Bind all unary, binary and constants to KCL (#1781)

This commit is contained in:
49fl
2024-03-20 13:12:43 -04:00
committed by GitHub
parent 59274b76bf
commit 46358b41a2
5 changed files with 250 additions and 46 deletions

View File

@ -2,13 +2,16 @@ use std::collections::HashMap;
use kcl_lib::ast::types::{LiteralIdentifier, LiteralValue};
use kittycad_execution_plan::constants;
use kittycad_execution_plan_traits::Primitive;
use super::{native_functions, Address};
use crate::{CompileError, KclFunction};
/// KCL values which can be written to KCEP memory.
/// This is recursive. For example, the bound value might be an array, which itself contains bound values.
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
#[cfg_attr(test, derive(PartialEq))]
pub enum EpBinding {
/// A KCL value which gets stored in a particular address in KCEP memory.
Single(Address),
@ -23,6 +26,8 @@ pub enum EpBinding {
properties: HashMap<String, EpBinding>,
},
/// Not associated with a KCEP address.
Constant(Primitive),
/// Not associated with a KCEP address.
Function(KclFunction),
/// SketchGroups have their own storage.
SketchGroup { index: usize },
@ -52,11 +57,13 @@ impl EpBinding {
EpBinding::SketchGroup { .. } => Err(CompileError::CannotIndex),
EpBinding::Single(_) => Err(CompileError::CannotIndex),
EpBinding::Function(_) => Err(CompileError::CannotIndex),
EpBinding::Constant(_) => Err(CompileError::CannotIndex),
},
// Objects can be indexed by string properties.
LiteralValue::String(property) => match self {
EpBinding::Single(_) => Err(CompileError::NoProperties),
EpBinding::Function(_) => Err(CompileError::NoProperties),
EpBinding::Constant(_) => Err(CompileError::CannotIndex),
EpBinding::SketchGroup { .. } => Err(CompileError::NoProperties),
EpBinding::Sequence { .. } => Err(CompileError::ArrayDoesNotHaveProperties),
EpBinding::Map {
@ -103,8 +110,58 @@ impl BindingScope {
// TODO: Actually put the stdlib prelude in here,
// things like `startSketchAt` and `line`.
ep_bindings: HashMap::from([
("E".into(), EpBinding::Constant(constants::E)),
("PI".into(), EpBinding::Constant(constants::PI)),
("id".into(), EpBinding::from(KclFunction::Id(native_functions::Id))),
("abs".into(), EpBinding::from(KclFunction::Abs(native_functions::Abs))),
(
"acos".into(),
EpBinding::from(KclFunction::Acos(native_functions::Acos)),
),
(
"asin".into(),
EpBinding::from(KclFunction::Asin(native_functions::Asin)),
),
(
"atan".into(),
EpBinding::from(KclFunction::Atan(native_functions::Atan)),
),
(
"ceil".into(),
EpBinding::from(KclFunction::Ceil(native_functions::Ceil)),
),
("cos".into(), EpBinding::from(KclFunction::Cos(native_functions::Cos))),
(
"floor".into(),
EpBinding::from(KclFunction::Floor(native_functions::Floor)),
),
("ln".into(), EpBinding::from(KclFunction::Ln(native_functions::Ln))),
(
"log10".into(),
EpBinding::from(KclFunction::Log10(native_functions::Log10)),
),
(
"log2".into(),
EpBinding::from(KclFunction::Log2(native_functions::Log2)),
),
("sin".into(), EpBinding::from(KclFunction::Sin(native_functions::Sin))),
(
"sqrt".into(),
EpBinding::from(KclFunction::Sqrt(native_functions::Sqrt)),
),
("tan".into(), EpBinding::from(KclFunction::Tan(native_functions::Tan))),
(
"toDegrees".into(),
EpBinding::from(KclFunction::ToDegrees(native_functions::ToDegrees)),
),
(
"toRadians".into(),
EpBinding::from(KclFunction::ToRadians(native_functions::ToRadians)),
),
("add".into(), EpBinding::from(KclFunction::Add(native_functions::Add))),
("log".into(), EpBinding::from(KclFunction::Log(native_functions::Log))),
("max".into(), EpBinding::from(KclFunction::Max(native_functions::Max))),
("min".into(), EpBinding::from(KclFunction::Min(native_functions::Min))),
(
"startSketchAt".into(),
EpBinding::from(KclFunction::StartSketchAt(native_functions::sketch::StartSketchAt)),

