|
|
|
@ -1,30 +1,85 @@
|
|
|
|
|
use std::f64::consts::PI;
|
|
|
|
|
|
|
|
|
|
use crate::{
|
|
|
|
|
errors::{KclError, KclErrorDetails},
|
|
|
|
|
executor::{Point2d, SourceRange},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
pub fn get_angle(a: &[f64; 2], b: &[f64; 2]) -> f64 {
|
|
|
|
|
let x = b[0] - a[0];
|
|
|
|
|
let y = b[1] - a[1];
|
|
|
|
|
normalise_angle(y.atan2(x).to_degrees())
|
|
|
|
|
#[derive(Clone, Copy, Default, PartialOrd, PartialEq, Debug)]
|
|
|
|
|
pub struct Angle {
|
|
|
|
|
degrees: f64,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn normalise_angle(angle: f64) -> f64 {
|
|
|
|
|
impl Angle {
|
|
|
|
|
const ZERO: Self = Self { degrees: 0.0 };
|
|
|
|
|
/// Make an angle of the given degrees.
|
|
|
|
|
pub fn from_degrees(degrees: f64) -> Self {
|
|
|
|
|
Self { degrees }
|
|
|
|
|
}
|
|
|
|
|
/// Make an angle of the given radians.
|
|
|
|
|
pub fn from_radians(radians: f64) -> Self {
|
|
|
|
|
Self::from_degrees(radians.to_degrees())
|
|
|
|
|
}
|
|
|
|
|
/// Get the angle in degrees
|
|
|
|
|
pub fn degrees(&self) -> f64 {
|
|
|
|
|
self.degrees
|
|
|
|
|
}
|
|
|
|
|
/// Get the angle in radians
|
|
|
|
|
pub fn radians(&self) -> f64 {
|
|
|
|
|
self.degrees.to_radians()
|
|
|
|
|
}
|
|
|
|
|
/// Get the angle between these points
|
|
|
|
|
pub fn between(a: Point2d, b: Point2d) -> Self {
|
|
|
|
|
let x = b.x - a.x;
|
|
|
|
|
let y = b.y - a.y;
|
|
|
|
|
Self::from_radians(y.atan2(x)).normalize()
|
|
|
|
|
}
|
|
|
|
|
/// Normalize the angle
|
|
|
|
|
pub fn normalize(self) -> Self {
|
|
|
|
|
let angle = self.degrees();
|
|
|
|
|
let result = ((angle % 360.0) + 360.0) % 360.0;
|
|
|
|
|
if result > 180.0 {
|
|
|
|
|
result - 360.0
|
|
|
|
|
} else {
|
|
|
|
|
result
|
|
|
|
|
Self::from_degrees(if result > 180.0 { result - 360.0 } else { result })
|
|
|
|
|
}
|
|
|
|
|
/// Gives the ▲-angle between from and to angles (shortest path), use radians.
