Grackle (KCL to EP compiler) (#1270)

* Start Grackle (KCL-to-EP compiler)

This begins work on a second, different executor. The old executor is a tree-walk interpreter, this executor compiles the KCL programs into the Execution Plan virtual machine defined in its [own crate](https://github.com/KittyCAD/modeling-api/tree/main/execution-plan). This executor is called "Grackle", after an Austin bird, and it's got its own module in wasm-lib so that I can keep merging small PRs and developing incrementally, rather than building a complete executor which replaces the old executor in one PR.

Grackle's "Planner" walks the AST, like the tree-walk executor. But it doesn't actually execute code. Instead, as it walks each AST node, it outputs a sequence of Execution Plan instructions which, when run, can compute that node's value. It also notes which Execution Plan virtual machine address will eventually contain each KCL variable.

Done:
 - Storing KCL variables
 - Computing primitives, literals, binary expressions
 - Calling native (i.e. Rust) functions from KCL
 - Storing arrays

Todo:
- KCL functions (i.e. user-defined functions)
- Member expressions
- Port over existing executor's native funtions (e.g. `lineTo`, `extrude` and `startSketchAt`)
This commit is contained in:
Adam Chalmers
2024-01-11 09:25:10 -06:00
committed by GitHub
parent 4bbf98bc34
commit 088968c664
11 changed files with 2584 additions and 78 deletions

View File

@ -1,3 +1,3 @@
[codespell] [codespell]
ignore-words-list: crate,everytime ignore-words-list: crate,everytime
skip: **/target,node_modules,build skip: **/target,node_modules,build,**/Cargo.lock

1554
src/wasm-lib/Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -25,7 +25,7 @@ image = "0.24.7"
kittycad = { workspace = true, default-features = true } kittycad = { workspace = true, default-features = true }
pretty_assertions = "1.4.0" pretty_assertions = "1.4.0"
reqwest = { version = "0.11.22", default-features = false } reqwest = { version = "0.11.22", default-features = false }
tokio = { version = "1.34.0", features = ["rt-multi-thread", "macros", "time"] } tokio = { version = "1.35.1", features = ["rt-multi-thread", "macros", "time"] }
twenty-twenty = "0.7" twenty-twenty = "0.7"
uuid = { version = "1.6.1", features = ["v4", "js", "serde"] } uuid = { version = "1.6.1", features = ["v4", "js", "serde"] }
@ -52,12 +52,17 @@ debug = true
[workspace] [workspace]
members = [ members = [
"derive-docs", "derive-docs",
"grackle",
"kcl", "kcl",
"kcl-macros", "kcl-macros",
] ]
[workspace.dependencies] [workspace.dependencies]
kittycad = { version = "0.2.45", default-features = false, features = ["js"] } kittycad = { version = "0.2.45", default-features = false, features = ["js"] }
kittycad-execution-plan = { git = "https://github.com/KittyCAD/modeling-api", branch = "main" }
kittycad-execution-plan-traits = "0.1.2"
kittycad-modeling-session = { git = "https://github.com/KittyCAD/modeling-api", branch = "main" }
kittycad-execution-plan-macros = { git = "https://github.com/KittyCAD/modeling-api", branch = "main" }
[[test]] [[test]]
name = "executor" name = "executor"

View File

@ -0,0 +1,18 @@
[package]
name = "grackle"
version = "0.1.0"
edition = "2021"
description = "A new executor for KCL which compiles to Execution Plans"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
kcl-lib = { path = "../kcl" }
kittycad-execution-plan = { workspace = true }
kittycad-execution-plan-traits = { workspace = true }
kittycad-modeling-session = { workspace = true }
thiserror = "1.0.56"
[dev-dependencies]
pretty_assertions = "1"

