2025-03-06 18:01:24 -05:00
|
|
|
```mermaid
|
|
|
|
|
flowchart LR
|
|
|
|
|
subgraph path2 [Path]
|
|
|
|
|
2["Path<br>[1086, 1158, 4]"]
|
|
|
|
|
3["Segment<br>[1086, 1158, 4]"]
|
|
|
|
|
4[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path5 [Path]
|
|
|
|
|
5["Path<br>[766, 862, 4]"]
|
|
|
|
|
6["Segment<br>[766, 862, 4]"]
|
|
|
|
|
7[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path15 [Path]
|
|
|
|
|
15["Path<br>[1368, 1445, 4]"]
|
|
|
|
|
16["Segment<br>[1368, 1445, 4]"]
|
|
|
|
|
17[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path18 [Path]
|
|
|
|
|
18["Path<br>[766, 862, 4]"]
|
|
|
|
|
19["Segment<br>[766, 862, 4]"]
|
|
|
|
|
20[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path28 [Path]
|
|
|
|
|
28["Path<br>[1942, 2014, 4]"]
|
|
|
|
|
29["Segment<br>[1942, 2014, 4]"]
|
|
|
|
|
30[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path31 [Path]
|
|
|
|
|
31["Path<br>[766, 862, 4]"]
|
|
|
|
|
32["Segment<br>[766, 862, 4]"]
|
|
|
|
|
33[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path41 [Path]
|
|
|
|
|
41["Path<br>[2183, 2276, 4]"]
|
|
|
|
|
42["Segment<br>[2183, 2276, 4]"]
|
|
|
|
|
43[Solid2d]
|
|
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path65 [Path]
|
|
|
|
|
65["Path<br>[2599, 2630, 4]"]
|
|
|
|
|
66["Segment<br>[2636, 2656, 4]"]
|
|
|
|
|
67["Segment<br>[2662, 2682, 4]"]
|
|
|
|
|
68["Segment<br>[2688, 2709, 4]"]
|
|
|
|
|
69["Segment<br>[2715, 2771, 4]"]
|
|
|
|
|
70["Segment<br>[2777, 2784, 4]"]
|
|
|
|
|
71[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path90 [Path]
|
|
|
|
|
90["Path<br>[3085, 3117, 4]"]
|
|
|
|
|
91["Segment<br>[3123, 3144, 4]"]
|
|
|
|
|
92["Segment<br>[3150, 3170, 4]"]
|
|
|
|
|
93["Segment<br>[3176, 3196, 4]"]
|
|
|
|
|
94["Segment<br>[3202, 3258, 4]"]
|
|
|
|
|
95["Segment<br>[3264, 3271, 4]"]
|
|
|
|
|
96[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path116 [Path]
|
|
|
|
|
116["Path<br>[354, 431, 3]"]
|
|
|
|
|
117["Segment<br>[354, 431, 3]"]
|
|
|
|
|
118[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path119 [Path]
|
|
|
|
|
119["Path<br>[442, 519, 3]"]
|
|
|
|
|
120["Segment<br>[442, 519, 3]"]
|
|
|
|
|
121[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path128 [Path]
|
|
|
|
|
128["Path<br>[684, 761, 3]"]
|
|
|
|
|
129["Segment<br>[684, 761, 3]"]
|
|
|
|
|
130[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path131 [Path]
|
|
|
|
|
131["Path<br>[772, 849, 3]"]
|
|
|
|
|
132["Segment<br>[772, 849, 3]"]
|
|
|
|
|
133[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path140 [Path]
|
|
|
|
|
140["Path<br>[993, 1068, 3]"]
|
|
|
|
|
141["Segment<br>[993, 1068, 3]"]
|
|
|
|
|
142[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path151 [Path]
|
|
|
|
|
151["Path<br>[1345, 1426, 3]"]
|
|
|
|
|
152["Segment<br>[1345, 1426, 3]"]
|
|
|
|
|
153[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path163 [Path]
|
|
|
|
|
163["Path<br>[1785, 1831, 3]"]
|
|
|
|
|
164["Segment<br>[1837, 1889, 3]"]
|
|
|
|
|
165["Segment<br>[1895, 2000, 3]"]
|
|
|
|
|
166["Segment<br>[2006, 2028, 3]"]
|
|
|
|
|
167["Segment<br>[2034, 2090, 3]"]
|
|
|
|
|
168["Segment<br>[2096, 2103, 3]"]
|
|
|
|
|
169[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path179 [Path]
|
|
|
|
|
179["Path<br>[2246, 2292, 3]"]
|
|
|
|
|
180["Segment<br>[2298, 2350, 3]"]
|
|
|
|
|
181["Segment<br>[2356, 2463, 3]"]
|
|
|
|
|
182["Segment<br>[2469, 2506, 3]"]
|
|
|
|
|
183["Segment<br>[2512, 2568, 3]"]
|
|
|
|
|
184["Segment<br>[2574, 2581, 3]"]
|
|
|
|
|
185[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path196 [Path]
|
|
|
|
|
196["Path<br>[3099, 3146, 3]"]
|
|
|
|
|
197["Segment<br>[3154, 3494, 3]"]
|
|
|
|
|
198["Segment<br>[3502, 3534, 3]"]
|
|
|
|
|
199["Segment<br>[3542, 3886, 3]"]
|
|
|
|
|
200["Segment<br>[3894, 3950, 3]"]
|
|
|
|
|
201["Segment<br>[3958, 3965, 3]"]
|
|
|
|
|
202[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path219 [Path]
|
|
|
|
|
219["Path<br>[3099, 3146, 3]"]
|
|
|
|
|
220["Segment<br>[3154, 3494, 3]"]
|
|
|
|
|
221["Segment<br>[3502, 3534, 3]"]
|
|
|
|
|
222["Segment<br>[3542, 3886, 3]"]
|
|
|
|
|
223["Segment<br>[3894, 3950, 3]"]
|
|
|
|
|
224["Segment<br>[3958, 3965, 3]"]
|
|
|
|
|
225[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path242 [Path]
|
|
|
|
|
242["Path<br>[4494, 4589, 3]"]
|
|
|
|
|
243["Segment<br>[4595, 4628, 3]"]
|
|
|
|
|