|
|
|
|
|
///
|
|
|
|
|
/// Sign of the returned angle denotes direction, positive means counterClockwise 🔄
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
/// use std::f64::consts::PI;
|
|
|
|
|
/// use kcl_lib::std::utils::Angle;
|
|
|
|
|
///
|
|
|
|
|
/// assert_eq!(
|
|
|
|
|
/// Angle::delta(Angle::from_radians(PI / 8.0), Angle::from_radians(PI / 4.0)),
|
|
|
|
|
/// Angle::from_radians(PI / 8.0)
|
|
|
|
|
/// );
|
|
|
|
|
/// ```
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
|
pub fn delta(from_angle: Self, to_angle: Self) -> Self {
|
|
|
|
|
let norm_from_angle = normalize_rad(from_angle.radians());
|
|
|
|
|
let norm_to_angle = normalize_rad(to_angle.radians());
|
|
|
|
|
let provisional = norm_to_angle - norm_from_angle;
|
|
|
|
|
|
|
|
|
|
if provisional > -PI && provisional <= PI {
|
|
|
|
|
return Angle::from_radians(provisional);
|
|
|
|
|
}
|
|
|
|
|
if provisional > PI {
|
|
|
|
|
return Angle::from_radians(provisional - 2.0 * PI);
|
|
|
|
|
}
|
|
|
|
|
if provisional < -PI {
|
|
|
|
|
return Angle::from_radians(provisional + 2.0 * PI);
|
|
|
|
|
}
|
|
|
|
|
Angle::ZERO
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
|
pub fn clockwise_sign(points: &[[f64; 2]]) -> i32 {
|
|
|
|
|
pub fn clockwise_sign(points: &[Point2d]) -> i32 {
|
|
|
|
|
let mut sum = 0.0;
|
|
|
|
|
for i in 0..points.len() {
|
|
|
|
|
let current_point = points[i];
|
|
|
|
|
let next_point = points[(i + 1) % points.len()];
|
|
|
|
|
sum += (next_point[0] - current_point[0]) * (next_point[1] + current_point[1]);
|
|
|
|
|
sum += (next_point.x - current_point.x) * (next_point.y + current_point.y);
|
|
|
|
|
}
|
|
|
|
|
if sum >= 0.0 {
|
|
|
|
|
1
|
|
|
|
@ -35,139 +90,145 @@ pub fn clockwise_sign(points: &[[f64; 2]]) -> i32 {
|
|
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
|
pub fn normalize_rad(angle: f64) -> f64 {
|
|
|
|
|
let draft = angle % (2.0 * std::f64::consts::PI);
|
|
|
|
|
let draft = angle % (2.0 * PI);
|
|
|
|
|
if draft < 0.0 {
|
|
|
|
|
draft + 2.0 * std::f64::consts::PI
|
|
|
|
|
draft + 2.0 * PI
|
|
|
|
|
} else {
|
|
|
|
|
draft
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Gives the ▲-angle between from and to angles (shortest path), use radians.
|
|
|
|
|
///
|
|
|
|
|
/// Sign of the returned angle denotes direction, positive means counterClockwise 🔄
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
/// assert_eq!(
|
|
|
|
|
/// kcl_lib::std::utils::delta_angle(std::f64::consts::PI / 8.0, std::f64::consts::PI / 4.0),
|
|
|
|
|
/// std::f64::consts::PI / 8.0
|
|
|
|
|
/// );
|
|
|
|
|
/// ```
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
|
pub fn delta_angle(from_angle: f64, to_angle: f64) -> f64 {
|
|
|
|
|
let norm_from_angle = normalize_rad(from_angle);
|
|
|
|
|
let norm_to_angle = normalize_rad(to_angle);
|
|
|
|
|
let provisional = norm_to_angle - norm_from_angle;
|
|
|
|
|
|
|
|
|
|
if provisional > -std::f64::consts::PI && provisional <= std::f64::consts::PI {
|
|
|
|
|
return provisional;
|
|
|
|
|
}
|
|
|
|
|
if provisional > std::f64::consts::PI {
|
|
|
|
|
return provisional - 2.0 * std::f64::consts::PI;
|
|
|
|
|
}
|
|
|
|
|
if provisional < -std::f64::consts::PI {
|
|
|
|
|
return provisional + 2.0 * std::f64::consts::PI;
|
|
|
|
|
}
|
|
|
|
|
0.0
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Calculates the distance between two points.