View File

@ -0,0 +1,85 @@
use kcl_lib::ast::{self, types::BinaryPart};
/// Basically the same enum as `kcl_lib::ast::types::Value`, but grouped according to whether the
/// value is singular or composite.
/// You can convert losslessly between KclValueGroup and `kcl_lib::ast::types::Value` with From/Into.
pub enum KclValueGroup {
Single(SingleValue),
ArrayExpression(Box<ast::types::ArrayExpression>),
ObjectExpression(Box<ast::types::ObjectExpression>),
}
pub enum SingleValue {
Literal(Box<ast::types::Literal>),
Identifier(Box<ast::types::Identifier>),
BinaryExpression(Box<ast::types::BinaryExpression>),
CallExpression(Box<ast::types::CallExpression>),
PipeExpression(Box<ast::types::PipeExpression>),
UnaryExpression(Box<ast::types::UnaryExpression>),
KclNoneExpression(ast::types::KclNone),
MemberExpression(Box<ast::types::MemberExpression>),
}
impl From<ast::types::BinaryPart> for KclValueGroup {
fn from(value: ast::types::BinaryPart) -> Self {
match value {
BinaryPart::Literal(e) => Self::Single(SingleValue::Literal(e)),
BinaryPart::Identifier(e) => Self::Single(SingleValue::Identifier(e)),
BinaryPart::BinaryExpression(e) => Self::Single(SingleValue::BinaryExpression(e)),
BinaryPart::CallExpression(e) => Self::Single(SingleValue::CallExpression(e)),
BinaryPart::UnaryExpression(e) => Self::Single(SingleValue::UnaryExpression(e)),
BinaryPart::MemberExpression(e) => Self::Single(SingleValue::MemberExpression(e)),
}
}
}
impl From<ast::types::BinaryPart> for SingleValue {
fn from(value: ast::types::BinaryPart) -> Self {
match value {
BinaryPart::Literal(e) => Self::Literal(e),
BinaryPart::Identifier(e) => Self::Identifier(e),
BinaryPart::BinaryExpression(e) => Self::BinaryExpression(e),
BinaryPart::CallExpression(e) => Self::CallExpression(e),
BinaryPart::UnaryExpression(e) => Self::UnaryExpression(e),
BinaryPart::MemberExpression(e) => Self::MemberExpression(e),
}
}
}
impl From<ast::types::Value> for KclValueGroup {
fn from(value: ast::types::Value) -> Self {
match value {
ast::types::Value::Literal(e) => Self::Single(SingleValue::Literal(e)),
ast::types::Value::Identifier(e) => Self::Single(SingleValue::Identifier(e)),
ast::types::Value::BinaryExpression(e) => Self::Single(SingleValue::BinaryExpression(e)),
ast::types::Value::CallExpression(e) => Self::Single(SingleValue::CallExpression(e)),
ast::types::Value::PipeExpression(e) => Self::Single(SingleValue::PipeExpression(e)),
ast::types::Value::None(e) => Self::Single(SingleValue::KclNoneExpression(e)),
ast::types::Value::UnaryExpression(e) => Self::Single(SingleValue::UnaryExpression(e)),
ast::types::Value::ArrayExpression(e) => Self::ArrayExpression(e),
ast::types::Value::ObjectExpression(e) => Self::ObjectExpression(e),
ast::types::Value::PipeSubstitution(_)
| ast::types::Value::FunctionExpression(_)
| ast::types::Value::MemberExpression(_) => todo!(),
}
}
}
impl From<KclValueGroup> for ast::types::Value {
fn from(value: KclValueGroup) -> Self {
match value {
KclValueGroup::Single(e) => match e {
SingleValue::Literal(e) => ast::types::Value::Literal(e),
SingleValue::Identifier(e) => ast::types::Value::Identifier(e),
SingleValue::BinaryExpression(e) => ast::types::Value::BinaryExpression(e),
SingleValue::CallExpression(e) => ast::types::Value::CallExpression(e),
SingleValue::PipeExpression(e) => ast::types::Value::PipeExpression(e),
SingleValue::UnaryExpression(e) => ast::types::Value::UnaryExpression(e),
SingleValue::KclNoneExpression(e) => ast::types::Value::None(e),
SingleValue::MemberExpression(e) => ast::types::Value::MemberExpression(e),
},
KclValueGroup::ArrayExpression(e) => ast::types::Value::ArrayExpression(e),
KclValueGroup::ObjectExpression(e) => ast::types::Value::ObjectExpression(e),
}
}
}

