Declare std::math in KCL (BREAKING) (#6588)

Declare std::math in KCL

Signed-off-by: Nick Cameron <nrc@ncameron.org>
This commit is contained in:
Nick Cameron
2025-04-30 15:59:19 +12:00
committed by GitHub
parent 5f31f3a6b3
commit 644c561815
86 changed files with 10967 additions and 3149 deletions

View File

@ -1,7 +1,6 @@
//! Functions related to mathematics.
use anyhow::Result;
use kcl_derive_docs::stdlib;
use crate::{
errors::KclError,
@ -26,36 +25,11 @@ pub async fn rem(exec_state: &mut ExecState, args: Args) -> Result<KclValue, Kcl
"Calling `rem` on numbers which have unknown or incompatible units.\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`"
));
}
let remainder = inner_rem(n, d);
let remainder = n % d;
Ok(args.make_user_val_from_f64_with_type(TyF64::new(remainder, ty)))
}
/// Compute the remainder after dividing `num` by `div`.
/// If `num` is negative, the result will be too.
///
/// ```no_run
/// assert(rem( 7, divisor = 4), isEqualTo = 3, error = "remainder is 3")
/// assert(rem(-7, divisor = 4), isEqualTo = -3, error = "remainder is -3")
/// assert(rem( 7, divisor = -4), isEqualTo = 3, error = "remainder is 3")
/// assert(rem( 6, divisor = 2.5), isEqualTo = 1, error = "remainder is 1")
/// assert(rem( 6.5, divisor = 2.5), isEqualTo = 1.5, error = "remainder is 1.5")
/// assert(rem( 6.5, divisor = 2), isEqualTo = 0.5, error = "remainder is 0.5")
/// ```
#[stdlib {
name = "rem",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
num = {docs = "The number which will be divided by `divisor`."},
divisor = {docs = "The number which will divide `num`."},
}
}]
fn inner_rem(num: f64, divisor: f64) -> f64 {
num % divisor
}
/// Compute the cosine of a number (in radians).
pub async fn cos(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::angle(), exec_state)?;
@ -80,184 +54,48 @@ pub async fn tan(exec_state: &mut ExecState, args: Args) -> Result<KclValue, Kcl
/// Compute the square root of a number.
pub async fn sqrt(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_sqrt(input.n);
let result = input.n.sqrt();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the square root of a number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = 50,
/// length = sqrt(2500),
/// )
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "sqrt",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute the square root of."},
}
}]
fn inner_sqrt(input: f64) -> f64 {
input.sqrt()
}
/// Compute the absolute value of a number.
pub async fn abs(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_abs(input.n);
let result = input.n.abs();
Ok(args.make_user_val_from_f64_with_type(input.map_value(result)))
}
/// Compute the absolute value of a number.
///
/// ```no_run
/// myAngle = -120
///
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> line(end = [8, 0])
/// |> angledLine(
/// angle = abs(myAngle),
/// length = 5,
/// )
/// |> line(end = [-5, 0])
/// |> angledLine(
/// angle = myAngle,
/// length = 5,
/// )
/// |> close()
///
/// baseExtrusion = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "abs",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute the absolute value of."},
}
}]
fn inner_abs(input: f64) -> f64 {
input.abs()
}
/// Round a number to the nearest integer.
pub async fn round(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_round(input.n);
let result = input.n.round();
Ok(args.make_user_val_from_f64_with_type(input.map_value(result)))
}
/// Round a number to the nearest integer.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [round(7.02986), 0])
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "round",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to round."},
}
}]
fn inner_round(input: f64) -> f64 {
input.round()
}
/// Compute the largest integer less than or equal to a number.
pub async fn floor(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_floor(input.n);
let result = input.n.floor();
Ok(args.make_user_val_from_f64_with_type(input.map_value(result)))
}
/// Compute the largest integer less than or equal to a number.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [floor(7.02986), 0])
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "floor",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to round."},
}
}]
fn inner_floor(input: f64) -> f64 {
input.floor()
}
/// Compute the smallest integer greater than or equal to a number.
pub async fn ceil(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_ceil(input.n);
let result = input.n.ceil();
Ok(args.make_user_val_from_f64_with_type(input.map_value(result)))
}
/// Compute the smallest integer greater than or equal to a number.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [ceil(7.02986), 0])
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "ceil",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to round."},
}
}]
fn inner_ceil(input: f64) -> f64 {
input.ceil()
}
/// Compute the minimum of the given arguments.
pub async fn min(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums: Vec<TyF64> = args.get_unlabeled_kw_arg_typed(
"input",
&RuntimeType::Array(Box::new(RuntimeType::num_any()), ArrayLen::None),
&RuntimeType::Array(Box::new(RuntimeType::num_any()), ArrayLen::NonEmpty),
exec_state,
)?;
let (nums, ty) = NumericType::combine_eq_array(&nums);
@ -267,50 +105,22 @@ pub async fn min(exec_state: &mut ExecState, args: Args) -> Result<KclValue, Kcl
"Calling `min` on numbers which have unknown or incompatible units.\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`",
));
}
let result = inner_min(nums);
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, ty)))