|
|
|
|
|
///
|
|
|
|
|
/// # Examples
|
|
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
/// use kcl_lib::executor::Point2d;
|
|
|
|
|
///
|
|
|
|
|
/// assert_eq!(
|
|
|
|
|
/// kcl_lib::std::utils::distance_between_points(&[0.0, 0.0], &[0.0, 5.0]),
|
|
|
|
|
/// kcl_lib::std::utils::distance_between_points(Point2d::ZERO, Point2d{x: 0.0, y: 5.0}),
|
|
|
|
|
/// 5.0
|
|
|
|
|
/// );
|
|
|
|
|
/// assert_eq!(
|
|
|
|
|
/// kcl_lib::std::utils::distance_between_points(&[0.0, 0.0], &[3.0, 4.0]),
|
|
|
|
|
/// kcl_lib::std::utils::distance_between_points(Point2d::ZERO, Point2d{x: 3.0, y: 4.0}),
|
|
|
|
|
/// 5.0
|
|
|
|
|
/// );
|
|
|
|
|
/// ```
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
|
pub fn distance_between_points(point_a: &[f64; 2], point_b: &[f64; 2]) -> f64 {
|
|
|
|
|
let x1 = point_a[0];
|
|
|
|
|
let y1 = point_a[1];
|
|
|
|
|
let x2 = point_b[0];
|
|
|
|
|
let y2 = point_b[1];
|
|
|
|
|
pub fn distance_between_points(point_a: Point2d, point_b: Point2d) -> f64 {
|
|
|
|
|
let x1 = point_a.x;
|
|
|
|
|
let y1 = point_a.y;
|
|
|
|
|
let x2 = point_b.x;
|
|
|
|
|
let y2 = point_b.y;
|
|
|
|
|
|
|
|
|
|
((y2 - y1).powi(2) + (x2 - x1).powi(2)).sqrt()
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn calculate_intersection_of_two_lines(line1: &[[f64; 2]; 2], line2_angle: f64, line2_point: [f64; 2]) -> [f64; 2] {
|
|
|
|
|
let line2_point_b = [
|
|
|
|
|
line2_point[0] + f64::cos(line2_angle.to_radians()) * 10.0,
|
|
|
|
|
line2_point[1] + f64::sin(line2_angle.to_radians()) * 10.0,
|
|
|
|
|
];
|
|
|
|
|
pub fn calculate_intersection_of_two_lines(line1: &[Point2d; 2], line2_angle: f64, line2_point: Point2d) -> Point2d {
|
|
|
|
|
let line2_point_b = Point2d {
|
|
|
|
|
x: line2_point.x + f64::cos(line2_angle.to_radians()) * 10.0,
|
|
|
|
|
y: line2_point.y + f64::sin(line2_angle.to_radians()) * 10.0,
|
|
|
|
|
};
|
|
|
|
|
intersect(line1[0], line1[1], line2_point, line2_point_b)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn intersect(p1: [f64; 2], p2: [f64; 2], p3: [f64; 2], p4: [f64; 2]) -> [f64; 2] {
|
|
|
|
|
let slope = |p1: [f64; 2], p2: [f64; 2]| (p1[1] - p2[1]) / (p1[0] - p2[0]);
|
|
|
|
|
let constant = |p1: [f64; 2], p2: [f64; 2]| p1[1] - slope(p1, p2) * p1[0];
|
|
|
|
|
let get_y = |for_x: f64, p1: [f64; 2], p2: [f64; 2]| slope(p1, p2) * for_x + constant(p1, p2);
|
|
|
|
|
pub fn intersect(p1: Point2d, p2: Point2d, p3: Point2d, p4: Point2d) -> Point2d {
|
|
|
|
|
let slope = |p1: Point2d, p2: Point2d| (p1.y - p2.y) / (p1.x - p2.x);
|
|
|
|
|
let constant = |p1: Point2d, p2: Point2d| p1.y - slope(p1, p2) * p1.x;
|
|
|
|
|
let get_y = |for_x: f64, p1: Point2d, p2: Point2d| slope(p1, p2) * for_x + constant(p1, p2);
|
|
|
|
|
|
|
|
|
|
if p1[0] == p2[0] {