View File

@ -0,0 +1,501 @@
mod kcl_value_group;
mod native_functions;
#[cfg(test)]
mod tests;
use std::{borrow::Cow, collections::HashMap};
use kcl_lib::{
ast,
ast::types::{BodyItem, KclNone, LiteralValue, Program, VariableDeclaration},
};
use kittycad_execution_plan as ep;
use kittycad_execution_plan::{Address, ExecutionError, Instruction};
use kittycad_execution_plan_traits as ept;
use kittycad_execution_plan_traits::NumericPrimitive;
use kittycad_modeling_session::Session;
use self::kcl_value_group::{KclValueGroup, SingleValue};
/// Execute a KCL program by compiling into an execution plan, then running that.
pub async fn execute(ast: Program, session: Session) -> Result<(), Error> {
let mut planner = Planner::new();
let plan = planner.build_plan(ast)?;
let mut mem = kittycad_execution_plan::Memory::default();
kittycad_execution_plan::execute(&mut mem, plan, session).await?;
Ok(())
}
/// Compiles KCL programs into Execution Plans.
struct Planner {
/// Maps KCL identifiers to what they hold, and where in KCEP virtual memory they'll be written to.
binding_scope: BindingScope,
/// Next available KCEP virtual machine memory address.
next_addr: Address,
}
impl Planner {
pub fn new() -> Self {
Self {
binding_scope: BindingScope::prelude(),
next_addr: Address::ZERO,
}
}
fn build_plan(&mut self, program: Program) -> PlanRes {
let mut instructions = Vec::new();
for item in program.body {
instructions.extend(self.visit_body_item(item)?);
}
Ok(instructions)
}
/// Emits instructions which, when run, compute a given KCL value and store it in memory.
/// Returns the instructions, and the destination address of the value.
fn plan_to_compute_single(&mut self, value: SingleValue) -> Result<EvalPlan, CompileError> {
match value {
SingleValue::KclNoneExpression(KclNone { start: _, end: _ }) => {
let address = self.next_addr.offset_by(1);
Ok(EvalPlan {
instructions: vec![Instruction::SetPrimitive {
address,
value: ept::Primitive::Nil,
}],
binding: EpBinding::Single(address),
})
}
SingleValue::Literal(expr) => {
let kcep_val = kcl_literal_to_kcep_literal(expr.value);
// KCEP primitives always have size of 1, because each address holds 1 primitive.
let size = 1;
let address = self.next_addr.offset_by(size);
Ok(EvalPlan {
instructions: vec![Instruction::SetPrimitive {
address,
value: kcep_val,
}],
binding: EpBinding::Single(address),
})
}
SingleValue::Identifier(expr) => {
// This is just duplicating a binding.
// So, don't emit any instructions, because the value has already been computed.
// Just return the address that it was stored at after being computed.
let previously_bound_to = self
.binding_scope
.get(&expr.name)
.ok_or(CompileError::Undefined { name: expr.name })?;
Ok(EvalPlan {
instructions: Vec::new(),
binding: previously_bound_to.clone(),
})
}
SingleValue::BinaryExpression(expr) => {
let l = self.plan_to_compute_single(SingleValue::from(expr.left))?;
let r = self.plan_to_compute_single(SingleValue::from(expr.right))?;
let EpBinding::Single(l_binding) = l.binding else {
return Err(CompileError::InvalidOperand(
"you tried to use a composite value (e.g. array or object) as the operand to some math",
));
};
let EpBinding::Single(r_binding) = r.binding else {
return Err(CompileError::InvalidOperand(
"you tried to use a composite value (e.g. array or object) as the operand to some math",
));
};
let destination = self.next_addr.offset_by(1);
let mut plan = Vec::with_capacity(l.instructions.len() + r.instructions.len() + 1);
plan.extend(l.instructions);
plan.extend(r.instructions);
plan.push(Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: match expr.operator {
ast::types::BinaryOperator::Add => ep::Operation::Add,
ast::types::BinaryOperator::Sub => ep::Operation::Sub,
ast::types::BinaryOperator::Mul => ep::Operation::Mul,
ast::types::BinaryOperator::Div => ep::Operation::Div,
ast::types::BinaryOperator::Mod => {
todo!("execution plan instruction set doesn't support Mod yet")
}
ast::types::BinaryOperator::Pow => {
todo!("execution plan instruction set doesn't support Pow yet")
}
},
operand0: ep::Operand::Reference(l_binding),
operand1: ep::Operand::Reference(r_binding),
},
destination,
});
Ok(EvalPlan {
instructions: plan,
binding: EpBinding::Single(destination),
})
}
SingleValue::CallExpression(expr) => {
let (mut instructions, args) = expr.arguments.into_iter().try_fold(
(Vec::new(), Vec::new()),
|(mut acc_instrs, mut acc_args), argument| {
let EvalPlan {
instructions: new_instructions,
binding: arg,
} = match KclValueGroup::from(argument) {
KclValueGroup::Single(value) => self.plan_to_compute_single(value)?,
KclValueGroup::ArrayExpression(_) => todo!(),
KclValueGroup::ObjectExpression(_) => todo!(),
};
acc_instrs.extend(new_instructions);
acc_args.push(arg);
Ok((acc_instrs, acc_args))
},
)?;
let callee = match self.binding_scope.get_fn(&expr.callee.name) {
GetFnResult::Found(f) => f,
GetFnResult::NonCallable => {
return Err(CompileError::NotCallable {
name: expr.callee.name.clone(),
});
}
GetFnResult::NotFound => {
return Err(CompileError::Undefined {
name: expr.callee.name.clone(),
})
}
};
let EvalPlan {
instructions: eval_instrs,
binding,
} = callee.call(&mut self.next_addr, args)?;
instructions.extend(eval_instrs);
Ok(EvalPlan { instructions, binding })
}
SingleValue::PipeExpression(_) => todo!(),
SingleValue::UnaryExpression(_) => todo!(),
SingleValue::MemberExpression(_) => todo!(),
}
}