244["Segment<br>[4634, 4685, 3]"]
|
|
|
|
|
245["Segment<br>[4691, 4724, 3]"]
|
|
|
|
|
246["Segment<br>[4730, 4780, 3]"]
|
|
|
|
|
247["Segment<br>[4786, 4827, 3]"]
|
|
|
|
|
248["Segment<br>[4833, 4882, 3]"]
|
|
|
|
|
249["Segment<br>[4888, 4921, 3]"]
|
|
|
|
|
250["Segment<br>[4927, 4961, 3]"]
|
|
|
|
|
251["Segment<br>[4967, 5001, 3]"]
|
|
|
|
|
252["Segment<br>[5007, 5059, 3]"]
|
|
|
|
|
253["Segment<br>[5065, 5099, 3]"]
|
|
|
|
|
254["Segment<br>[5105, 5181, 3]"]
|
|
|
|
|
255["Segment<br>[5187, 5220, 3]"]
|
|
|
|
|
256["Segment<br>[5226, 5302, 3]"]
|
|
|
|
|
257["Segment<br>[5308, 5342, 3]"]
|
|
|
|
|
258["Segment<br>[5348, 5422, 3]"]
|
|
|
|
|
259["Segment<br>[5428, 5462, 3]"]
|
|
|
|
|
260["Segment<br>[5468, 5519, 3]"]
|
|
|
|
|
261["Segment<br>[5525, 5587, 3]"]
|
|
|
|
|
262["Segment<br>[5593, 5644, 3]"]
|
|
|
|
|
263["Segment<br>[5650, 5684, 3]"]
|
|
|
|
|
264["Segment<br>[5690, 5723, 3]"]
|
|
|
|
|
265["Segment<br>[5729, 5762, 3]"]
|
|
|
|
|
266["Segment<br>[5768, 5775, 3]"]
|
|
|
|
|
267[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
|
|
|
|
subgraph path318 [Path]
|
2025-03-13 21:59:39 -07:00
|
|
|
318["Path<br>[742, 782, 6]"]
|
|
|
|
|
319["Segment<br>[790, 852, 6]"]
|
|
|
|
|
320["Segment<br>[860, 896, 6]"]
|
|
|
|
|
321["Segment<br>[904, 934, 6]"]
|
|
|
|
|
322["Segment<br>[942, 994, 6]"]
|
|
|
|
|
323["Segment<br>[1002, 1042, 6]"]
|
|
|
|
|
324["Segment<br>[1050, 1085, 6]"]
|
|
|
|
|
325["Segment<br>[1093, 1131, 6]"]
|
|
|
|
|
326["Segment<br>[1139, 1161, 6]"]
|
|
|
|
|
327["Segment<br>[1169, 1176, 6]"]
|
|
|
|
|
328[Solid2d]
|
|
|
|
|
end
|
|
|
|
|
subgraph path349 [Path]
|
|
|
|
|
349["Path<br>[815, 896, 5]"]
|
|
|
|
|
350["Segment<br>[902, 1003, 5]"]
|
|
|
|
|
351["Segment<br>[1009, 1094, 5]"]
|
|
|
|
|
352["Segment<br>[1100, 1184, 5]"]
|
|
|
|
|
353["Segment<br>[1190, 1276, 5]"]
|
|
|
|
|
354["Segment<br>[1282, 1367, 5]"]
|
|
|
|
|
355["Segment<br>[1373, 1459, 5]"]
|
|
|
|
|
356["Segment<br>[1465, 1588, 5]"]
|
|
|
|
|
357["Segment<br>[1594, 1680, 5]"]
|
|
|
|
|
358["Segment<br>[1686, 1821, 5]"]
|
|
|
|
|
359["Segment<br>[1827, 1913, 5]"]
|
|
|
|
|
360["Segment<br>[1919, 2043, 5]"]
|
|
|
|
|
361["Segment<br>[2049, 2135, 5]"]
|
|
|
|
|
362["Segment<br>[2141, 2226, 5]"]
|
|
|
|
|
363["Segment<br>[2232, 2318, 5]"]
|
|
|
|
|
364["Segment<br>[2324, 2409, 5]"]
|
|
|
|
|
365["Segment<br>[2415, 2500, 5]"]
|
|
|
|
|
366["Segment<br>[2506, 2513, 5]"]
|
|
|
|
|
367[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
2025-03-13 21:59:39 -07:00
|
|
|
subgraph path423 [Path]
|
|
|
|
|
423["Path<br>[487, 544, 7]"]
|
|
|
|
|
424["Segment<br>[550, 656, 7]"]
|
|
|
|
|
425["Segment<br>[662, 717, 7]"]
|
|
|
|
|
426["Segment<br>[723, 820, 7]"]
|
|
|
|
|
427["Segment<br>[826, 858, 7]"]
|
|
|
|
|
428["Segment<br>[864, 896, 7]"]
|
|
|
|
|
429["Segment<br>[902, 933, 7]"]
|
|
|
|
|
430["Segment<br>[939, 1054, 7]"]
|
|
|
|
|
431["Segment<br>[1060, 1092, 7]"]
|
|
|
|
|
432["Segment<br>[1098, 1130, 7]"]
|
|
|
|
|
433["Segment<br>[1136, 1167, 7]"]
|
|
|
|
|
434["Segment<br>[1173, 1266, 7]"]
|
|
|
|
|
435["Segment<br>[1272, 1327, 7]"]
|
|
|
|
|
436["Segment<br>[1333, 1406, 7]"]
|
|
|
|
|
437["Segment<br>[1412, 1419, 7]"]
|
|
|
|
|
438[Solid2d]
|
2025-03-06 18:01:24 -05:00
|
|
|
end
|
|
|
|
|
1["Plane<br>[1055, 1080, 4]"]
|
|
|
|
|
8["Sweep Extrusion<br>[1195, 1251, 4]"]
|
|
|
|
|
9[Wall]
|
|
|
|
|
10["Cap Start"]
|
|
|
|
|
11["Cap End"]
|
|
|
|
|
12["SweepEdge Opposite"]
|
|
|
|
|
13["SweepEdge Adjacent"]
|
|
|
|
|
14["Plane<br>[1337, 1362, 4]"]
|
|
|
|
|
21["Sweep Extrusion<br>[1486, 1549, 4]"]
|
|
|
|
|
22[Wall]
|
|
|
|
|
23["Cap Start"]
|
|
|
|
|
24["Cap End"]
|
|
|
|
|
25["SweepEdge Opposite"]
|
|
|
|
|
26["SweepEdge Adjacent"]
|
|
|
|
|
27["Plane<br>[1897, 1936, 4]"]
|
|
|
|
|
34["Sweep Extrusion<br>[2057, 2122, 4]"]
|
|
|
|
|
35[Wall]
|
|
|
|
|
36["Cap Start"]
|
|
|
|
|
37["Cap End"]
|
|
|
|
|
38["SweepEdge Opposite"]
|
|
|
|
|
39["SweepEdge Adjacent"]
|
|
|
|
|
40["Plane<br>[2138, 2177, 4]"]
|
|
|
|
|
44["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
45[Wall]
|
|
|
|
|
46["Cap Start"]
|
|
|
|
|
47["Cap End"]
|
|
|
|
|
48["SweepEdge Opposite"]
|
|
|
|
|
49["SweepEdge Adjacent"]
|
2025-03-13 21:59:39 -07:00
|
|
|
50["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
51["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
52["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