|
|
|
|
|
return [p1[0], get_y(p1[0], p3, p4)];
|
|
|
|
|
if p1.x == p2.x {
|
|
|
|
|
return Point2d {
|
|
|
|
|
x: p1.x,
|
|
|
|
|
y: get_y(p1.x, p3, p4),
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
if p3[0] == p4[0] {
|
|
|
|
|
return [p3[0], get_y(p3[0], p1, p2)];
|
|
|
|
|
if p3.x == p4.x {
|
|
|
|
|
return Point2d {
|
|
|
|
|
x: p3.x,
|
|
|
|
|
y: get_y(p3.x, p1, p2),
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
let x = (constant(p3, p4) - constant(p1, p2)) / (slope(p1, p2) - slope(p3, p4));
|
|
|
|
|
let y = get_y(x, p1, p2);
|
|
|
|
|
[x, y]
|
|
|
|
|
Point2d { x, y }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn intersection_with_parallel_line(
|
|
|
|
|
line1: &[[f64; 2]; 2],
|
|
|
|
|
line1: &[Point2d; 2],
|
|
|
|
|
line1_offset: f64,
|
|
|
|
|
line2_angle: f64,
|
|
|
|
|
line2_point: [f64; 2],
|
|
|
|
|
) -> [f64; 2] {
|
|
|
|
|
line2_point: Point2d,
|
|
|
|
|
) -> Point2d {
|
|
|
|
|
calculate_intersection_of_two_lines(&offset_line(line1_offset, line1[0], line1[1]), line2_angle, line2_point)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn offset_line(offset: f64, p1: [f64; 2], p2: [f64; 2]) -> [[f64; 2]; 2] {
|
|
|
|
|
if p1[0] == p2[0] {
|
|
|
|
|
let direction = (p1[1] - p2[1]).signum();
|
|
|
|
|
return [[p1[0] + offset * direction, p1[1]], [p2[0] + offset * direction, p2[1]]];
|
|
|
|
|
fn offset_line(offset: f64, p1: Point2d, p2: Point2d) -> [Point2d; 2] {
|
|
|
|
|
if p1.x == p2.x {
|
|
|
|
|
let direction = (p1.y - p2.y).signum();
|
|
|
|
|
return [
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p1.x + offset * direction,
|
|
|
|
|
y: p1.y,
|
|
|
|
|
},
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p2.x + offset * direction,
|
|
|
|
|
y: p2.y,
|
|
|
|
|
},
|
|
|
|
|
];
|
|
|
|
|
}
|
|
|
|
|
if p1[1] == p2[1] {
|
|
|
|
|
let direction = (p2[0] - p1[0]).signum();
|
|
|
|
|
return [[p1[0], p1[1] + offset * direction], [p2[0], p2[1] + offset * direction]];
|
|
|
|
|
if p1.y == p2.y {
|
|
|
|
|
let direction = (p2.x - p1.x).signum();
|
|
|
|
|
return [
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p1.x,
|
|
|
|
|
y: p1.y + offset * direction,
|
|
|
|
|
},
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p2.x,
|
|
|
|
|
y: p2.y + offset * direction,
|
|
|
|
|
},
|
|
|
|
|
];
|
|
|
|
|
}
|
|
|
|
|
let x_offset = offset / f64::sin(f64::atan2(p1[1] - p2[1], p1[0] - p2[0]));
|
|
|
|
|
[[p1[0] + x_offset, p1[1]], [p2[0] + x_offset, p2[1]]]
|
|
|
|
|
let x_offset = offset / f64::sin(f64::atan2(p1.y - p2.y, p1.x - p2.x));
|
|
|
|
|
[
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p1.x + x_offset,
|
|
|
|
|
y: p1.y,
|
|
|
|
|
},
|
|
|
|
|
Point2d {
|
|
|
|
|
x: p2.x + x_offset,
|
|
|
|
|
y: p2.y,
|
|
|
|
|
},
