Composite is now generic over size in memory.
Previously the Composite trait accepted a Vec<Value> for reading from memory, and returned a Vec<Value> for writing to memory. This meant the caller might provide the wrong size of Vec (e.g. a Point3d requires 3 memory addresses, so the code has to check and handle if the user only passes in 2). Now those methods accept/return a [Value; N] which is statically guaranteed to be the right size! This means there's no more need for runtime checks that the Vec is the right size -- because the array is guaranteed to be the right size. This involves removing the SIZE constant and instead changing it into a SIZE const generic.
This commit is contained in:
@ -1,36 +1,24 @@
|
||||
use crate::{ExecutionError, Value};
|
||||
use crate::{ExecutionError, NumericValue, Value};
|
||||
|
||||
/// Types that can be written to or read from KCEP program memory,
|
||||
/// but require multiple values to store.
|
||||
/// They get laid out into multiple consecutive memory addresses.
|
||||
pub trait Composite: Sized {
|
||||
/// How many memory addresses are required to store this value?
|
||||
const SIZE: usize;
|
||||
pub trait Composite<const SIZE: usize>: Sized {
|
||||
/// Store the value in memory.
|
||||
fn into_parts(self) -> Vec<Value>;
|
||||
fn into_parts(self) -> [Value; SIZE];
|
||||
/// Read the value from memory.
|
||||
fn from_parts(values: Vec<Value>) -> Result<Self, ExecutionError>;
|
||||
fn from_parts(values: [Value; SIZE]) -> Result<Self, ExecutionError>;
|
||||
}
|
||||
|
||||
impl Composite for kittycad::types::Point3D {
|
||||
fn into_parts(self) -> Vec<Value> {
|
||||
let points = [self.x, self.y, self.z];
|
||||
points
|
||||
.into_iter()
|
||||
.map(|x| Value::NumericValue(crate::NumericValue::Float(x)))
|
||||
.collect()
|
||||
impl Composite<3> for kittycad::types::Point3D {
|
||||
fn into_parts(self) -> [Value; 3] {
|
||||
[self.x, self.y, self.z]
|
||||
.map(NumericValue::Float)
|
||||
.map(Value::NumericValue)
|
||||
}
|
||||
|
||||
const SIZE: usize = 3;
|
||||
|
||||
fn from_parts(values: Vec<Value>) -> Result<Self, ExecutionError> {
|
||||
let n = values.len();
|
||||
let Ok([x, y, z]): Result<[Value; 3], _> = values.try_into() else {
|
||||
return Err(ExecutionError::MemoryWrongSize {
|
||||
actual: n,
|
||||
expected: Self::SIZE,
|
||||
});
|
||||
};
|
||||
fn from_parts(values: [Value; 3]) -> Result<Self, ExecutionError> {
|
||||
let [x, y, z] = values;
|
||||
let x = x.try_into()?;
|
||||
let y = y.try_into()?;
|
||||
let z = z.try_into()?;
|
||||
|
||||
@ -6,9 +6,10 @@
|
||||
//! You can think of it as a domain-specific language for making KittyCAD API calls and using
|
||||
//! the results to make other API calls.
|
||||
|
||||
use std::{collections::HashMap, fmt};
|
||||
|
||||
use composite::Composite;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::{collections::HashMap, fmt};
|
||||
|
||||
mod composite;
|
||||
#[cfg(test)]
|
||||
@ -48,7 +49,7 @@ impl Memory {
|
||||
|
||||
/// Store a composite value (i.e. a value which takes up multiple addresses in memory).
|
||||
/// Store its parts in consecutive memory addresses starting at `start`.
|
||||
pub fn set_composite<T: Composite>(&mut self, composite_value: T, start: Address) {
|
||||
pub fn set_composite<T: Composite<{ N }>, const N: usize>(&mut self, composite_value: T, start: Address) {
|
||||
let parts = composite_value.into_parts().into_iter();
|
||||
for (value, addr) in parts.zip(start.0..) {
|
||||
self.0.insert(addr, value);
|
||||
@ -57,17 +58,14 @@ impl Memory {
|
||||
|
||||
/// Get a composite value (i.e. a value which takes up multiple addresses in memory).
|
||||
/// Its parts are stored in consecutive memory addresses starting at `start`.
|
||||
pub fn get_composite<T: Composite>(&self, start: Address) -> Result<T, ExecutionError> {
|
||||
let addrs = start.0..start.0 + T::SIZE;
|
||||
let values: Vec<Value> = addrs
|
||||
.into_iter()
|
||||
.map(|a| {
|
||||
let addr = Address(a);
|
||||
self.get(&addr)
|
||||
.map(|x| x.to_owned())
|
||||
.ok_or(ExecutionError::MemoryEmpty { addr })
|
||||
})
|
||||
.collect::<Result<_, _>>()?;
|
||||
pub fn get_composite<T: Composite<{ N }>, const N: usize>(&self, start: Address) -> Result<T, ExecutionError> {
|
||||
let addrs: [Address; N] = core::array::from_fn(|i| Address(i + start.0));
|
||||
let values: [Value; N] = arr_res_to_res_array(addrs.map(|addr| {
|
||||
self.get(&addr)
|
||||
.map(|x| x.to_owned())
|
||||
.ok_or(ExecutionError::MemoryEmpty { addr })
|
||||
}))?;
|
||||
|
||||
T::from_parts(values)
|
||||
}
|
||||
}
|
||||
@ -273,6 +271,18 @@ pub enum ExecutionError {
|
||||
CannotApplyOperation { op: Operation, operands: Vec<Value> },
|
||||
#[error("Tried to read a '{expected}' from KCEP program memory, found an '{actual}' instead")]
|
||||
MemoryWrongType { expected: &'static str, actual: String },
|
||||
#[error("Wrong size of memory trying to read value from KCEP program memory: got {actual} but wanted {expected}")]
|
||||
MemoryWrongSize { expected: usize, actual: usize },
|
||||
}
|
||||
|
||||
/// Take an array of result and return a result of array.
|
||||
/// If all members of the array are Ok(T), returns Ok with an array of the T values.
|
||||
/// If any member of the array was Err(E), return Err with the first E value.
|
||||
fn arr_res_to_res_array<T, E, const N: usize>(arr: [Result<T, E>; N]) -> Result<[T; N], E> {
|
||||
let mut out = core::array::from_fn(|_| None);
|
||||
for (i, res) in arr.into_iter().enumerate() {
|
||||
out[i] = match res {
|
||||
Ok(x) => Some(x),
|
||||
Err(e) => return Err(e),
|
||||
};
|
||||
}
|
||||
Ok(out.map(|opt| opt.unwrap()))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user