#6182 Improve calculate_circle_center (#6192)

* add tests for calculate_circle_center - the first one succeeds with the current impl

* fix calculate_circle_center

* comment cleanup

* clippy

* comment format

* update circle_three_point sim test snapshot for slight floating point changes introduced by calculate_circle_center refactor

* use TAU instead of 2 * PI

* clippy
This commit is contained in:
Andrew Varga
2025-04-11 12:43:18 +02:00
committed by GitHub
parent c45c2e27ba
commit 1f6b90d383
2 changed files with 100 additions and 32 deletions

View File

@ -234,40 +234,37 @@ pub fn is_on_circumference(center: Point2d, point: Point2d, radius: f64) -> bool
(distance_squared - radius.powi(2)).abs() < 1e-9
}
// Calculate the center of 3 points
// To calculate the center of the 3 point circle 2 perpendicular lines are created
// These perpendicular lines will intersect at the center of the circle.
// Calculate the center of 3 points using an algebraic method
// Handles if 3 points lie on the same line (collinear) by returning the average of the points (could return None instead..)
pub fn calculate_circle_center(p1: [f64; 2], p2: [f64; 2], p3: [f64; 2]) -> [f64; 2] {
// y2 - y1
let y_2_1 = p2[1] - p1[1];
// y3 - y2
let y_3_2 = p3[1] - p2[1];
// x2 - x1
let x_2_1 = p2[0] - p1[0];
// x3 - x2
let x_3_2 = p3[0] - p2[0];
let (x1, y1) = (p1[0], p1[1]);
let (x2, y2) = (p2[0], p2[1]);
let (x3, y3) = (p3[0], p3[1]);
// Slope of two perpendicular lines
let slope_a = y_2_1 / x_2_1;
let slope_b = y_3_2 / x_3_2;
// Compute the determinant d = 2 * (x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2))
// Visually d is twice the area of the triangle formed by the points,
// also the same as: cross(p2 - p1, p3 - p1)
let d = 2.0 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2));
// Values for line intersection
// y1 - y3
let y_1_3 = p1[1] - p3[1];
// x1 + x2
let x_1_2 = p1[0] + p2[0];
// x2 + x3
let x_2_3 = p2[0] + p3[0];
// y1 + y2
let y_1_2 = p1[1] + p2[1];
// If d is nearly zero, the points are collinear, and a unique circle cannot be defined.
if d.abs() < f64::EPSILON {
return [(x1 + x2 + x3) / 3.0, (y1 + y2 + y3) / 3.0];
}
// Solve for the intersection of these two lines
let numerator = (slope_a * slope_b * y_1_3) + (slope_b * x_1_2) - (slope_a * x_2_3);
let x = numerator / (2.0 * (slope_b - slope_a));
// squared lengths
let p1_sq = x1 * x1 + y1 * y1;
let p2_sq = x2 * x2 + y2 * y2;
let p3_sq = x3 * x3 + y3 * y3;
let y = ((-1.0 / slope_a) * (x - (x_1_2 / 2.0))) + (y_1_2 / 2.0);
[x, y]
// This formula is derived from the circle equations:
// (x - cx)^2 + (y - cy)^2 = r^2
// All 3 points will satisfy this equation, so we have 3 equations. Radius can be eliminated
// by subtracting one of the equations from the other two and the remaining 2 equations can
// be solved for cx and cy.
[
(p1_sq * (y2 - y3) + p2_sq * (y3 - y1) + p3_sq * (y1 - y2)) / d,
(p1_sq * (x3 - x2) + p2_sq * (x1 - x3) + p3_sq * (x2 - x1)) / d,
]
}
pub struct CircleParams {
@ -286,9 +283,11 @@ pub fn calculate_circle_from_3_points(points: [Point2d; 3]) -> CircleParams {
#[cfg(test)]
mod tests {
// Here you can bring your functions into scope
use approx::assert_relative_eq;
use pretty_assertions::assert_eq;
use std::f64::consts::TAU;
use super::{get_x_component, get_y_component, Angle};
use super::{calculate_circle_center, get_x_component, get_y_component, Angle};
use crate::SourceRange;
static EACH_QUAD: [(i32, [i32; 2]); 12] = [
@ -453,6 +452,75 @@ mod tests {
assert_eq!(angle_start.to_degrees().round(), 0.0);
assert_eq!(angle_end.to_degrees().round(), 180.0);
}
#[test]
fn test_calculate_circle_center() {
const EPS: f64 = 1e-4;
// Test: circle center = (4.1, 1.9)
let p1 = [1.0, 2.0];
let p2 = [4.0, 5.0];
let p3 = [7.0, 3.0];
let center = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(center[0], 4.1, epsilon = EPS);
assert_relative_eq!(center[1], 1.9, epsilon = EPS);
// Tests: Generate a few circles and test its points
let center = [3.2, 0.7];
let radius_array = [0.001, 0.01, 0.6, 1.0, 5.0, 60.0, 500.0, 2000.0, 400_000.0];
let points_array = [[0.0, 0.33, 0.66], [0.0, 0.1, 0.2], [0.0, -0.1, 0.1], [0.0, 0.5, 0.7]];
let get_point = |radius: f64, t: f64| {
let angle = t * TAU;
[center[0] + radius * angle.cos(), center[1] + radius * angle.sin()]
};
for radius in radius_array {
for point in points_array {
let p1 = get_point(radius, point[0]);
let p2 = get_point(radius, point[1]);
let p3 = get_point(radius, point[2]);
let c = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(c[0], center[0], epsilon = EPS);
assert_relative_eq!(c[1], center[1], epsilon = EPS);
}
}
// Test: Equilateral triangle
let p1 = [0.0, 0.0];
let p2 = [1.0, 0.0];
let p3 = [0.5, 3.0_f64.sqrt() / 2.0];
let center = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(center[0], 0.5, epsilon = EPS);
assert_relative_eq!(center[1], 1.0 / (2.0 * 3.0_f64.sqrt()), epsilon = EPS);
// Test: Collinear points (should return the average of the points)
let p1 = [0.0, 0.0];
let p2 = [1.0, 0.0];
let p3 = [2.0, 0.0];
let center = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(center[0], 1.0, epsilon = EPS);
assert_relative_eq!(center[1], 0.0, epsilon = EPS);
// Test: Points forming a circle with radius = 1
let p1 = [0.0, 0.0];
let p2 = [0.0, 2.0];
let p3 = [2.0, 0.0];
let center = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(center[0], 1.0, epsilon = EPS);
assert_relative_eq!(center[1], 1.0, epsilon = EPS);
// Test: Integer coordinates
let p1 = [0.0, 0.0];
let p2 = [0.0, 6.0];
let p3 = [6.0, 0.0];
let center = calculate_circle_center(p1, p2, p3);
assert_relative_eq!(center[0], 3.0, epsilon = EPS);
assert_relative_eq!(center[1], 3.0, epsilon = EPS);
// Verify radius (should be 3 * sqrt(2))
let radius = ((center[0] - p1[0]).powi(2) + (center[1] - p1[1]).powi(2)).sqrt();
assert_relative_eq!(radius, 3.0 * 2.0_f64.sqrt(), epsilon = EPS);
}
}
pub type Coords2d = [f64; 2];