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_y_component(angle_degree: f64, x_component: f64) -> [f64; 2] {
|
|
|
|
|
let normalised_angle = ((angle_degree % 360.0) + 360.0) % 360.0; // between 0 and 360
|
|
|
|
|
let y_component = x_component * f64::tan(normalised_angle.to_radians());
|
|
|
|
|
pub fn get_y_component(angle: Angle, x: f64) -> Point2d {
|
|
|
|
|
let normalised_angle = ((angle.degrees() % 360.0) + 360.0) % 360.0; // between 0 and 360
|
|
|
|
|
let y = x * f64::tan(normalised_angle.to_radians());
|
|
|
|
|
let sign = if normalised_angle > 90.0 && normalised_angle <= 270.0 {
|
|
|
|
|
-1.0
|
|
|
|
|
} else {
|
|
|
|
|
1.0
|
|
|
|
|
};
|
|
|
|
|
[sign * x_component, sign * y_component]
|
|
|
|
|
Point2d { x, y }.scale(sign)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn get_x_component(angle_degree: f64, y_component: f64) -> [f64; 2] {
|
|
|
|
|
let normalised_angle = ((angle_degree % 360.0) + 360.0) % 360.0; // between 0 and 360
|
|
|
|
|
let x_component = y_component / f64::tan(normalised_angle.to_radians());
|
|
|
|
|
pub fn get_x_component(angle: Angle, y: f64) -> Point2d {
|
|
|
|
|
let normalised_angle = ((angle.degrees() % 360.0) + 360.0) % 360.0; // between 0 and 360
|
|
|
|
|
let x = y / f64::tan(normalised_angle.to_radians());
|
|
|
|
|
let sign = if normalised_angle > 180.0 && normalised_angle <= 360.0 {
|
|
|
|
|
-1.0
|
|
|
|
|
} else {
|
|
|
|
|
1.0
|
|
|
|
|
};
|
|
|
|
|
[sign * x_component, sign * y_component]
|
|
|
|
|
Point2d { x, y }.scale(sign)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn arc_center_and_end(from: &Point2d, start_angle_deg: f64, end_angle_deg: f64, radius: f64) -> (Point2d, Point2d) {
|
|
|
|
|
let start_angle = start_angle_deg.to_radians();
|
|
|
|
|
let end_angle = end_angle_deg.to_radians();
|
|
|
|
|
pub fn arc_center_and_end(from: Point2d, start_angle: Angle, end_angle: Angle, radius: f64) -> (Point2d, Point2d) {
|
|
|
|
|
let start_angle = start_angle.radians();
|
|
|
|
|
let end_angle = end_angle.radians();
|
|
|
|
|
|
|
|
|
|
let center = Point2d {
|
|
|
|
|
x: -1.0 * (radius * start_angle.cos() - from.x),
|
|
|
|
@ -183,12 +244,12 @@ pub fn arc_center_and_end(from: &Point2d, start_angle_deg: f64, end_angle_deg: f
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn arc_angles(
|
|
|
|
|
from: &Point2d,
|
|
|
|
|
to: &Point2d,
|
|
|
|
|
center: &Point2d,
|
|
|
|
|
from: Point2d,
|
|
|
|
|
to: Point2d,
|
|
|
|
|
center: Point2d,
|
|
|
|
|
radius: f64,
|
|
|
|
|
source_range: SourceRange,
|
|
|
|
|
) -> Result<(f64, f64), KclError> {
|
|
|
|
|
) -> Result<(Angle, Angle), KclError> {
|
|
|
|
|
// First make sure that the points are on the circumference of the circle.
|
|
|
|
|
// If not, we'll return an error.