/// Emits instructions which, when run, compute a given KCL value and store it in memory.
/// Returns the instructions.
/// Also binds the value to a name.
fn plan_to_bind(
&mut self,
declarations: ast::types::VariableDeclaration,
) -> Result<Vec<Instruction>, CompileError> {
declarations
.declarations
.into_iter()
.try_fold(Vec::new(), |mut acc, declaration| {
let (instrs, binding) = self.plan_to_bind_one(declaration.init)?;
self.binding_scope.bind(declaration.id.name, binding);
acc.extend(instrs);
Ok(acc)
})
}
fn plan_to_bind_one(
&mut self,
value_being_bound: ast::types::Value,
) -> Result<(Vec<Instruction>, EpBinding), CompileError> {
match KclValueGroup::from(value_being_bound) {
KclValueGroup::Single(init_value) => {
// Simple! Just evaluate it, note where the final value will be stored in KCEP memory,
// and bind it to the KCL identifier.
let EvalPlan { instructions, binding } = self.plan_to_compute_single(init_value)?;
Ok((instructions, binding))
}
KclValueGroup::ArrayExpression(expr) => {
// First, emit a plan to compute each element of the array.
// Collect all the bindings from each element too.
let (instructions, bindings) = expr.elements.into_iter().try_fold(
(Vec::new(), Vec::new()),
|(mut acc_instrs, mut acc_bindings), element| {
match KclValueGroup::from(element) {
KclValueGroup::Single(value) => {
// If this element of the array is a single value, then binding it is
// straightforward -- you got a single binding, no need to change anything.
let EvalPlan { instructions, binding } = self.plan_to_compute_single(value)?;
acc_instrs.extend(instructions);
acc_bindings.push(binding);
}
KclValueGroup::ArrayExpression(expr) => {
// If this element of the array is _itself_ an array, then we need to
// emit a plan to calculate each element of this child array.
// Then we collect the child array's bindings, and bind them to one
// element of the parent array.
let binding = expr
.elements
.into_iter()
.try_fold(Vec::new(), |mut seq, child_element| {
let (instructions, binding) = self.plan_to_bind_one(child_element)?;
acc_instrs.extend(instructions);
seq.push(binding);
Ok(seq)
})
.map(EpBinding::Sequence)?;
acc_bindings.push(binding);
}
KclValueGroup::ObjectExpression(expr) => {
// If this element of the array is an object, then we need to
// emit a plan to calculate each value of each property of the object.
// Then we collect the bindings for each child value, and bind them to one
// element of the parent array.
let map = HashMap::with_capacity(expr.properties.len());
let binding = expr
.properties
.into_iter()
.try_fold(map, |mut map, property| {
let (instructions, binding) = self.plan_to_bind_one(property.value)?;
map.insert(property.key.name, binding);
acc_instrs.extend(instructions);
Ok(map)
})
.map(EpBinding::Map)?;
acc_bindings.push(binding);
}
};
Ok((acc_instrs, acc_bindings))
},
)?;
Ok((instructions, EpBinding::Sequence(bindings)))
}
KclValueGroup::ObjectExpression(expr) => {
// Convert the object to a sequence of key-value pairs.
let mut kvs = expr.properties.into_iter().map(|prop| (prop.key, prop.value));
let (instructions, each_property_binding) = kvs.try_fold(
(Vec::new(), HashMap::new()),
|(mut acc_instrs, mut acc_bindings), (key, value)| {
match KclValueGroup::from(value) {
KclValueGroup::Single(value) => {
let EvalPlan { instructions, binding } = self.plan_to_compute_single(value)?;
acc_instrs.extend(instructions);
acc_bindings.insert(key.name, binding);
}
KclValueGroup::ArrayExpression(expr) => {
// If this value of the object is an array, then emit a plan to calculate
// each element of that array. Collect their bindings, and bind them all
// under one property of the parent object.
let n = expr.elements.len();
let binding = expr
.elements
.into_iter()
.try_fold(Vec::with_capacity(n), |mut seq, child_element| {
let (instructions, binding) = self.plan_to_bind_one(child_element)?;
seq.push(binding);
acc_instrs.extend(instructions);
Ok(seq)
})
.map(EpBinding::Sequence)?;
acc_bindings.insert(key.name, binding);
}
KclValueGroup::ObjectExpression(expr) => {
// If this value of the object is _itself_ an object, then we need to
// emit a plan to calculate each value of each property of the child object.
// Then we collect the bindings for each child value, and bind them to one
// property of the parent object.
let n = expr.properties.len();
let binding = expr
.properties
.into_iter()
.try_fold(HashMap::with_capacity(n), |mut map, property| {
let (instructions, binding) = self.plan_to_bind_one(property.value)?;
map.insert(property.key.name, binding);
acc_instrs.extend(instructions);
Ok(map)
})
.map(EpBinding::Map)?;
acc_bindings.insert(key.name, binding);
}
};
Ok((acc_instrs, acc_bindings))
},
)?;
Ok((instructions, EpBinding::Map(each_property_binding)))
}
}
}
}
#[derive(Debug, thiserror::Error, Eq, PartialEq, Clone)]
pub enum CompileError {
#[error("the name {name} was not defined")]
Undefined { name: String },
#[error("the function {fn_name} requires at least {required} arguments but you only supplied {actual}")]
NotEnoughArgs {
fn_name: String2,
required: usize,
actual: usize,
},
#[error("the function {fn_name} accepts at most {maximum} arguments but you supplied {actual}")]
TooManyArgs {
fn_name: String2,
maximum: usize,
actual: usize,
},
#[error("you tried to call {name} but it's not a function")]
NotCallable { name: String },
#[error("you're trying to use an operand that isn't compatible with the given arithmetic operator: {0}")]