53["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
54["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
55["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
56["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
57["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
58["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
59["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
60["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
61["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
62["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
63["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
64["Sweep Extrusion<br>[2430, 2475, 4]"]
|
|
|
|
|
72["Sweep Extrusion<br>[2949, 3017, 4]"]
|
|
|
|
|
73[Wall]
|
|
|
|
|
74[Wall]
|
|
|
|
|
75[Wall]
|
|
|
|
|
76[Wall]
|
|
|
|
|
77["Cap Start"]
|
|
|
|
|
78["SweepEdge Opposite"]
|
|
|
|
|
79["SweepEdge Adjacent"]
|
|
|
|
|
80["SweepEdge Opposite"]
|
|
|
|
|
81["SweepEdge Adjacent"]
|
|
|
|
|
82["SweepEdge Opposite"]
|
|
|
|
|
83["SweepEdge Adjacent"]
|
2025-03-06 18:01:24 -05:00
|
|
|
84["SweepEdge Opposite"]
|
|
|
|
|
85["SweepEdge Adjacent"]
|
2025-03-13 21:59:39 -07:00
|
|
|
86["Sweep Extrusion<br>[2949, 3017, 4]"]
|
|
|
|
|
87["Sweep Extrusion<br>[2949, 3017, 4]"]
|
|
|
|
|
88["Sweep Extrusion<br>[2949, 3017, 4]"]
|
|
|
|
|
89["Sweep Extrusion<br>[2949, 3017, 4]"]
|
|
|
|
|
97["Sweep Extrusion<br>[3442, 3516, 4]"]
|
|
|
|
|
98[Wall]
|
|
|
|
|
99[Wall]
|
2025-03-06 18:01:24 -05:00
|
|
|
100[Wall]
|
2025-03-13 21:59:39 -07:00
|
|
|
101[Wall]
|
|
|
|
|
102["Cap Start"]
|
2025-03-06 18:01:24 -05:00
|
|
|
103["SweepEdge Opposite"]
|
|
|
|
|
104["SweepEdge Adjacent"]
|
2025-03-13 21:59:39 -07:00
|
|
|
105["SweepEdge Opposite"]
|
|
|
|
|
106["SweepEdge Adjacent"]
|
|
|
|
|
107["SweepEdge Opposite"]
|
|
|
|
|
108["SweepEdge Adjacent"]
|
|
|
|
|
109["SweepEdge Opposite"]
|
|
|
|
|
110["SweepEdge Adjacent"]
|
|
|
|
|
111["Sweep Extrusion<br>[3442, 3516, 4]"]
|
|
|
|
|
112["Sweep Extrusion<br>[3442, 3516, 4]"]
|
|
|
|
|
113["Sweep Extrusion<br>[3442, 3516, 4]"]
|
|
|
|
|
114["Sweep Extrusion<br>[3442, 3516, 4]"]
|
|
|
|
|
115["Plane<br>[329, 348, 3]"]
|
|
|
|
|
122["Sweep Extrusion<br>[529, 562, 3]"]
|
|
|
|
|
123[Wall]
|
|
|
|
|
124["Cap Start"]
|
|
|
|
|
125["Cap End"]
|
|
|
|
|
126["SweepEdge Opposite"]
|
|
|
|
|
127["SweepEdge Adjacent"]
|
|
|
|
|
134["Sweep Extrusion<br>[859, 892, 3]"]
|
|
|
|
|
135[Wall]
|
|
|
|
|
136["Cap Start"]
|
|
|
|
|
137["Cap End"]
|
|
|
|
|
138["SweepEdge Opposite"]
|
|
|
|
|
139["SweepEdge Adjacent"]
|
|
|
|
|
143["Sweep Extrusion<br>[1214, 1248, 3]"]
|
|
|
|
|
144[Wall]
|
|
|
|
|
145["SweepEdge Opposite"]
|
2025-03-06 18:01:24 -05:00
|
|
|
146["SweepEdge Adjacent"]
|
2025-03-13 21:59:39 -07:00
|
|
|
147["Sweep Extrusion<br>[1214, 1248, 3]"]
|
|
|
|
|
148["Sweep Extrusion<br>[1214, 1248, 3]"]
|
|
|
|
|
149["Sweep Extrusion<br>[1214, 1248, 3]"]
|
|
|
|
|
150["Sweep Extrusion<br>[1214, 1248, 3]"]
|
|
|
|
|
154["Sweep Extrusion<br>[1572, 1606, 3]"]
|
|
|
|
|
155[Wall]
|
|
|
|
|
156["SweepEdge Opposite"]
|
|
|
|
|
157["SweepEdge Adjacent"]
|
|
|
|
|
158["Sweep Extrusion<br>[1572, 1606, 3]"]
|
|
|
|
|
159["Sweep Extrusion<br>[1572, 1606, 3]"]
|
|
|
|
|
160["Sweep Extrusion<br>[1572, 1606, 3]"]
|
|
|
|
|
161["Sweep Extrusion<br>[1572, 1606, 3]"]
|
|
|
|
|
162["Plane<br>[1760, 1779, 3]"]
|
|
|
|
|
170["Sweep Revolve<br>[2109, 2135, 3]"]
|
|
|
|
|
171[Wall]
|
|
|
|
|
172[Wall]
|
2025-03-06 18:01:24 -05:00
|
|
|
173[Wall]
|
|
|
|
|
174[Wall]
|
2025-03-13 21:59:39 -07:00
|
|
|
175["SweepEdge Adjacent"]
|
|
|
|
|
176["SweepEdge Adjacent"]
|
|
|
|
|
177["SweepEdge Adjacent"]
|
|
|
|
|
178["Plane<br>[2221, 2240, 3]"]
|
|
|
|
|
186["Sweep Revolve<br>[2587, 2613, 3]"]
|
|
|
|
|
187[Wall]
|
|
|
|
|
188[Wall]
|
|
|
|
|
189[Wall]
|
|
|
|
|
190[Wall]
|
|
|
|
|
191["SweepEdge Adjacent"]
|
|
|
|
|
192["SweepEdge Adjacent"]
|
|
|
|
|
193["SweepEdge Adjacent"]
|
|
|
|
|
194["SweepEdge Adjacent"]
|
|
|
|
|
195["Plane<br>[3068, 3091, 3]"]
|
|
|
|
|
203["Sweep Extrusion<br>[4013, 4059, 3]"]
|
|
|
|
|
204[Wall]
|
|
|
|
|
205[Wall]
|
|
|
|
|
206[Wall]
|
|
|
|
|
207[Wall]
|
|
|
|
|
208["Cap Start"]
|
|
|
|
|
209["Cap End"]
|
|
|
|
|
210["SweepEdge Opposite"]
|
|
|
|
|
211["SweepEdge Adjacent"]
|
|
|
|
|
212["SweepEdge Opposite"]
|
|
|
|
|
213["SweepEdge Adjacent"]
|
|
|
|
|