|
|
|
|
|
if !is_on_circumference(center, from, radius) {
|
|
|
|
@ -214,13 +275,10 @@ pub fn arc_angles(
|
|
|
|
|
let start_angle = (from.y - center.y).atan2(from.x - center.x);
|
|
|
|
|
let end_angle = (to.y - center.y).atan2(to.x - center.x);
|
|
|
|
|
|
|
|
|
|
let start_angle_deg = start_angle.to_degrees();
|
|
|
|
|
let end_angle_deg = end_angle.to_degrees();
|
|
|
|
|
|
|
|
|
|
Ok((start_angle_deg, end_angle_deg))
|
|
|
|
|
Ok((Angle::from_radians(start_angle), Angle::from_radians(end_angle)))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn is_on_circumference(center: &Point2d, point: &Point2d, radius: f64) -> bool {
|
|
|
|
|
pub fn is_on_circumference(center: Point2d, point: Point2d, radius: f64) -> bool {
|
|
|
|
|
let dx = point.x - center.x;
|
|
|
|
|
let dy = point.y - center.y;
|
|
|
|
|
|
|
|
|
@ -237,7 +295,7 @@ mod tests {
|
|
|
|
|
// Here you can bring your functions into scope
|
|
|
|
|
use pretty_assertions::assert_eq;
|
|
|
|
|
|
|
|
|
|
use super::{get_x_component, get_y_component};
|
|
|
|
|
use super::{get_x_component, get_y_component, Angle};
|
|
|
|
|
use crate::executor::SourceRange;
|
|
|
|
|
|
|
|
|
|
static EACH_QUAD: [(i32, [i32; 2]); 12] = [
|
|
|
|
@ -261,28 +319,28 @@ mod tests {
|
|
|
|
|
let mut results = Vec::new();
|
|
|
|
|
|
|
|
|
|
for &(angle, expected_result) in EACH_QUAD.iter() {
|
|
|
|
|
let res = get_y_component(angle as f64, 1.0);
|
|
|
|
|
results.push([res[0].round() as i32, res[1].round() as i32]);
|
|
|
|
|
let res = get_y_component(Angle::from_degrees(angle as f64), 1.0);
|
|
|
|
|
results.push([res.x.round() as i32, res.y.round() as i32]);
|
|
|
|
|
expected.push(expected_result);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert_eq!(results, expected);
|
|
|
|
|
|
|
|
|
|
let result = get_y_component(0.0, 1.0);
|
|
|
|
|
assert_eq!(result[0] as i32, 1);
|
|
|
|
|
assert_eq!(result[1] as i32, 0);
|
|
|
|
|
let result = get_y_component(Angle::ZERO, 1.0);
|
|
|
|
|
assert_eq!(result.x as i32, 1);
|
|
|
|
|
assert_eq!(result.y as i32, 0);
|
|
|
|
|
|
|
|
|
|
let result = get_y_component(90.0, 1.0);
|
|
|
|
|
assert_eq!(result[0] as i32, 1);
|
|
|
|
|
assert!(result[1] > 100000.0);
|
|
|
|
|
let result = get_y_component(Angle::from_degrees(90.0), 1.0);
|
|
|
|
|
assert_eq!(result.x as i32, 1);
|
|
|
|
|
assert!(result.y > 100000.0);
|
|
|
|
|
|
|
|
|
|
let result = get_y_component(180.0, 1.0);
|
|
|
|
|
assert_eq!(result[0] as i32, -1);
|
|
|
|
|
assert!((result[1] - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
let result = get_y_component(Angle::from_degrees(180.0), 1.0);
|
|
|
|
|
assert_eq!(result.x as i32, -1);
|
|
|
|
|
assert!((result.y - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
|
|
|
|
|
let result = get_y_component(270.0, 1.0);
|
|
|
|
|
assert_eq!(result[0] as i32, -1);
|
|
|
|
|
assert!(result[1] < -100000.0);
|
|
|
|
|
let result = get_y_component(Angle::from_degrees(270.0), 1.0);
|
|
|
|
|
assert_eq!(result.x as i32, -1);
|
|
|
|
|
assert!(result.y < -100000.0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
@ -291,45 +349,60 @@ mod tests {
|
|
|
|