View File

@ -259,6 +259,24 @@ impl Planner {
binding,
} = match callee {
KclFunction::Id(f) => f.call(&mut ctx, args)?,
KclFunction::Abs(f) => f.call(&mut ctx, args)?,
KclFunction::Acos(f) => f.call(&mut ctx, args)?,
KclFunction::Asin(f) => f.call(&mut ctx, args)?,
KclFunction::Atan(f) => f.call(&mut ctx, args)?,
KclFunction::Ceil(f) => f.call(&mut ctx, args)?,
KclFunction::Cos(f) => f.call(&mut ctx, args)?,
KclFunction::Floor(f) => f.call(&mut ctx, args)?,
KclFunction::Ln(f) => f.call(&mut ctx, args)?,
KclFunction::Log10(f) => f.call(&mut ctx, args)?,
KclFunction::Log2(f) => f.call(&mut ctx, args)?,
KclFunction::Sin(f) => f.call(&mut ctx, args)?,
KclFunction::Sqrt(f) => f.call(&mut ctx, args)?,
KclFunction::Tan(f) => f.call(&mut ctx, args)?,
KclFunction::ToDegrees(f) => f.call(&mut ctx, args)?,
KclFunction::ToRadians(f) => f.call(&mut ctx, args)?,
KclFunction::Log(f) => f.call(&mut ctx, args)?,
KclFunction::Max(f) => f.call(&mut ctx, args)?,
KclFunction::Min(f) => f.call(&mut ctx, args)?,
KclFunction::StartSketchAt(f) => f.call(&mut ctx, args)?,
KclFunction::Extrude(f) => f.call(&mut ctx, args)?,
KclFunction::LineTo(f) => f.call(&mut ctx, args)?,
@ -634,6 +652,21 @@ impl Eq for UserDefinedFunction {}
#[cfg_attr(test, derive(Eq, PartialEq))]
enum KclFunction {
Id(native_functions::Id),
Abs(native_functions::Abs),
Acos(native_functions::Acos),
Asin(native_functions::Asin),
Atan(native_functions::Atan),
Ceil(native_functions::Ceil),
Cos(native_functions::Cos),
Floor(native_functions::Floor),
Ln(native_functions::Ln),
Log10(native_functions::Log10),
Log2(native_functions::Log2),
Sin(native_functions::Sin),
Sqrt(native_functions::Sqrt),
Tan(native_functions::Tan),
ToDegrees(native_functions::ToDegrees),
ToRadians(native_functions::ToRadians),
StartSketchAt(native_functions::sketch::StartSketchAt),
LineTo(native_functions::sketch::LineTo),
Line(native_functions::sketch::Line),
@ -642,6 +675,9 @@ enum KclFunction {
YLineTo(native_functions::sketch::YLineTo),
YLine(native_functions::sketch::YLine),
Add(native_functions::Add),
Log(native_functions::Log),
Max(native_functions::Max),
Min(native_functions::Min),
UserDefined(UserDefinedFunction),
Extrude(native_functions::sketch::Extrude),
Close(native_functions::sketch::Close),