214["SweepEdge Opposite"]
|
|
|
|
|
215["SweepEdge Adjacent"]
|
|
|
|
|
216["SweepEdge Opposite"]
|
|
|
|
|
217["SweepEdge Adjacent"]
|
|
|
|
|
218["Plane<br>[3068, 3091, 3]"]
|
|
|
|
|
226["Sweep Extrusion<br>[4013, 4059, 3]"]
|
|
|
|
|
227[Wall]
|
|
|
|
|
228[Wall]
|
|
|
|
|
229[Wall]
|
|
|
|
|
230[Wall]
|
|
|
|
|
231["Cap Start"]
|
|
|
|
|
232["Cap End"]
|
|
|
|
|
233["SweepEdge Opposite"]
|
|
|
|
|
234["SweepEdge Adjacent"]
|
|
|
|
|
235["SweepEdge Opposite"]
|
|
|
|
|
236["SweepEdge Adjacent"]
|
|
|
|
|
237["SweepEdge Opposite"]
|
|
|
|
|
238["SweepEdge Adjacent"]
|
|
|
|
|
239["SweepEdge Opposite"]
|
|
|
|
|
240["SweepEdge Adjacent"]
|
|
|
|
|
241["Plane<br>[4469, 4488, 3]"]
|
|
|
|
|
268["Sweep Revolve<br>[5781, 5807, 3]"]
|
|
|
|
|
269[Wall]
|
|
|
|
|
270[Wall]
|
|
|
|
|
271[Wall]
|
|
|
|
|
272[Wall]
|
|
|
|
|
273[Wall]
|
|
|
|
|
274[Wall]
|
|
|
|
|
275[Wall]
|
|
|
|
|
276[Wall]
|
|
|
|
|
277[Wall]
|
|
|
|
|
278[Wall]
|
|
|
|
|
279[Wall]
|
|
|
|
|
280[Wall]
|
|
|
|
|
281[Wall]
|
|
|
|
|
282[Wall]
|
|
|
|
|
283[Wall]
|
|
|
|
|
284[Wall]
|
|
|
|
|
285[Wall]
|
|
|
|
|
286[Wall]
|
|
|
|
|
287[Wall]
|
|
|
|
|
288[Wall]
|
|
|
|
|
289[Wall]
|
|
|
|
|
290[Wall]
|
|
|
|
|
291[Wall]
|
|
|
|
|
292[Wall]
|
|
|
|
|
293["SweepEdge Adjacent"]
|
|
|
|
|
294["SweepEdge Adjacent"]
|
|
|
|
|
295["SweepEdge Adjacent"]
|
|
|
|
|
296["SweepEdge Adjacent"]
|
|
|
|
|
297["SweepEdge Adjacent"]
|
|
|
|
|
298["SweepEdge Adjacent"]
|
|
|
|
|
299["SweepEdge Adjacent"]
|
|
|
|
|
300["SweepEdge Adjacent"]
|
|
|
|
|
301["SweepEdge Adjacent"]
|
|
|
|
|
302["SweepEdge Adjacent"]
|
|
|
|
|
303["SweepEdge Adjacent"]
|
|
|
|
|
304["SweepEdge Adjacent"]
|
|
|
|
|
305["SweepEdge Adjacent"]
|
|
|
|
|
306["SweepEdge Adjacent"]
|
|
|
|
|
307["SweepEdge Adjacent"]
|
2025-03-06 18:01:24 -05:00
|
|
|
308["SweepEdge Adjacent"]
|
|
|
|
|
309["SweepEdge Adjacent"]
|
|
|
|
|
310["SweepEdge Adjacent"]
|
|
|
|
|
311["SweepEdge Adjacent"]
|
|
|
|
|
312["SweepEdge Adjacent"]
|
|
|
|
|
313["SweepEdge Adjacent"]
|
|
|
|
|
314["SweepEdge Adjacent"]
|
|
|
|
|
315["SweepEdge Adjacent"]
|
|
|
|
|
316["SweepEdge Adjacent"]
|
2025-03-13 21:59:39 -07:00
|
|
|
317["Plane<br>[708, 734, 6]"]
|
|
|
|
|
329["Sweep Revolve<br>[1184, 1210, 6]"]
|
|
|
|
|
330[Wall]
|
|
|
|
|
331[Wall]
|
|
|
|
|
332[Wall]
|
|
|
|
|
333[Wall]
|
|
|
|
|
334[Wall]
|
|
|
|
|
335[Wall]
|
|
|
|
|
336[Wall]
|
|
|
|
|
337[Wall]
|
2025-03-06 18:01:24 -05:00
|
|
|
338[Wall]
|
2025-03-13 21:59:39 -07:00
|
|
|
339["SweepEdge Adjacent"]
|
|
|
|
|
340["SweepEdge Adjacent"]
|
|
|
|
|
341["SweepEdge Adjacent"]
|
|
|
|
|
342["SweepEdge Adjacent"]
|
|
|
|
|
343["SweepEdge Adjacent"]
|
|
|
|
|
344["SweepEdge Adjacent"]
|
|
|
|
|
345["SweepEdge Adjacent"]
|
|
|
|
|
346["SweepEdge Adjacent"]
|
|
|
|
|
347["SweepEdge Adjacent"]
|
|
|
|
|
348["Plane<br>[777, 809, 5]"]
|
|
|
|
|
368["Sweep Revolve<br>[2551, 2607, 5]"]
|
|
|
|
|
369[Wall]
|
|
|
|
|
370[Wall]
|
|
|
|
|
371[Wall]
|
|
|
|
|
372[Wall]
|
|
|
|
|
373[Wall]
|
|
|
|
|
374[Wall]
|
|
|
|
|
375[Wall]
|
|
|
|
|
376[Wall]
|
|
|
|
|
377[Wall]
|
|
|
|
|
378[Wall]
|
|
|
|
|
379[Wall]
|
|
|
|
|
380[Wall]
|
|
|
|
|
381[Wall]
|
|
|
|
|
382[Wall]
|
|
|
|
|
383[Wall]
|
|
|
|
|
384[Wall]
|
|
|
|
|
385[Wall]
|
|
|
|
|
386["Cap Start"]
|
|
|
|
|
387["Cap End"]
|
|
|
|
|
388["SweepEdge Opposite"]
|
|
|
|
|
389["SweepEdge Adjacent"]
|
|
|
|
|
390["SweepEdge Opposite"]
|
|
|
|
|
391["SweepEdge Adjacent"]
|
|
|
|
|
392["SweepEdge Opposite"]
|
|
|
|
|
393["SweepEdge Adjacent"]
|
|
|
|
|
394["SweepEdge Opposite"]
|
|
|
|
|
395["SweepEdge Adjacent"]
|
|
|
|
|
396["SweepEdge Opposite"]
|
|
|
|
|
397["SweepEdge Adjacent"]
|
|
|
|
|
398["SweepEdge Opposite"]
|
|
|
|
|
399["SweepEdge Adjacent"]
|
|
|
|
|
400["SweepEdge Opposite"]
|
|
|
|
|
401["SweepEdge Adjacent"]
|
|
|
|
|
402["SweepEdge Opposite"]
|
|
|
|
|
403["SweepEdge Adjacent"]
|
|
|
|
|
404["SweepEdge Opposite"]
|
|
|
|
|
405["SweepEdge Adjacent"]
|
|
|
|
|
406["SweepEdge Opposite"]
|
|
|
|
|
407["SweepEdge Adjacent"]
|
|
|
|
|
408["SweepEdge Opposite"]
|
|
|
|
|
409["SweepEdge Adjacent"]
|
|
|
|
|
410["SweepEdge Opposite"]
|
|
|
|
|
411["SweepEdge Adjacent"]
|
|
|
|
|
412["SweepEdge Opposite"]
|
|
|
|
|
413["SweepEdge Adjacent"]
|
|
|
|
|
414["SweepEdge Opposite"]
|
|
|
|
|
415["SweepEdge Adjacent"]
|
|
|
|
|
416["SweepEdge Opposite"]
|
|
|
|
|
417["SweepEdge Adjacent"]
|
|
|
|
|
418["SweepEdge Opposite"]