|
let mut results = Vec::new();
|
|
|
|
|
|
|
|
|
|
for &(angle, expected_result) in EACH_QUAD.iter() {
|
|
|
|
|
let res = get_x_component(angle as f64, 1.0);
|
|
|
|
|
results.push([res[0].round() as i32, res[1].round() as i32]);
|
|
|
|
|
let res = get_x_component(Angle::from_degrees(angle as f64), 1.0);
|
|
|
|
|
results.push([res.x.round() as i32, res.y.round() as i32]);
|
|
|
|
|
expected.push(expected_result);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert_eq!(results, expected);
|
|
|
|
|
|
|
|
|
|
let result = get_x_component(0.0, 1.0);
|
|
|
|
|
assert!(result[0] > 100000.0);
|
|
|
|
|
assert_eq!(result[1] as i32, 1);
|
|
|
|
|
let result = get_x_component(Angle::ZERO, 1.0);
|
|
|
|
|
assert!(result.x > 100000.0);
|
|
|
|
|
assert_eq!(result.y as i32, 1);
|
|
|
|
|
|
|
|
|
|
let result = get_x_component(90.0, 1.0);
|
|
|
|
|
assert!((result[0] - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
assert_eq!(result[1] as i32, 1);
|
|
|
|
|
let result = get_x_component(Angle::from_degrees(90.0), 1.0);
|
|
|
|
|
assert!((result.x - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
assert_eq!(result.y as i32, 1);
|
|
|
|
|
|
|
|
|
|
let result = get_x_component(180.0, 1.0);
|
|
|
|
|
assert!(result[0] < -100000.0);
|
|
|
|
|
assert_eq!(result[1] as i32, 1);
|
|
|
|
|
let result = get_x_component(Angle::from_degrees(180.0), 1.0);
|
|
|
|
|
assert!(result.x < -100000.0);
|
|
|
|
|
assert_eq!(result.y as i32, 1);
|
|
|
|
|
|
|
|
|
|
let result = get_x_component(270.0, 1.0);
|
|
|
|
|
assert!((result[0] - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
assert_eq!(result[1] as i32, -1);
|
|
|
|
|
let result = get_x_component(Angle::from_degrees(270.0), 1.0);
|
|
|
|
|
assert!((result.x - 0.0).abs() < f64::EPSILON);
|
|
|
|
|
assert_eq!(result.y as i32, -1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_arc_center_and_end() {
|
|
|
|
|
let (center, end) = super::arc_center_and_end(&super::Point2d { x: 0.0, y: 0.0 }, 0.0, 90.0, 1.0);
|
|
|
|
|
let (center, end) = super::arc_center_and_end(
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
Angle::ZERO,
|
|
|
|
|
Angle::from_degrees(90.0),
|
|
|
|
|
1.0,
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(center.x.round(), -1.0);
|
|
|
|
|
assert_eq!(center.y, 0.0);
|
|
|
|
|
assert_eq!(end.x.round(), -1.0);
|
|
|
|
|
assert_eq!(end.y, 1.0);
|
|
|
|
|
|
|
|
|
|
let (center, end) = super::arc_center_and_end(&super::Point2d { x: 0.0, y: 0.0 }, 0.0, 180.0, 1.0);
|
|
|
|
|
let (center, end) = super::arc_center_and_end(
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
Angle::ZERO,
|
|
|
|
|
Angle::from_degrees(180.0),
|
|
|
|
|
1.0,
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(center.x.round(), -1.0);
|
|
|
|
|
assert_eq!(center.y, 0.0);
|
|
|
|
|
assert_eq!(end.x.round(), -2.0);
|
|
|
|
|
assert_eq!(end.y.round(), 0.0);
|
|
|
|
|
|
|
|
|
|
let (center, end) = super::arc_center_and_end(&super::Point2d { x: 0.0, y: 0.0 }, 0.0, 180.0, 10.0);
|
|
|
|
|
let (center, end) = super::arc_center_and_end(
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
Angle::ZERO,
|
