PrimitiveType::Number(NumericType::Known(unit)) => write!(f, "number({unit})"),
PrimitiveType::Number(_) => write!(f, "number"),
PrimitiveType::String => write!(f, "string"),
PrimitiveType::Boolean => write!(f, "bool"),
PrimitiveType::Sketch => write!(f, "Sketch"),
PrimitiveType::Solid => write!(f, "Solid"),
PrimitiveType::Plane => write!(f, "Plane"),
PrimitiveType::ImportedGeometry => write!(f, "imported geometry"),
}
}
}
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
pub enum NumericType {
// Specified by the user (directly or indirectly)
Known(UnitType),
// Unspecified, using defaults
Default { len: UnitLen, angle: UnitAngle },
// Exceeded the ability of the type system to track.
Unknown,
// Type info has been explicitly cast away.
Any,
}
impl NumericType {
pub fn count() -> Self {
NumericType::Known(UnitType::Count)
}
/// Combine two types when we expect them to be equal.
pub fn combine_eq(self, other: &NumericType) -> NumericType {
if &self == other {
self
} else {
NumericType::Unknown
}
}
/// Combine n types when we expect them to be equal.
///
/// Precondition: tys.len() > 0
pub fn combine_n_eq(tys: &[NumericType]) -> NumericType {
let ty0 = tys[0].clone();
for t in &tys[1..] {
if t != &ty0 {
return NumericType::Unknown;
}
}
ty0
}
/// Combine two types in addition-like operations.
pub fn combine_add(a: NumericType, b: NumericType) -> NumericType {
if a == b {
return a;
}
NumericType::Unknown
}
/// Combine two types in multiplication-like operations.
pub fn combine_mul(a: NumericType, b: NumericType) -> NumericType {
if a == NumericType::count() {
return b;
}
if b == NumericType::count() {
return a;
}
NumericType::Unknown
}
/// Combine two types in division-like operations.
pub fn combine_div(a: NumericType, b: NumericType) -> NumericType {
if b == NumericType::count() {
return a;
}
NumericType::Unknown
}
pub fn from_parsed(suffix: NumericSuffix, settings: &super::MetaSettings) -> Self {
match suffix {
NumericSuffix::None => NumericType::Default {
len: settings.default_length_units,
angle: settings.default_angle_units,
},
NumericSuffix::Count => NumericType::Known(UnitType::Count),
NumericSuffix::Mm => NumericType::Known(UnitType::Length(UnitLen::Mm)),
NumericSuffix::Cm => NumericType::Known(UnitType::Length(UnitLen::Cm)),
NumericSuffix::M => NumericType::Known(UnitType::Length(UnitLen::M)),
NumericSuffix::Inch => NumericType::Known(UnitType::Length(UnitLen::Inches)),
NumericSuffix::Ft => NumericType::Known(UnitType::Length(UnitLen::Feet)),
NumericSuffix::Yd => NumericType::Known(UnitType::Length(UnitLen::Yards)),
NumericSuffix::Deg => NumericType::Known(UnitType::Angle(UnitAngle::Degrees)),
NumericSuffix::Rad => NumericType::Known(UnitType::Angle(UnitAngle::Radians)),
}
}
}
impl From<UnitLen> for NumericType {
fn from(value: UnitLen) -> Self {
NumericType::Known(UnitType::Length(value))
}
}
impl From<UnitAngle> for NumericType {
fn from(value: UnitAngle) -> Self {
NumericType::Known(UnitType::Angle(value))
}
}
#[derive(Debug, Clone, Copy, Deserialize, Serialize, PartialEq, Eq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(tag = "type")]
pub enum UnitType {
Count,
Length(UnitLen),
Angle(UnitAngle),
}
impl std::fmt::Display for UnitType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
UnitType::Count => write!(f, "_"),
UnitType::Length(l) => l.fmt(f),
UnitType::Angle(a) => a.fmt(f),
}
}
}
// TODO called UnitLen so as not to clash with UnitLength in settings)
/// A unit of length.
#[derive(Debug, Default, Clone, Copy, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema, Eq)]
#[ts(export)]
#[serde(tag = "type")]
pub enum UnitLen {
#[default]
Mm,
Cm,
M,
Inches,
Feet,
Yards,
}
impl std::fmt::Display for UnitLen {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
UnitLen::Mm => write!(f, "mm"),
UnitLen::Cm => write!(f, "cm"),
UnitLen::M => write!(f, "m"),
UnitLen::Inches => write!(f, "in"),
UnitLen::Feet => write!(f, "ft"),
UnitLen::Yards => write!(f, "yd"),
}
}
}
impl TryFrom<NumericSuffix> for UnitLen {
type Error = ();
fn try_from(suffix: NumericSuffix) -> std::result::Result<Self, Self::Error> {
match suffix {
NumericSuffix::Mm => Ok(Self::Mm),
NumericSuffix::Cm => Ok(Self::Cm),
NumericSuffix::M => Ok(Self::M),
NumericSuffix::Inch => Ok(Self::Inches),
NumericSuffix::Ft => Ok(Self::Feet),
NumericSuffix::Yd => Ok(Self::Yards),
_ => Err(()),
}
}
}
impl From<crate::UnitLength> for UnitLen {
fn from(unit: crate::UnitLength) -> Self {
match unit {
crate::UnitLength::Cm => UnitLen::Cm,
crate::UnitLength::Ft => UnitLen::Feet,
crate::UnitLength::In => UnitLen::Inches,
crate::UnitLength::M => UnitLen::M,
crate::UnitLength::Mm => UnitLen::Mm,
crate::UnitLength::Yd => UnitLen::Yards,
}
}
}
impl From<UnitLen> for crate::UnitLength {
fn from(unit: UnitLen) -> Self {
match unit {
UnitLen::Cm => crate::UnitLength::Cm,
UnitLen::Feet => crate::UnitLength::Ft,
UnitLen::Inches => crate::UnitLength::In,
UnitLen::M => crate::UnitLength::M,
UnitLen::Mm => crate::UnitLength::Mm,
UnitLen::Yards => crate::UnitLength::Yd,
}
}
}
impl From<UnitLen> for kittycad_modeling_cmds::units::UnitLength {
fn from(unit: UnitLen) -> Self {
match unit {
UnitLen::Cm => kittycad_modeling_cmds::units::UnitLength::Centimeters,
UnitLen::Feet => kittycad_modeling_cmds::units::UnitLength::Feet,
UnitLen::Inches => kittycad_modeling_cmds::units::UnitLength::Inches,
UnitLen::M => kittycad_modeling_cmds::units::UnitLength::Meters,
UnitLen::Mm => kittycad_modeling_cmds::units::UnitLength::Millimeters,
UnitLen::Yards => kittycad_modeling_cmds::units::UnitLength::Yards,
}
}
}
/// A unit of angle.
#[derive(Debug, Default, Clone, Copy, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema, Eq)]
#[ts(export)]
#[serde(tag = "type")]
pub enum UnitAngle {
#[default]
Degrees,
Radians,
}
impl std::fmt::Display for UnitAngle {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
UnitAngle::Degrees => write!(f, "deg"),
UnitAngle::Radians => write!(f, "rad"),
}
}
}
impl TryFrom<NumericSuffix> for UnitAngle {
type Error = ();
fn try_from(suffix: NumericSuffix) -> std::result::Result<Self, Self::Error> {
match suffix {
NumericSuffix::Deg => Ok(Self::Degrees),
NumericSuffix::Rad => Ok(Self::Radians),
_ => Err(()),
}
}
}