|
|
|
|
|
419["SweepEdge Adjacent"]
|
|
|
|
|
420["SweepEdge Opposite"]
|
|
|
|
|
421["SweepEdge Adjacent"]
|
|
|
|
|
422["Plane<br>[462, 481, 7]"]
|
|
|
|
|
439["Sweep Revolve<br>[1462, 1497, 7]"]
|
|
|
|
|
440[Wall]
|
|
|
|
|
441[Wall]
|
|
|
|
|
442[Wall]
|
|
|
|
|
443[Wall]
|
|
|
|
|
444[Wall]
|
|
|
|
|
445[Wall]
|
|
|
|
|
446[Wall]
|
|
|
|
|
447[Wall]
|
|
|
|
|
448[Wall]
|
|
|
|
|
449[Wall]
|
|
|
|
|
450[Wall]
|
|
|
|
|
451[Wall]
|
|
|
|
|
452[Wall]
|
|
|
|
|
453[Wall]
|
|
|
|
|
454["SweepEdge Adjacent"]
|
|
|
|
|
455["SweepEdge Adjacent"]
|
|
|
|
|
456["SweepEdge Adjacent"]
|
|
|
|
|
457["SweepEdge Adjacent"]
|
|
|
|
|
458["SweepEdge Adjacent"]
|
|
|
|
|
459["SweepEdge Adjacent"]
|
|
|
|
|
460["SweepEdge Adjacent"]
|
|
|
|
|
461["SweepEdge Adjacent"]
|
|
|
|
|
462["SweepEdge Adjacent"]
|
|
|
|
|
463["SweepEdge Adjacent"]
|
|
|
|
|
464["SweepEdge Adjacent"]
|
|
|
|
|
465["SweepEdge Adjacent"]
|
|
|
|
|
466["SweepEdge Adjacent"]
|
|
|
|
|
467["SweepEdge Adjacent"]
|
|
|
|
|
468["StartSketchOnFace<br>[2564, 2593, 4]"]
|
|
|
|
|
469["StartSketchOnFace<br>[3046, 3079, 4]"]
|
|
|
|
|
470["StartSketchOnFace<br>[649, 678, 3]"]
|
|
|
|
|
471["StartSketchOnFace<br>[953, 987, 3]"]
|
|
|
|
|
472["StartSketchOnFace<br>[1310, 1339, 3]"]
|
2025-03-06 18:01:24 -05:00
|
|
|
1 --- 2
|
|
|
|
|
1 --- 5
|
|
|
|
|
2 --- 3
|
|
|
|
|
2 ---- 8
|
|
|
|
|
2 --- 4
|
|
|
|
|
3 --- 9
|
|
|
|
|
3 --- 12
|
|
|
|
|
3 --- 13
|
|
|
|
|
5 --- 6
|
|
|
|
|
5 --- 7
|
|
|
|
|
8 --- 9
|
|
|
|
|
8 --- 10
|
|
|
|
|
8 --- 11
|
|
|
|
|
8 --- 12
|
|
|
|
|
8 --- 13
|
2025-03-13 21:59:39 -07:00
|
|
|
10 --- 65
|
2025-03-06 18:01:24 -05:00
|
|
|
14 --- 15
|
|
|
|
|
14 --- 18
|
|
|
|
|
15 --- 16
|
|
|
|
|
15 ---- 21
|
|
|
|
|
15 --- 17
|
|
|
|
|
16 --- 22
|
|
|
|
|
16 --- 25
|
|
|
|
|
16 --- 26
|
|
|
|
|
18 --- 19
|
|
|
|
|
18 --- 20
|
|
|
|
|
21 --- 22
|
|
|
|
|
21 --- 23
|
|
|
|
|
21 --- 24
|
|
|
|
|
21 --- 25
|
|
|
|
|
21 --- 26
|
|
|
|
|
27 --- 28
|
|
|
|
|
27 --- 31
|
|
|
|
|
28 --- 29
|
|
|
|
|
28 ---- 34
|
|
|
|
|
28 --- 30
|
|
|
|
|
29 --- 35
|
|
|
|
|
29 --- 38
|
|
|
|
|
29 --- 39
|
|
|
|
|
31 --- 32
|
|
|
|
|
31 --- 33
|
|
|
|
|
34 --- 35
|
|
|
|
|
34 --- 36
|
|
|
|
|
34 --- 37
|
|
|
|
|
34 --- 38
|
|
|
|
|
34 --- 39
|
2025-03-13 21:59:39 -07:00
|
|
|
37 --- 90
|
2025-03-06 18:01:24 -05:00
|
|
|
40 --- 41
|
|
|
|
|
41 --- 42
|
|
|
|
|
41 ---- 44
|
|
|
|
|
41 --- 43
|
|
|
|
|
42 --- 45
|
|
|
|
|
42 --- 48
|
|
|
|
|
42 --- 49
|
|
|
|
|
44 --- 45
|
|
|
|
|
44 --- 46
|
|
|
|
|
44 --- 47
|
|
|
|
|
44 --- 48
|
|
|
|
|
44 --- 49
|
2025-03-13 21:59:39 -07:00
|
|
|
65 --- 66
|
|
|
|
|
65 --- 67
|
|
|
|
|
65 --- 68
|
|
|
|
|
65 --- 69
|
|
|
|
|
65 --- 70
|
|
|
|
|
65 ---- 72
|
|
|
|
|
65 --- 71
|
|
|
|
|
66 --- 73
|
|
|
|
|
66 --- 78
|
|
|
|
|
66 --- 79
|
|
|
|
|
67 --- 74
|
|
|
|
|
67 --- 80
|
|
|
|
|
67 --- 81
|
|
|
|
|
68 --- 75
|
|
|
|
|
68 --- 82
|
|
|
|
|
68 --- 83
|
|
|
|
|
69 --- 76
|
|
|
|
|
69 --- 84
|
|
|
|
|
69 --- 85
|
|
|
|
|
72 --- 73
|
|
|
|
|
72 --- 74
|
|
|
|
|
72 --- 75
|
|
|
|
|
72 --- 76
|
|
|
|
|
72 --- 77
|
|
|
|
|
72 --- 78
|
|
|
|
|
72 --- 79
|
|
|
|
|
72 --- 80
|
|
|
|
|
72 --- 81
|
2025-03-06 18:01:24 -05:00
|
|
|
72 --- 82
|
2025-03-13 21:59:39 -07:00
|
|
|
72 --- 83
|
|
|
|
|
72 --- 84
|
|
|
|
|
72 --- 85
|
|
|
|
|
90 --- 91
|
|
|
|
|
90 --- 92
|
|
|
|
|
90 --- 93
|
|
|
|
|
90 --- 94
|
|
|
|
|
90 --- 95
|
|
|
|
|
90 ---- 97
|
|
|
|
|
90 --- 96
|
|
|
|
|
91 --- 101
|
|
|
|
|
91 --- 109
|
|
|
|
|
91 --- 110
|
|
|
|
|
92 --- 100
|
|
|
|
|
92 --- 107
|
|
|
|
|
92 --- 108
|
|
|
|
|
93 --- 99
|
|
|
|
|
93 --- 105
|
|
|
|
|
93 --- 106
|
|
|
|
|
94 --- 98
|
2025-03-06 18:01:24 -05:00
|
|
|
94 --- 103
|
|
|
|
|
94 --- 104
|
2025-03-13 21:59:39 -07:00
|
|
|
97 --- 98
|
|
|
|
|
97 --- 99
|
|
|
|
|
97 --- 100
|
|
|
|
|
97 --- 101
|
|
|
|
|
97 --- 102
|
|
|
|
|
97 --- 103
|
|
|
|
|
97 --- 104
|
|
|
|
|
97 --- 105
|
|
|
|
|
97 --- 106
|
|
|
|
|
97 --- 107
|
|
|
|
|
97 --- 108
|
|
|
|
|
97 --- 109
|
|
|
|
|
97 --- 110
|
|
|
|
|
115 --- 116
|
|
|
|
|
115 --- 119
|
|
|
|
|
116 --- 117
|
|
|
|
|
116 ---- 122
|
|
|
|
|
116 --- 118
|
|
|
|
|
117 --- 123
|
|
|
|
|
117 --- 126
|
|
|
|
|
117 --- 127
|
|
|
|
|
119 --- 120
|
|
|
|
|
119 --- 121
|
|
|
|
|
122 --- 123
|
|
|
|
|
122 --- 124
|
|
|
|
|
122 --- 125
|
|
|
|
|
122 --- 126
|
|
|
|
|
122 --- 127
|
2025-03-06 18:01:24 -05:00
|
|
|
125 --- 128
|
