Fix KCL warnings in doc comments from let, const, and new fn syntax (#4756)

* Fix KCL warnings in doc comments from let, const, and new fn syntax

* Update docs
This commit is contained in:
Jonathan Tran
2024-12-12 11:33:37 -05:00
committed by GitHub
parent 7ed26e21c6
commit 05163fdded
22 changed files with 336 additions and 336 deletions

View File

@ -43,7 +43,7 @@ fn sum(arr) {
/* The above is basically like this pseudo-code:
fn sum(arr):
let sumSoFar = 0
sumSoFar = 0
for i in arr:
sumSoFar = add(sumSoFar, i)
return sumSoFar */
@ -96,14 +96,14 @@ fn decagon(radius) {
/* The `decagon` above is basically like this pseudo-code:
fn decagon(radius):
let stepAngle = (1/10) * tau()
let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])
stepAngle = (1/10) * tau()
startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])
// Here's the reduce part.
let partialDecagon = startOfDecagonSketch
partialDecagon = startOfDecagonSketch
for i in [1..10]:
let x = cos(stepAngle * i) * radius
let y = sin(stepAngle * i) * radius
x = cos(stepAngle * i) * radius
y = sin(stepAngle * i) * radius
partialDecagon = lineTo([x, y], partialDecagon)
fullDecagon = partialDecagon // it's now full
return fullDecagon */

View File

@ -149142,9 +149142,9 @@
"unpublished": false,
"deprecated": false,
"examples": [
"// This function adds two numbers.\nfn add(a, b) {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum(arr) {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This function adds two numbers.\nfn add(a, b) {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum(arr) {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, fn(i, result_so_far) {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n stepAngle = (1/10) * tau()\n startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
]
},
{