InvalidOperand(&'static str),
}
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("{0}")]
Compile(#[from] CompileError),
#[error("{0}")]
Execution(#[from] ExecutionError),
}
/// Something that can traverse expression trees, visiting nodes.
/// When a node gets visited, it returns some type R.
trait ExprVisitor<R> {
fn visit_body_item(&mut self, item: BodyItem) -> R;
fn visit_variable_declaration(&mut self, vd: VariableDeclaration) -> R;
}
type PlanRes = Result<Vec<Instruction>, CompileError>;
impl ExprVisitor<PlanRes> for Planner {
fn visit_body_item(&mut self, item: BodyItem) -> PlanRes {
match item {
BodyItem::VariableDeclaration(vd) => self.visit_variable_declaration(vd),
BodyItem::ExpressionStatement(_) => todo!(),
BodyItem::ReturnStatement(_) => todo!(),
}
}
fn visit_variable_declaration(&mut self, variable_declaration: VariableDeclaration) -> PlanRes {
self.plan_to_bind(variable_declaration)
}
}
/// Every KCL literal value is equivalent to an Execution Plan value, and therefore can be
/// bound to some KCL name and Execution Plan address.
fn kcl_literal_to_kcep_literal(expr: LiteralValue) -> ept::Primitive {
match expr {
LiteralValue::IInteger(x) => ept::Primitive::NumericValue(NumericPrimitive::Integer(x)),
LiteralValue::Fractional(x) => ept::Primitive::NumericValue(NumericPrimitive::Float(x)),
LiteralValue::String(x) => ept::Primitive::String(x),
}
}
/// Instructions that can compute some value.
struct EvalPlan {
/// The instructions which will compute the value.
instructions: Vec<Instruction>,
/// Where the value will be stored.
binding: EpBinding,
}
trait KclFunction: std::fmt::Debug {
fn call(&self, next_addr: &mut Address, args: Vec<EpBinding>) -> Result<EvalPlan, CompileError>;
}
/// KCL values which can be written to KCEP memory.
/// This is recursive. For example, the bound value might be an array, which itself contains bound values.
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
enum EpBinding {
/// A KCL value which gets stored in a particular address in KCEP memory.
Single(Address),
/// A sequence of KCL values, indexed by their position in the sequence.
Sequence(Vec<EpBinding>),
/// A sequence of KCL values, indexed by their identifier.
Map(HashMap<String, EpBinding>),
}
/// A set of bindings in a particular scope.
/// Bindings are KCL values that get "compiled" into KCEP values, which are stored in KCEP memory
/// at a particular KCEP address.
/// Bindings are referenced by the name of their KCL identifier.
///
/// KCL has multiple scopes -- each function has a scope for its own local variables and parameters.
/// So when referencing a variable, it might be in this scope, or the parent scope. So, each environment
/// has to keep track of parent environments. The root environment has no parent, and is used for KCL globals
/// (e.g. the prelude of stdlib functions).
///
/// These are called "Environments" in the "Crafting Interpreters" book.
#[derive(Debug)]
struct BindingScope {
// KCL value which are stored in EP memory.
ep_bindings: HashMap<String, EpBinding>,
/// KCL functions. They do NOT get stored in EP memory.
function_bindings: HashMap<String2, Box<dyn KclFunction>>,
parent: Option<Box<BindingScope>>,
}
/// Either an owned string, or a static string. Either way it can be read and moved around.
type String2 = Cow<'static, str>;
impl BindingScope {
/// The parent scope for every program, before the user has defined anything.
/// Only includes some stdlib functions.
/// This is usually known as the "prelude" in other languages. It's the stdlib functions that
/// are already imported for you when you start coding.
pub fn prelude() -> Self {
Self {
// TODO: Actually put the stdlib prelude in here,
// things like `startSketchAt` and `line`.
function_bindings: HashMap::from([
("id".into(), Box::new(native_functions::Id) as _),
("add".into(), Box::new(native_functions::Add) as _),
]),
ep_bindings: Default::default(),
parent: None,
}
}
/// Add a new scope, e.g. for new function calls.
#[allow(dead_code)] // TODO: when we implement function expressions.
pub fn add_scope(self) -> Self {
Self {
function_bindings: Default::default(),
ep_bindings: Default::default(),
parent: Some(Box::new(self)),
}
}
//// Remove a scope, e.g. when exiting a function call.
#[allow(dead_code)] // TODO: when we implement function expressions.
pub fn remove_scope(self) -> Self {
*self.parent.unwrap()
}
/// Add a binding (e.g. defining a new variable)
pub fn bind(&mut self, identifier: String, binding: EpBinding) {
self.ep_bindings.insert(identifier, binding);
}
/// Look up a binding.
pub fn get(&self, identifier: &str) -> Option<&EpBinding> {
if let Some(b) = self.ep_bindings.get(identifier) {
// The name was found in this scope.
Some(b)
} else if let Some(ref parent) = self.parent {
// Check the next scope outwards.
parent.get(identifier)
} else {
// There's no outer scope, and it wasn't found, so there's nowhere else to look.
None
}
}
/// Look up a function bound to the given identifier.
fn get_fn(&self, identifier: &str) -> GetFnResult {
if let Some(f) = self.function_bindings.get(identifier) {
GetFnResult::Found(f.as_ref())
} else if self.get(identifier).is_some() {
GetFnResult::NonCallable
} else if let Some(ref parent) = self.parent {
parent.get_fn(identifier)
} else {
GetFnResult::NotFound
}
}
}
enum GetFnResult<'a> {
Found(&'a dyn KclFunction),
NonCallable,
NotFound,
}