2025-03-13 21:59:39 -07:00
|
|
|
125 --- 131
|
|
|
|
|
125 --- 151
|
|
|
|
|
128 --- 129
|
|
|
|
|
128 ---- 134
|
|
|
|
|
128 --- 130
|
|
|
|
|
129 --- 135
|
|
|
|
|
129 --- 138
|
|
|
|
|
129 --- 139
|
2025-03-06 18:01:24 -05:00
|
|
|
131 --- 132
|
2025-03-13 21:59:39 -07:00
|
|
|
131 --- 133
|
|
|
|
|
134 --- 135
|
|
|
|
|
134 --- 136
|
|
|
|
|
134 --- 137
|
|
|
|
|
134 --- 138
|
|
|
|
|
134 --- 139
|
|
|
|
|
137 --- 140
|
|
|
|
|
140 --- 141
|
|
|
|
|
140 ---- 143
|
|
|
|
|
140 --- 142
|
|
|
|
|
141 --- 144
|
|
|
|
|
141 --- 145
|
|
|
|
|
141 --- 146
|
|
|
|
|
143 --- 144
|
|
|
|
|
143 --- 145
|
|
|
|
|
143 --- 146
|
|
|
|
|
151 --- 152
|
|
|
|
|
151 ---- 154
|
|
|
|
|
151 --- 153
|
|
|
|
|
152 --- 155
|
|
|
|
|
152 --- 156
|
|
|
|
|
152 --- 157
|
|
|
|
|
154 --- 155
|
|
|
|
|
154 --- 156
|
|
|
|
|
154 --- 157
|
|
|
|
|
162 --- 163
|
|
|
|
|
163 --- 164
|
|
|
|
|
163 --- 165
|
|
|
|
|
163 --- 166
|
|
|
|
|
163 --- 167
|
|
|
|
|
163 --- 168
|
|
|
|
|
163 ---- 170
|
|
|
|
|
163 --- 169
|
|
|
|
|
164 --- 171
|
|
|
|
|
164 x--> 175
|
|
|
|
|
165 --- 172
|
|
|
|
|
165 --- 175
|
|
|
|
|
166 --- 173
|
2025-03-06 18:01:24 -05:00
|
|
|
166 --- 176
|
2025-03-13 21:59:39 -07:00
|
|
|
167 --- 174
|
|
|
|
|
167 --- 177
|
|
|
|
|
170 --- 171
|
|
|
|
|
170 --- 172
|
|
|
|
|
170 --- 173
|
|
|
|
|
170 --- 174
|
|
|
|
|
170 <--x 164
|
|
|
|
|
170 --- 175
|
|
|
|
|
170 <--x 165
|
|
|
|
|
170 <--x 166
|
|
|
|
|
170 --- 176
|
|
|
|
|
170 <--x 167
|
|
|
|
|
170 --- 177
|
|
|
|
|
178 --- 179
|
|
|
|
|
179 --- 180
|
|
|
|
|
179 --- 181
|
|
|
|
|
179 --- 182
|
|
|
|
|
179 --- 183
|
|
|
|
|
179 --- 184
|
|
|
|
|
179 ---- 186
|
|
|
|
|
179 --- 185
|
|
|
|
|
180 --- 187
|
|
|
|
|
180 --- 191
|
|
|
|
|
181 --- 188
|
|
|
|
|
181 --- 192
|
|
|
|
|
182 --- 189
|
|
|
|
|
182 --- 193
|
|
|
|
|
183 --- 190
|
|
|
|
|
183 --- 194
|
|
|
|
|
186 --- 187
|
|
|
|
|
186 --- 188
|
|
|
|
|
186 --- 189
|
|
|
|
|
186 --- 190
|
|
|
|
|
186 <--x 180
|
|
|
|
|
186 --- 191
|
|
|
|
|
186 <--x 181
|
|
|
|
|
186 --- 192
|
|
|
|
|
186 <--x 182
|
|
|
|
|
186 --- 193
|
|
|
|
|
186 <--x 183
|
|
|
|
|
186 --- 194
|
2025-03-06 18:01:24 -05:00
|
|
|
195 --- 196
|
2025-03-13 21:59:39 -07:00
|
|
|
196 --- 197
|
|
|
|
|
196 --- 198
|
|
|
|
|
196 --- 199
|
|
|
|
|
196 --- 200
|
|
|
|
|
196 --- 201
|
|
|
|
|
196 ---- 203
|
|
|
|
|
196 --- 202
|
|
|
|
|
197 --- 207
|
|
|
|
|
197 --- 216
|
|
|
|
|
197 --- 217
|
|
|
|
|
198 --- 206
|
|
|
|
|
198 --- 214
|
|
|
|
|
198 --- 215
|
|
|
|
|
199 --- 205
|
|
|
|
|
199 --- 212
|
|
|
|
|
199 --- 213
|
|
|
|
|
200 --- 204
|
|
|
|
|
200 --- 210
|
|
|
|
|
200 --- 211
|
|
|
|
|
203 --- 204
|
|
|
|
|
203 --- 205
|
|
|
|
|
203 --- 206
|
|
|
|
|
203 --- 207
|
|
|
|
|
203 --- 208
|
|
|
|
|
203 --- 209
|
|
|
|
|
203 --- 210
|
|
|
|
|
203 --- 211
|
|
|
|
|
203 --- 212
|
|
|
|
|
203 --- 213
|
|
|
|
|
203 --- 214
|
|
|
|
|
203 --- 215
|
|
|
|
|
203 --- 216
|
|
|
|
|
203 --- 217
|
|
|
|
|
218 --- 219
|
|
|
|
|
219 --- 220
|
|
|
|
|
219 --- 221
|
|
|
|
|
219 --- 222
|
|
|
|
|
219 --- 223
|
|
|
|
|
219 --- 224
|
|
|
|
|
219 ---- 226
|
|
|
|
|
219 --- 225
|
|
|
|
|
220 --- 230
|
|
|
|
|
220 --- 239
|
|
|
|
|
220 --- 240
|
|
|
|
|
221 --- 229
|
|
|
|
|
221 --- 237
|
|
|
|
|
221 --- 238
|
|
|
|
|
222 --- 228
|
|
|
|
|
222 --- 235
|
|
|
|
|
222 --- 236
|
|
|
|
|
223 --- 227
|
|
|
|
|
223 --- 233
|
|
|
|
|
223 --- 234
|
|
|
|
|
226 --- 227
|
|
|
|
|
226 --- 228
|
|
|
|
|
226 --- 229
|
|
|
|
|
226 --- 230
|
|
|
|
|
226 --- 231
|
|
|
|
|
226 --- 232
|
|
|
|
|
226 --- 233
|
|
|
|
|
226 --- 234
|
|
|
|
|
226 --- 235
|
|
|
|
|
226 --- 236
|
|
|
|
|
226 --- 237
|
|
|
|
|
226 --- 238
|
|
|
|
|
226 --- 239
|
|
|
|
|
226 --- 240
|
|
|
|
|
241 --- 242
|
|
|
|
|
242 --- 243
|
|
|
|
|
242 --- 244
|
|
|
|
|
242 --- 245
|
|
|
|
|
242 --- 246
|
|
|
|
|
242 --- 247
|
|
|
|
|
242 --- 248
|
|
|
|
|
242 --- 249
|
|
|
|
|
242 --- 250
|
|
|
|
|
242 --- 251
|
|
|
|
|
242 --- 252
|
|
|
|
|
242 --- 253
|
|
|
|
|
242 --- 254
|
|
|
|
|
242 --- 255
|
|
|
|
|
242 --- 256
|
|
|
|
|
242 --- 257
|
|
|
|
|
242 --- 258
|
|
|
|
|
242 --- 259
|
|
|
|
|
242 --- 260
|
|
|
|
|
242 --- 261
|
|
|
|
|
242 --- 262
|
|
|
|
|
242 --- 263
|
|
|
|
|
242 --- 264
|
|
|
|
|
242 --- 265
|
|
|
|
|
242 --- 266
|
|
|
|
|
242 ---- 268
|
|
|
|
|
242 --- 267
|
|
|
|
|
243 --- 269
|
|
|
|
|
243 --- 293
|
|
|
|
|
244 --- 270
|
|
|
|
|
244 --- 294
|
|
|
|
|
245 --- 271
|
|
|
|
|