|
|
|
|
Angle::from_degrees(180.0),
|
|
|
|
|
10.0,
|
|
|
|
|
);
|
|
|
|
|
assert_eq!(center.x.round(), -10.0);
|
|
|
|
|
assert_eq!(center.y, 0.0);
|
|
|
|
|
assert_eq!(end.x.round(), -20.0);
|
|
|
|
@ -339,42 +412,42 @@ mod tests {
|
|
|
|
|
#[test]
|
|
|
|
|
fn test_arc_angles() {
|
|
|
|
|
let (angle_start, angle_end) = super::arc_angles(
|
|
|
|
|
&super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
&super::Point2d { x: -1.0, y: 1.0 },
|
|
|
|
|
&super::Point2d { x: -1.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: -1.0, y: 1.0 },
|
|
|
|
|
super::Point2d { x: -1.0, y: 0.0 },
|
|
|
|
|
1.0,
|
|
|
|
|
SourceRange(Default::default()),
|
|
|
|
|
)
|
|
|
|
|
.unwrap();
|
|
|
|
|
assert_eq!(angle_start.round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.round(), 90.0);
|
|
|
|
|
assert_eq!(angle_start.degrees().round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.degrees().round(), 90.0);
|
|
|
|
|
|
|
|
|
|
let (angle_start, angle_end) = super::arc_angles(
|
|
|
|
|
&super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
&super::Point2d { x: -2.0, y: 0.0 },
|
|
|
|
|
&super::Point2d { x: -1.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: -2.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: -1.0, y: 0.0 },
|
|
|
|
|
1.0,
|
|
|
|
|
SourceRange(Default::default()),
|
|
|
|
|
)
|
|
|
|
|
.unwrap();
|
|
|
|
|
assert_eq!(angle_start.round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.round(), 180.0);
|
|
|
|
|
assert_eq!(angle_start.degrees().round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.degrees().round(), 180.0);
|
|
|
|
|
|
|
|
|
|
let (angle_start, angle_end) = super::arc_angles(
|
|
|
|
|
&super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
&super::Point2d { x: -20.0, y: 0.0 },
|
|
|
|
|
&super::Point2d { x: -10.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: 0.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: -20.0, y: 0.0 },
|
|
|
|
|
super::Point2d { x: -10.0, y: 0.0 },
|
|
|
|
|
10.0,
|
|
|
|
|
SourceRange(Default::default()),
|
|
|
|
|
)
|
|
|
|
|
.unwrap();
|
|
|
|
|
assert_eq!(angle_start.round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.round(), 180.0);
|
|
|
|
|
assert_eq!(angle_start.degrees().round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.degrees().round(), 180.0);
|
|
|
|
|
|
|
|
|
|
let result = super::arc_angles(
|
|
|
|
|
&super::Point2d { x: 0.0, y: 5.0 },
|
|
|
|
|
&super::Point2d { x: 5.0, y: 5.0 },
|
|
|
|
|
&super::Point2d { x: 10.0, y: -10.0 },
|
|
|
|
|
super::Point2d { x: 0.0, y: 5.0 },
|
|
|
|
|
super::Point2d { x: 5.0, y: 5.0 },
|
|
|
|
|
super::Point2d { x: 10.0, y: -10.0 },
|
|
|
|
|
10.0,
|
|
|
|
|
SourceRange(Default::default()),
|
|
|
|
|
);
|
|
|
|
@ -384,7 +457,7 @@ mod tests {
|
|
|
|
|
} else {
|
|
|
|
|
panic!("Expected error");
|
|
|
|
|
}
|
|
|
|
|
assert_eq!(angle_start.round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.round(), 180.0);
|
|
|
|
|
assert_eq!(angle_start.degrees().round(), 0.0);
|
|
|
|
|
assert_eq!(angle_end.degrees().round(), 180.0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|