View File

@ -0,0 +1,105 @@
//! Defines functions which are written in Rust, but called from KCL.
//! This includes some of the stdlib, e.g. `startSketchAt`.
//! But some other stdlib functions will be written in KCL.
use kcl_lib::std::sketch::PlaneData;
use kittycad_execution_plan::{Address, Arithmetic, Instruction};
use kittycad_execution_plan_traits::Value;
use crate::{CompileError, EpBinding, EvalPlan, KclFunction};
/// The identity function. Always returns its first input.
#[derive(Debug)]
pub struct Id;
impl KclFunction for Id {
fn call(&self, _: &mut Address, args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
if args.len() > 1 {
return Err(CompileError::TooManyArgs {
fn_name: "id".into(),
maximum: 1,
actual: args.len(),
});
}
let arg = args
.first()
.ok_or(CompileError::NotEnoughArgs {
fn_name: "id".into(),
required: 1,
actual: 0,
})?
.clone();
Ok(EvalPlan {
instructions: Vec::new(),
binding: arg,
})
}
}
#[derive(Debug)]
pub struct StartSketchAt;
impl KclFunction for StartSketchAt {
fn call(&self, next_addr: &mut Address, _args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
let mut instructions = Vec::new();
// Store the plane.
let plane = PlaneData::XY.into_parts();
instructions.push(Instruction::SetValue {
address: next_addr.offset_by(plane.len()),
value_parts: plane,
});
// TODO: Get the plane ID from global context.
// TODO: Send this command:
// ModelingCmd::SketchModeEnable {
// animated: false,
// ortho: false,
// plane_id: plane.id,
// // We pass in the normal for the plane here.
// disable_camera_with_plane: Some(plane.z_axis.clone().into()),
// },
// TODO: Send ModelingCmd::StartPath at the given point.
// TODO (maybe): Store the SketchGroup in KCEP memory.
todo!()
}
}
/// A test function that adds two numbers.
#[derive(Debug)]
pub struct Add;
impl KclFunction for Add {
fn call(&self, next_address: &mut Address, mut args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
let len = args.len();
if len > 2 {
return Err(CompileError::TooManyArgs {
fn_name: "add".into(),
maximum: 2,
actual: len,
});
}
let not_enough_args = CompileError::NotEnoughArgs {
fn_name: "add".into(),
required: 2,
actual: len,
};
const ERR: &str = "cannot use composite values (e.g. array) as arguments to Add";
let EpBinding::Single(arg1) = args.pop().ok_or(not_enough_args.clone())? else {
return Err(CompileError::InvalidOperand(ERR));
};
let EpBinding::Single(arg0) = args.pop().ok_or(not_enough_args)? else {
return Err(CompileError::InvalidOperand(ERR));
};
let destination = next_address.offset_by(1);
Ok(EvalPlan {
instructions: vec![Instruction::Arithmetic {
arithmetic: Arithmetic {
operation: kittycad_execution_plan::Operation::Add,
operand0: kittycad_execution_plan::Operand::Reference(arg0),
operand1: kittycad_execution_plan::Operand::Reference(arg1),
},
destination,
}],
binding: EpBinding::Single(destination),
})
}
}