245 --- 295
|
|
|
|
|
246 --- 272
|
|
|
|
|
246 --- 296
|
|
|
|
|
247 --- 273
|
|
|
|
|
247 --- 297
|
|
|
|
|
248 --- 274
|
|
|
|
|
248 --- 298
|
|
|
|
|
249 --- 275
|
|
|
|
|
249 --- 299
|
|
|
|
|
250 --- 276
|
|
|
|
|
250 --- 300
|
|
|
|
|
251 --- 277
|
|
|
|
|
251 --- 301
|
|
|
|
|
252 --- 278
|
|
|
|
|
252 --- 302
|
|
|
|
|
253 --- 279
|
|
|
|
|
253 --- 303
|
|
|
|
|
254 --- 280
|
|
|
|
|
254 --- 304
|
|
|
|
|
255 --- 281
|
|
|
|
|
255 --- 305
|
|
|
|
|
256 --- 282
|
|
|
|
|
256 --- 306
|
|
|
|
|
257 --- 283
|
|
|
|
|
257 --- 307
|
|
|
|
|
258 --- 284
|
|
|
|
|
258 --- 308
|
|
|
|
|
259 --- 285
|
|
|
|
|
259 --- 309
|
|
|
|
|
260 --- 286
|
|
|
|
|
260 --- 310
|
|
|
|
|
261 --- 287
|
|
|
|
|
261 --- 311
|
|
|
|
|
262 --- 288
|
|
|
|
|
262 --- 312
|
|
|
|
|
263 --- 289
|
|
|
|
|
263 --- 313
|
|
|
|
|
264 --- 290
|
|
|
|
|
264 --- 314
|
|
|
|
|
265 --- 291
|
|
|
|
|
265 --- 315
|
|
|
|
|
266 --- 292
|
|
|
|
|
266 --- 316
|
|
|
|
|
268 --- 269
|
|
|
|
|
268 --- 270
|
|
|
|
|
268 --- 271
|
|
|
|
|
268 --- 272
|
|
|
|
|
268 --- 273
|
|
|
|
|
268 --- 274
|
|
|
|
|
268 --- 275
|
|
|
|
|
268 --- 276
|
|
|
|
|
268 --- 277
|
|
|
|
|
268 --- 278
|
|
|
|
|
268 --- 279
|
|
|
|
|
268 --- 280
|
|
|
|
|
268 --- 281
|
|
|
|
|
268 --- 282
|
|
|
|
|
268 --- 283
|
|
|
|
|
268 --- 284
|
|
|
|
|
268 --- 285
|
|
|
|
|
268 --- 286
|
|
|
|
|
268 --- 287
|
|
|
|
|
268 --- 288
|
|
|
|
|
268 --- 289
|
|
|
|
|
268 --- 290
|
|
|
|
|
268 --- 291
|
|
|
|
|
268 --- 292
|
|
|
|
|
268 <--x 243
|
|
|
|
|
268 --- 293
|
|
|
|
|
268 <--x 244
|
|
|
|
|
268 --- 294
|
|
|
|
|
268 <--x 245
|
|
|
|
|
268 --- 295
|
|
|
|
|
268 <--x 246
|
|
|
|
|
268 --- 296
|
|
|
|
|
268 <--x 247
|
|
|
|
|
268 --- 297
|
|
|
|
|
268 <--x 248
|
|
|
|
|
268 --- 298
|
|
|
|
|
268 <--x 249
|
|
|
|
|
268 --- 299
|
|
|
|
|
268 <--x 250
|
|
|
|
|
268 --- 300
|
|
|
|
|
268 <--x 251
|
|
|
|
|
268 --- 301
|
|
|
|
|
268 <--x 252
|
|
|
|
|
268 --- 302
|
|
|
|
|
268 <--x 253
|
|
|
|
|
268 --- 303
|
|
|
|
|
268 <--x 254
|
|
|
|
|
268 --- 304
|
|
|
|
|
268 <--x 255
|
|
|
|
|
268 --- 305
|
|
|
|
|
268 <--x 256
|
|
|
|
|
268 --- 306
|
|
|
|
|
268 <--x 257
|
|
|
|
|
268 --- 307
|
|
|
|
|
268 <--x 258
|
|
|
|
|
268 --- 308
|
|
|
|
|
268 <--x 259
|
|
|
|
|
268 --- 309
|
|
|
|
|
268 <--x 260
|
|
|
|
|
268 --- 310
|
|
|
|
|
268 <--x 261
|
|
|
|
|
268 --- 311
|
|
|
|
|
268 <--x 262
|
|
|
|
|
268 --- 312
|
|
|
|
|
268 <--x 263
|
|
|
|
|
268 --- 313
|
|
|
|
|
268 <--x 264
|
|
|
|
|
268 --- 314
|
|
|
|
|
268 <--x 265
|
|
|
|
|
268 --- 315
|
|
|
|
|
268 <--x 266
|
|
|
|
|
268 --- 316
|
2025-03-06 18:01:24 -05:00
|
|
|
317 --- 318
|
|
|
|
|
318 --- 319
|
|
|
|
|
318 --- 320
|
|
|
|
|
318 --- 321
|
|
|
|
|
318 --- 322
|
|
|
|
|
318 --- 323
|
|
|
|
|
318 --- 324
|
|
|
|
|
318 --- 325
|
|
|
|
|
318 --- 326
|
|
|
|
|
318 --- 327
|
2025-03-13 21:59:39 -07:00
|
|
|
318 ---- 329
|
2025-03-06 18:01:24 -05:00
|
|
|
318 --- 328
|
2025-03-13 21:59:39 -07:00
|
|
|
319 --- 330
|
|
|
|
|
319 --- 339
|
|
|
|
|
320 --- 331
|
|
|
|
|
320 --- 340
|
|
|
|
|
321 --- 332
|
|
|
|
|
321 --- 341
|
|
|
|
|
322 --- 333
|
|
|
|
|
322 --- 342
|
|
|
|
|
323 --- 334
|
|
|
|
|
323 --- 343
|
|
|
|
|
324 --- 335
|
|
|
|
|
324 --- 344
|
|
|
|
|
325 --- 336
|
|
|
|
|
325 --- 345
|
|
|
|
|
326 --- 337
|
|
|
|
|
326 --- 346
|
|
|
|
|
327 --- 338
|
|
|
|
|
327 --- 347
|
|
|
|
|
329 --- 330
|
|
|
|
|
329 --- 331
|
|
|
|
|
329 --- 332
|
|
|
|
|
329 --- 333
|
|
|
|
|
329 --- 334
|
|
|
|
|
329 --- 335
|
|
|
|
|
329 --- 336
|
|
|
|
|
329 --- 337
|
|
|
|
|
329 --- 338
|
|
|
|
|
329 <--x 319
|
|
|
|
|
329 --- 339
|
|
|
|
|
329 <--x 320
|
|
|
|
|
329 --- 340
|
|
|
|
|
329 <--x 321
|
|
|
|
|
329 --- 341
|
|
|
|
|
329 <--x 322
|
|
|
|
|
329 --- 342
|
|
|
|
|
329 <--x 323
|
|
|
|
|
329 --- 343
|
|
|
|
|
329 <--x 324
|
|
|
|
|
329 --- 344
|
|
|
|
|
329 <--x 325
|
|
|
|
|
329 --- 345
|
|
|
|
|
329 <--x 326
|
|
|
|
|
329 --- 346
|
|
|
|
|
329 <--x 327
|
|
|
|
|
329 --- 347
|
|
|
|
|
348 --- 349
|
|
|
|
|
349 --- 350
|
|
|
|
|
349 --- 351
|
|
|
|
|
349 --- 352
|
|
|
|
|
349 --- 353
|
|
|
|
|
349 --- 354
|
|
|
|
|
349 --- 355
|
|
|
|
|
349 --- 356
|
|
|
|
|
349 --- 357
|
|
|
|
|
349 --- 358
|
|
|
|
|
349 --- 359
|
|
|
|
|
349 --- 360
|
|
|
|
|
349 --- 361
|
|
|
|
|
349 --- 362
|
|
|
|
|
349 --- 363
|
|
|
|
|
349 --- 364
|
|
|
|
|
349 --- 365
|
|
|
|
|
349 --- 366
|
|
|
|
|
349 ---- 368
|
|
|
|
|
349 --- 367
|
|
|
|
|