View File

@ -2,18 +2,15 @@
//! This includes some of the stdlib, e.g. `startSketchAt`.
//! But some other stdlib functions will be written in KCL.
use kittycad_execution_plan::{BinaryArithmetic, Destination, Instruction};
use kittycad_execution_plan::{
BinaryArithmetic, BinaryOperation, Destination, Instruction, Operand, UnaryArithmetic, UnaryOperation,
};
use kittycad_execution_plan_traits::Address;
use crate::{CompileError, EpBinding, EvalPlan};
pub mod sketch;
/// The identity function. Always returns its first input.
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct Id;
pub trait Callable {
fn call(&self, ctx: &mut Context<'_>, args: Vec<EpBinding>) -> Result<EvalPlan, CompileError>;
}
@ -32,6 +29,65 @@ impl<'a> Context<'a> {
}
}
/// Unary operator macro to quickly create new bindings.
macro_rules! define_unary {
() => {};
($h:ident$( $r:ident)*) => {
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct $h;
impl Callable for $h {
fn call(&self, ctx: &mut Context<'_>, mut args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
if args.len() > 1 {
return Err(CompileError::TooManyArgs {
fn_name: "$h".into(),
maximum: 1,
actual: args.len(),
});
}
let not_enough_args = CompileError::NotEnoughArgs {
fn_name: "$h".into(),
required: 1,
actual: args.len(),
};
let EpBinding::Single(arg0) = args.pop().ok_or(not_enough_args.clone())? else {
return Err(CompileError::InvalidOperand("A single value binding is expected"));
};
let destination = ctx.next_address.offset_by(1);
let instructions = vec![
Instruction::UnaryArithmetic {
arithmetic: UnaryArithmetic {
operation: UnaryOperation::$h,
operand: Operand::Reference(arg0)
},
destination: Destination::Address(destination)
}
];
Ok(EvalPlan {
instructions,
binding: EpBinding::Single(destination),
})
}
}
define_unary!($($r)*);
};
}
define_unary!(Abs Acos Asin Atan Ceil Cos Floor Ln Log10 Log2 Sin Sqrt Tan ToDegrees ToRadians);
/// The identity function. Always returns its first input.
/// Implemented purely on the KCL side so it doesn't need to be in the
/// define_unary! macro above.
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct Id;
impl Callable for Id {
fn call(&self, _: &mut Context<'_>, args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
if args.len() > 1 {
@ -56,44 +112,53 @@ impl Callable for Id {
}
}
/// A test function that adds two numbers.
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct Add;
/// Binary operator macro to quickly create new bindings.
macro_rules! define_binary {
() => {};
($h:ident$( $r:ident)*) => {
#[derive(Debug, Clone)]
#[cfg_attr(test, derive(Eq, PartialEq))]
pub struct $h;
impl Callable for Add {
fn call(&self, ctx: &mut Context<'_>, mut args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
let len = args.len();
if len > 2 {
return Err(CompileError::TooManyArgs {
fn_name: "add".into(),
maximum: 2,
actual: len,
});
impl Callable for $h {
fn call(&self, ctx: &mut Context<'_>, mut args: Vec<EpBinding>) -> Result<EvalPlan, CompileError> {
let len = args.len();
if len > 2 {
return Err(CompileError::TooManyArgs {
fn_name: "$h".into(),
maximum: 2,
actual: len,
});
}
let not_enough_args = CompileError::NotEnoughArgs {
fn_name: "$h".into(),
required: 2,
actual: len,
};
const ERR: &str = "cannot use composite values (e.g. array) as arguments to $h";
let EpBinding::Single(arg1) = args.pop().ok_or(not_enough_args.clone())? else {
return Err(CompileError::InvalidOperand(ERR));
};
let EpBinding::Single(arg0) = args.pop().ok_or(not_enough_args)? else {
return Err(CompileError::InvalidOperand(ERR));
};
let destination = ctx.next_address.offset_by(1);
Ok(EvalPlan {
instructions: vec![Instruction::BinaryArithmetic {
arithmetic: BinaryArithmetic {
operation: BinaryOperation::$h,
operand0: Operand::Reference(arg0),
operand1: Operand::Reference(arg1),
},
destination: Destination::Address(destination),
}],
binding: EpBinding::Single(destination),
})
}
let not_enough_args = CompileError::NotEnoughArgs {
fn_name: "add".into(),
required: 2,
actual: len,
};
const ERR: &str = "cannot use composite values (e.g. array) as arguments to Add";
let EpBinding::Single(arg1) = args.pop().ok_or(not_enough_args.clone())? else {
return Err(CompileError::InvalidOperand(ERR));
};
let EpBinding::Single(arg0) = args.pop().ok_or(not_enough_args)? else {
return Err(CompileError::InvalidOperand(ERR));
};
let destination = ctx.next_address.offset_by(1);
Ok(EvalPlan {
instructions: vec![Instruction::BinaryArithmetic {
arithmetic: BinaryArithmetic {
operation: kittycad_execution_plan::BinaryOperation::Add,
operand0: kittycad_execution_plan::Operand::Reference(arg0),
operand1: kittycad_execution_plan::Operand::Reference(arg1),
},
destination: Destination::Address(destination),
}],
binding: EpBinding::Single(destination),
})
}
define_binary!($($r)*);
};
}
define_binary!(Add Log Max Min);