View File

@ -0,0 +1,382 @@
use pretty_assertions::assert_eq;
use super::*;
fn must_plan(program: &str) -> (Vec<Instruction>, BindingScope) {
let tokens = kcl_lib::token::lexer(program);
let parser = kcl_lib::parser::Parser::new(tokens);
let ast = parser.ast().unwrap();
let mut p = Planner::new();
let instrs = p.build_plan(ast).unwrap();
(instrs, p.binding_scope)
}
fn should_not_compile(program: &str) -> CompileError {
let tokens = kcl_lib::token::lexer(program);
let parser = kcl_lib::parser::Parser::new(tokens);
let ast = parser.ast().unwrap();
let mut p = Planner::new();
p.build_plan(ast).unwrap_err()
}
#[test]
fn assignments() {
let program = "
let x = 1
let y = 2";
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 2i64.into(),
}
]
);
}
#[test]
fn bind_array() {
let program = r#"let x = [44, 55, "sixty-six"]"#;
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 44i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 55i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(2),
value: "sixty-six".to_owned().into(),
}
]
);
}
#[test]
fn bind_nested_array() {
let program = r#"let x = [44, [55, "sixty-six"]]"#;
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 44i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 55i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(2),
value: "sixty-six".to_owned().into(),
}
]
);
}
#[test]
fn bind_arrays_with_objects_elements() {
let program = r#"let x = [44, {a: 55, b: "sixty-six"}]"#;
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 44i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 55i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(2),
value: "sixty-six".to_owned().into(),
}
]
);
}
#[test]
fn name_not_found() {
// Users can't assign `y` to anything because `y` is undefined.
let err = should_not_compile("let x = y");
assert_eq!(err, CompileError::Undefined { name: "y".to_owned() });
}
#[test]
fn aliases() {
let program = "
let x = 1
let y = x";
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into(),
}]
);
}
#[test]
fn use_native_function_add() {
let program = "let x = add(1,2)";
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into()
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 2i64.into()
},
Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: ep::Operation::Add,
operand0: ep::Operand::Reference(Address::ZERO),
operand1: ep::Operand::Reference(Address::ZERO.offset(1))
},
destination: Address::ZERO.offset(2),
}
]
);
}
#[test]
fn use_native_function_id() {
let program = "let x = id(2)";
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![Instruction::SetPrimitive {
address: Address::ZERO,
value: 2i64.into()
}]
);
}
#[test]
fn add_literals() {
let program = "let x = 1 + 2";
let (plan, _scope) = must_plan(program);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into()
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 2i64.into()
},
Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: ep::Operation::Add,
operand0: ep::Operand::Reference(Address::ZERO),
operand1: ep::Operand::Reference(Address::ZERO.offset(1)),
},
destination: Address::ZERO.offset(2),
}
]
);
}
#[test]
fn add_vars() {
let program = "
let one = 1
let two = 2
let x = one + two";
let (plan, _bindings) = must_plan(program);
let addr0 = Address::ZERO;
let addr1 = Address::ZERO.offset(1);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: addr0,
value: 1i64.into(),
},
Instruction::SetPrimitive {
address: addr1,
value: 2i64.into(),
},
Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: ep::Operation::Add,
operand0: ep::Operand::Reference(addr0),
operand1: ep::Operand::Reference(addr1),
},
destination: Address::ZERO.offset(2),
}
]
);
}
#[test]
fn composite_binary_exprs() {
let program = "
let x = 1
let y = 2
let z = 3
let six = x + y + z
";
let (plan, _bindings) = must_plan(program);
let addr0 = Address::ZERO;
let addr1 = Address::ZERO.offset(1);
let addr2 = Address::ZERO.offset(2);
let addr3 = Address::ZERO.offset(3);
assert_eq!(
plan,
vec![
Instruction::SetPrimitive {
address: addr0,
value: 1i64.into(),
},
Instruction::SetPrimitive {
address: addr1,
value: 2i64.into(),
},
Instruction::SetPrimitive {
address: addr2,
value: 3i64.into(),
},
// Adds 1 + 2
Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: ep::Operation::Add,
operand0: ep::Operand::Reference(addr0),
operand1: ep::Operand::Reference(addr1),
},
destination: addr3,
},
// Adds `x` + 3, where `x` is (1 + 2)
Instruction::Arithmetic {
arithmetic: ep::Arithmetic {
operation: ep::Operation::Add,
operand0: ep::Operand::Reference(addr3),
operand1: ep::Operand::Reference(addr2),
},
destination: Address::ZERO.offset(4),
}
]
);
}
#[test]
fn aliases_dont_affect_plans() {
let (plan1, _) = must_plan(
"let one = 1
let two = 2
let x = one + two",
);
let (plan2, _) = must_plan(
"let one = 1
let two = 2
let y = two
let x = one + y",
);
assert_eq!(plan1, plan2);
}
#[test]
fn store_object() {
let program = "const x0 = {a: 1, b: 2, c: {d: 3}}";
let (actual, bindings) = must_plan(program);
let expected = vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 2i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(2),
value: 3i64.into(),
},
];
assert_eq!(actual, expected);
eprintln!("{bindings:#?}");
assert_eq!(
bindings.get("x0").unwrap(),
&EpBinding::Map(HashMap::from([
("a".to_owned(), EpBinding::Single(Address::ZERO),),
("b".to_owned(), EpBinding::Single(Address::ZERO.offset(1))),
(
"c".to_owned(),
EpBinding::Map(HashMap::from([(
"d".to_owned(),
EpBinding::Single(Address::ZERO.offset(2))
)]))
),
]))
)
}
#[test]
fn store_object_with_array_property() {
let program = "const x0 = {a: 1, b: [2, 3]}";
let (actual, bindings) = must_plan(program);
let expected = vec![
Instruction::SetPrimitive {
address: Address::ZERO,
value: 1i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(1),
value: 2i64.into(),
},
Instruction::SetPrimitive {
address: Address::ZERO.offset(2),
value: 3i64.into(),
},
];
assert_eq!(actual, expected);
eprintln!("{bindings:#?}");
assert_eq!(
bindings.get("x0").unwrap(),
&EpBinding::Map(HashMap::from([
("a".to_owned(), EpBinding::Single(Address::ZERO),),
(
"b".to_owned(),
EpBinding::Sequence(vec![
EpBinding::Single(Address::ZERO.offset(1)),
EpBinding::Single(Address::ZERO.offset(2)),
])
),
]))
)
}
#[ignore = "haven't done API calls or stdlib yet"]
#[test]
fn stdlib_api_calls() {
let program = "const x0 = startSketchAt([0, 0])
const x1 = line([0, 10], x0)
const x2 = line([10, 0], x1)
const x3 = line([0, -10], x2)
const x4 = line([0, 0], x3)
const x5 = close(x4)
const x6 = extrude(20, x5)
show(x6)";
must_plan(program);
}

