113 lines
3.0 KiB
Plaintext
113 lines
3.0 KiB
Plaintext
![]() |
// Spur Gear
|
||
|
// A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.
|
||
|
|
||
|
// Set Units
|
||
|
@settings(defaultLengthUnit = in)
|
||
|
|
||
|
// Define constants
|
||
|
nTeeth = 21
|
||
|
module = 0.5
|
||
|
pitchDiameter = module * nTeeth
|
||
|
pressureAngle = 20
|
||
|
addendum = module
|
||
|
deddendum = 1.25 * module
|
||
|
baseDiameter = pitchDiameter * cos(toRadians(pressureAngle))
|
||
|
tipDiameter = pitchDiameter + 2 * module
|
||
|
gearHeight = 3
|
||
|
|
||
|
// Interpolate points along the involute curve
|
||
|
cmo = 101
|
||
|
rs = map([0..cmo], fn (i) {
|
||
|
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
|
||
|
})
|
||
|
|
||
|
// Calculate operating pressure angle
|
||
|
angles = map(rs, fn (r) {
|
||
|
return toDegrees( acos(baseDiameter / 2 / r))
|
||
|
})
|
||
|
|
||
|
// Calculate the involute function
|
||
|
invas = map(angles, fn (a) {
|
||
|
return tan(toRadians(a)) - toRadians(a)
|
||
|
})
|
||
|
|
||
|
// Map the involute curve
|
||
|
xs = map([0..cmo], fn (i) {
|
||
|
return rs[i] * cos(invas[i])
|
||
|
})
|
||
|
|
||
|
ys = map([0..cmo], fn (i) {
|
||
|
return rs[i] * sin(invas[i])
|
||
|
})
|
||
|
|
||
|
// Extrude the gear body
|
||
|
body = startSketchOn('XY')
|
||
|
|> circle(
|
||
|
center = [0, 0],
|
||
|
radius = baseDiameter / 2
|
||
|
)
|
||
|
|> extrude(length = gearHeight)
|
||
|
|
||
|
toothAngle = 360 / nTeeth / 1.5
|
||
|
|
||
|
// Plot the involute curve
|
||
|
fn leftInvolute(i, sg) {
|
||
|
j = 100 - i // iterate backwards
|
||
|
return line(sg, endAbsolute = [xs[j], ys[j]])
|
||
|
}
|
||
|
|
||
|
fn rightInvolute(i, sg) {
|
||
|
x = rs[i] * cos(toRadians(-toothAngle + toDegrees(atan(ys[i] / xs[i]))))
|
||
|
y = -rs[i] * sin(toRadians(-toothAngle + toDegrees(atan(ys[i] / xs[i]))))
|
||
|
return line(sg, endAbsolute = [x, y])
|
||
|
}
|
||
|
|
||
|
// Draw gear teeth
|
||
|
start = startSketchOn('XY')
|
||
|
|> startProfileAt([xs[101], ys[101]], %)
|
||
|
teeth = reduce([0..100], start, leftInvolute)
|
||
|
|> arc({
|
||
|
angleStart = 0,
|
||
|
angleEnd = toothAngle,
|
||
|
radius = baseDiameter / 2
|
||
|
}, %)
|
||
|
|> reduce([1..101], %, rightInvolute)
|
||
|
|> close()
|
||
|
|> extrude(length = gearHeight)
|
||
|
|> patternCircular3d(
|
||
|
axis = [0, 0, 1],
|
||
|
center = [0, 0, 0],
|
||
|
instances = nTeeth,
|
||
|
arcDegrees = 360,
|
||
|
rotateDuplicates = true
|
||
|
)
|
||
|
|
||
|
// Define the constants of the keyway and the bore hole
|
||
|
keywayWidth = 0.250
|
||
|
keywayDepth = keywayWidth / 2
|
||
|
holeDiam = 2
|
||
|
holeRadius = 1
|
||
|
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||
|
|
||
|
// Sketch the keyway and center hole and extrude
|
||
|
keyWay = startSketchOn(body, 'END')
|
||
|
|> startProfileAt([
|
||
|
holeRadius * cos(startAngle),
|
||
|
holeRadius * sin(startAngle)
|
||
|
], %)
|
||
|
|> xLine(keywayDepth, %)
|
||
|
|> yLine(-keywayWidth, %)
|
||
|
|> xLine(-keywayDepth, %)
|
||
|
|> arc({
|
||
|
angleEnd = 180,
|
||
|
angleStart = -1 * 180 / PI * startAngle + 360,
|
||
|
radius = holeRadius
|
||
|
}, %)
|
||
|
|> arc({
|
||
|
angleEnd = 180 / PI * startAngle,
|
||
|
angleStart = 180,
|
||
|
radius = holeRadius
|
||
|
}, %)
|
||
|
|> close()
|
||
|
|> extrude(length = -gearHeight)
|