View File

@ -67,6 +67,12 @@ pub fn sg_binding(
actual: "function".to_owned(),
arg_number,
}),
EpBinding::Constant(_) => Err(CompileError::ArgWrongType {
fn_name,
expected,
actual: "constant".to_owned(),
arg_number,
}),
}
}
pub fn single_binding(
@ -101,6 +107,12 @@ pub fn single_binding(
actual: "function".to_owned(),
arg_number,
}),
EpBinding::Constant(_) => Err(CompileError::ArgWrongType {
fn_name,
expected,
actual: "constant".to_owned(),
arg_number,
}),
}
}
@ -136,6 +148,12 @@ pub fn sequence_binding(
actual: "function".to_owned(),
arg_number,
}),
EpBinding::Constant(_) => Err(CompileError::ArgWrongType {
fn_name,
expected,
actual: "constant".to_owned(),
arg_number,
}),
}
}

View File

@ -1,7 +1,7 @@
use std::{collections::HashMap, env};
use ep::{sketch_types, Destination, UnaryArithmetic};
use ept::{ListHeader, ObjectHeader};
use ep::{constants, sketch_types, Destination, UnaryArithmetic};
use ept::{ListHeader, ObjectHeader, Primitive};
use kittycad_modeling_cmds::shared::Point2d;
use kittycad_modeling_session::SessionBuilder;
use pretty_assertions::assert_eq;
@ -1414,3 +1414,31 @@ fn mod_and_pow() {
]
);
}
#[tokio::test]
async fn cos_sin_pi() {
let program = "
let x = cos(45.0)*10
let y = sin(45.0)*10
let z = PI
";
let (_plan, scope, _) = must_plan(program);
let Some(EpBinding::Single(x)) = scope.get("x") else {
panic!("Unexpected binding for variable 'x': {:?}", scope.get("x"));
};
let Some(EpBinding::Single(y)) = scope.get("y") else {
panic!("Unexpected binding for variable 'y': {:?}", scope.get("y"));
};
let Some(EpBinding::Constant(z)) = scope.get("z") else {
panic!("Unexpected binding for variable 'z': {:?}", scope.get("z"));
};
let ast = kcl_lib::parser::Parser::new(kcl_lib::token::lexer(program))
.ast()
.unwrap();
let mem = crate::execute(ast, &mut None).await.unwrap();
use ept::ReadMemory;
assert_eq!(*mem.get(x).unwrap(), Primitive::from(5.253219888177298));
assert_eq!(*mem.get(y).unwrap(), Primitive::from(8.509035245341185));
// Constants don't live in memory.
assert_eq!(*z, constants::PI);
}