View File

@ -21,6 +21,8 @@ databake = { version = "0.1.7", features = ["derive"] }
derive-docs = { version = "0.1.5" } derive-docs = { version = "0.1.5" }
# derive-docs = { path = "../derive-docs" } # derive-docs = { path = "../derive-docs" }
kittycad = { workspace = true } kittycad = { workspace = true }
kittycad-execution-plan-macros = { workspace = true }
kittycad-execution-plan-traits = { workspace = true }
lazy_static = "1.4.0" lazy_static = "1.4.0"
parse-display = "0.8.2" parse-display = "0.8.2"
schemars = { version = "0.8.16", features = ["impl_json_schema", "url", "uuid1"] } schemars = { version = "0.8.16", features = ["impl_json_schema", "url", "uuid1"] }

View File

@ -5,6 +5,7 @@ use std::{collections::HashMap, sync::Arc};
use anyhow::Result; use anyhow::Result;
use async_recursion::async_recursion; use async_recursion::async_recursion;
use kittycad::types::{Color, ModelingCmd, Point3D}; use kittycad::types::{Color, ModelingCmd, Point3D};
use kittycad_execution_plan_macros::ExecutionPlanValue;
use parse_display::{Display, FromStr}; use parse_display::{Display, FromStr};
use schemars::JsonSchema; use schemars::JsonSchema;
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
@ -610,7 +611,7 @@ impl Point2d {
} }
} }
#[derive(Debug, Deserialize, Serialize, PartialEq, Clone, ts_rs::TS, JsonSchema)] #[derive(Debug, Deserialize, Serialize, PartialEq, Clone, ts_rs::TS, JsonSchema, ExecutionPlanValue)]
#[ts(export)] #[ts(export)]
pub struct Point3d { pub struct Point3d {
pub x: f64, pub x: f64,

View File

@ -3,6 +3,7 @@
use anyhow::Result; use anyhow::Result;
use derive_docs::stdlib; use derive_docs::stdlib;
use kittycad::types::{Angle, ModelingCmd, Point3D}; use kittycad::types::{Angle, ModelingCmd, Point3D};
use kittycad_execution_plan_macros::ExecutionPlanValue;
use schemars::JsonSchema; use schemars::JsonSchema;
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
@ -648,7 +649,7 @@ async fn inner_start_sketch_at(data: LineData, args: Args) -> Result<Box<SketchG
} }
/// Data for a plane. /// Data for a plane.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)] #[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema, ExecutionPlanValue)]
#[ts(export)] #[ts(export)]
#[serde(rename_all = "camelCase")] #[serde(rename_all = "camelCase")]
pub enum PlaneData { pub enum PlaneData {