350 --- 369
|
|
|
|
|
350 --- 388
|
|
|
|
|
350 --- 389
|
|
|
|
|
351 --- 370
|
|
|
|
|
351 --- 390
|
|
|
|
|
351 --- 391
|
|
|
|
|
352 --- 371
|
|
|
|
|
352 --- 392
|
|
|
|
|
352 --- 393
|
|
|
|
|
353 --- 372
|
|
|
|
|
353 --- 394
|
|
|
|
|
353 --- 395
|
|
|
|
|
354 --- 373
|
|
|
|
|
354 --- 396
|
|
|
|
|
354 --- 397
|
|
|
|
|
355 --- 374
|
|
|
|
|
355 --- 398
|
|
|
|
|
355 --- 399
|
|
|
|
|
356 --- 375
|
|
|
|
|
356 --- 400
|
|
|
|
|
356 --- 401
|
|
|
|
|
357 --- 376
|
|
|
|
|
357 --- 402
|
|
|
|
|
357 --- 403
|
|
|
|
|
358 --- 377
|
|
|
|
|
358 --- 404
|
|
|
|
|
358 --- 405
|
|
|
|
|
359 --- 378
|
|
|
|
|
359 --- 406
|
|
|
|
|
359 --- 407
|
|
|
|
|
360 --- 379
|
|
|
|
|
360 --- 408
|
|
|
|
|
360 --- 409
|
|
|
|
|
361 --- 380
|
|
|
|
|
361 --- 410
|
|
|
|
|
361 --- 411
|
|
|
|
|
362 --- 381
|
|
|
|
|
362 --- 412
|
|
|
|
|
362 --- 413
|
|
|
|
|
363 --- 382
|
|
|
|
|
363 --- 414
|
|
|
|
|
363 --- 415
|
|
|
|
|
364 --- 383
|
|
|
|
|
364 --- 416
|
|
|
|
|
364 --- 417
|
|
|
|
|
365 --- 384
|
|
|
|
|
365 --- 418
|
|
|
|
|
365 --- 419
|
|
|
|
|
366 --- 385
|
|
|
|
|
366 --- 420
|
|
|
|
|
366 --- 421
|
|
|
|
|
368 --- 369
|
|
|
|
|
368 --- 370
|
|
|
|
|
368 --- 371
|
|
|
|
|
368 --- 372
|
|
|
|
|
368 --- 373
|
|
|
|
|
368 --- 374
|
|
|
|
|
368 --- 375
|
|
|
|
|
368 --- 376
|
|
|
|
|
368 --- 377
|
|
|
|
|
368 --- 378
|
|
|
|
|
368 --- 379
|
|
|
|
|
368 --- 380
|
|
|
|
|
368 --- 381
|
|
|
|
|
368 --- 382
|
|
|
|
|
368 --- 383
|
|
|
|
|
368 --- 384
|
|
|
|
|
368 --- 385
|
|
|
|
|
368 --- 386
|
|
|
|
|
368 --- 387
|
|
|
|
|
368 --- 388
|
|
|
|
|
368 --- 389
|
|
|
|
|
368 --- 390
|
|
|
|
|
368 --- 391
|
|
|
|
|
368 --- 392
|
|
|
|
|
368 --- 393
|
|
|
|
|
368 --- 394
|
|
|
|
|
368 --- 395
|
|
|
|
|
368 --- 396
|
|
|
|
|
368 --- 397
|
|
|
|
|
368 --- 398
|
|
|
|
|
368 --- 399
|
|
|
|
|
368 --- 400
|
|
|
|
|
368 --- 401
|
|
|
|
|
368 --- 402
|
|
|
|
|
368 --- 403
|
|
|
|
|
368 --- 404
|
|
|
|
|
368 --- 405
|
|
|
|
|
368 --- 406
|
|
|
|
|
368 --- 407
|
|
|
|
|
368 --- 408
|
|
|
|
|
368 --- 409
|
|
|
|
|
368 --- 410
|
|
|
|
|
368 --- 411
|
|
|
|
|
368 --- 412
|
|
|
|
|
368 --- 413
|
|
|
|
|
368 --- 414
|
|
|
|
|
368 --- 415
|
|
|
|
|
368 --- 416
|
|
|
|
|
368 --- 417
|
|
|
|
|
368 --- 418
|
|
|
|
|
368 --- 419
|
|
|
|
|
368 --- 420
|
|
|
|
|
368 --- 421
|
|
|
|
|
422 --- 423
|
|
|
|
|
423 --- 424
|
|
|
|
|
423 --- 425
|
|
|
|
|
423 --- 426
|
|
|
|
|
423 --- 427
|
|
|
|
|
423 --- 428
|
|
|
|
|
423 --- 429
|
|
|
|
|
423 --- 430
|
|
|
|
|
423 --- 431
|
|
|
|
|
423 --- 432
|
|
|
|
|
423 --- 433
|
|
|
|
|
423 --- 434
|
|
|
|
|
423 --- 435
|
|
|
|
|
423 --- 436
|
|
|
|
|
423 --- 437
|
|
|
|
|
423 ---- 439
|
|
|
|
|
423 --- 438
|
|
|
|
|
424 --- 440
|
|
|
|
|
424 --- 454
|
|
|
|
|
425 --- 441
|
|
|
|
|
425 --- 455
|
|
|
|
|
426 --- 442
|
|
|
|
|
426 --- 456
|
|
|
|
|
427 --- 443
|
|
|
|
|
427 --- 457
|
|
|
|
|
428 --- 444
|
|
|
|
|
428 --- 458
|
|
|
|
|
429 --- 445
|
|
|
|
|
429 --- 459
|
|
|
|
|
430 --- 446
|
|
|
|
|
430 --- 460
|
|
|
|
|
431 --- 447
|
|
|
|
|
431 --- 461
|
|
|
|
|
432 --- 448
|
|
|
|
|
432 --- 462
|
|
|
|
|
433 --- 449
|
|
|
|
|
433 --- 463
|
|
|
|
|
434 --- 450
|
|
|
|
|
434 --- 464
|
|
|
|
|
435 --- 451
|
|
|
|
|
435 --- 465
|
|
|
|
|
436 --- 452
|
|
|
|
|
436 --- 466
|
|
|
|
|
437 --- 453
|
|
|
|
|
437 --- 467
|
|
|
|
|
439 --- 440
|
|
|
|
|
439 --- 441
|
|
|
|
|
439 --- 442
|
|
|
|
|
439 --- 443
|
|
|
|
|
439 --- 444
|
|
|
|
|
439 --- 445
|
|
|
|
|
439 --- 446
|
|
|
|
|
439 --- 447
|
|
|
|
|
439 --- 448
|
|
|
|
|
439 --- 449
|
|
|
|
|
439 --- 450
|
|
|
|
|
439 --- 451
|
|
|
|
|
439 --- 452
|
|
|
|
|
439 --- 453
|
|
|
|
|
439 <--x 424
|
|
|
|
|
439 --- 454
|
|
|
|
|
439 <--x 425
|
|
|
|
|
439 --- 455
|
|
|
|
|
439 <--x 426
|
|
|
|
|
439 --- 456
|
|
|
|
|
439 <--x 427
|
|
|
|
|
439 --- 457
|
|
|
|
|
439 <--x 428
|
|
|
|
|
439 --- 458
|
|
|
|
|
439 <--x 429
|
|
|
|
|
439 --- 459
|
|
|
|
|
439 <--x 430
|
|
|
|
|
439 --- 460
|
|
|
|
|
439 <--x 431
|
|
|
|
|
439 --- 461
|
|
|
|
|
439 <--x 432
|
|
|
|
|
439 --- 462
|
|
|
|
|
439 <--x 433
|
|
|
|
|
439 --- 463
|
|
|
|
|
439 <--x 434
|
|
|
|
|
439 --- 464
|
|
|
|
|
439 <--x 435
|
|
|
|
|
439 --- 465
|
|
|
|
|
439 <--x 436
|
|
|
|
|
439 --- 466
|
|
|
|
|
439 <--x 437
|
|
|
|
|
439 --- 467
|
|
|
|
|
10 <--x 468
|
|
|
|
|
37 <--x 469
|
|
|
|
|
125 <--x 470
|
|
|
|
|
137 <--x 471
|
|
|
|
|
125 <--x 472
|
2025-03-06 18:01:24 -05:00
|
|
|
```
|