}
/// Compute the minimum of the given arguments.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = 70,
/// length = min([15, 31, 4, 13, 22])
/// )
/// |> line(end = [20, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "min",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "An array of numbers to compute the minimum of."},
}
}]
fn inner_min(input: Vec<f64>) -> f64 {
let mut min = f64::MAX;
for num in input.iter() {
if *num < min {
min = *num;
let mut result = f64::MAX;
for num in nums {
if num < result {
result = num;
}
}
min
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, ty)))
}
/// Compute the maximum of the given arguments.
pub async fn max(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums: Vec<TyF64> = args.get_unlabeled_kw_arg_typed(
"input",
&RuntimeType::Array(Box::new(RuntimeType::num_any()), ArrayLen::None),
&RuntimeType::Array(Box::new(RuntimeType::num_any()), ArrayLen::NonEmpty),
exec_state,
)?;
let (nums, ty) = NumericType::combine_eq_array(&nums);
@ -320,228 +130,60 @@ pub async fn max(exec_state: &mut ExecState, args: Args) -> Result<KclValue, Kcl
"Calling `max` on numbers which have unknown or incompatible units.\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`",
));
}
let result = inner_max(nums);
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, ty)))
}
/// Compute the maximum of the given arguments.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = 70,
/// length = max([15, 31, 4, 13, 22])
/// )
/// |> line(end = [20, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "max",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "An array of numbers to compute the maximum of."},
}
}]
fn inner_max(input: Vec<f64>) -> f64 {
let mut max = f64::MIN;
for num in input.iter() {
if *num > max {
max = *num;
let mut result = f64::MIN;
for num in nums {
if num > result {
result = num;
}
}
max
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, ty)))
}
/// Compute the number to a power.
pub async fn pow(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let exp: TyF64 = args.get_kw_arg_typed("exp", &RuntimeType::count(), exec_state)?;
let result = inner_pow(input.n, exp.n);
let result = input.n.powf(exp.n);
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the number to a power.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = 50,
/// length = pow(5, exp = 2),
/// )
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "pow",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to raise."},
exp = {docs = "The power to raise to."},
}
}]
fn inner_pow(input: f64, exp: f64) -> f64 {
input.powf(exp)
}
/// Compute the arccosine of a number (in radians).
pub async fn acos(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::count(), exec_state)?;
let result = inner_acos(input.n);
let result = input.n.acos();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, NumericType::radians())))
}
/// Compute the arccosine of a number (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = units::toDegrees(acos(0.5)),
/// length = 10,
/// )
/// |> line(end = [5, 0])
/// |> line(endAbsolute = [12, 0])
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "acos",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute arccosine of."},
}
}]
fn inner_acos(input: f64) -> f64 {
input.acos()
}
/// Compute the arcsine of a number (in radians).
pub async fn asin(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::count(), exec_state)?;
let result = inner_asin(input.n);
let result = input.n.asin();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, NumericType::radians())))
}
/// Compute the arcsine of a number (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = units::toDegrees(asin(0.5)),
/// length = 20,
/// )
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "asin",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute arcsine of."},
}
}]
fn inner_asin(input: f64) -> f64 {
input.asin()
}
/// Compute the arctangent of a number (in radians).
pub async fn atan(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::count(), exec_state)?;
let result = inner_atan(input.n);
let result = input.n.atan();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, NumericType::radians())))
}
/// Compute the arctangent of a number (in radians).
///
/// Consider using `atan2()` instead for the true inverse of tangent.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = units::toDegrees(atan(1.25)),
/// length = 20,
/// )
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "atan",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute arctangent of."},
}
}]
fn inner_atan(input: f64) -> f64 {
input.atan()
}
/// Compute the four quadrant arctangent of Y and X (in radians).
pub async fn atan2(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let y = args.get_kw_arg_typed("y", &RuntimeType::length(), exec_state)?;
let x = args.get_kw_arg_typed("x", &RuntimeType::length(), exec_state)?;
let (y, x, _) = NumericType::combine_eq_coerce(y, x);
let result = inner_atan2(y, x);
let result = y.atan2(x);
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, NumericType::radians())))
}
/// Compute the four quadrant arctangent of Y and X (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn(XZ)
/// |> startProfile(at = [0, 0])
/// |> angledLine(
/// angle = units::toDegrees(atan2(y = 1.25, x = 2)),
/// length = 20,
/// )
/// |> yLine(endAbsolute = 0)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "atan2",
tags = ["math"],
keywords = true,
unlabeled_first = false,
args = {
y = { docs = "Y"},
x = { docs = "X"},
}
}]
fn inner_atan2(y: f64, x: f64) -> f64 {
y.atan2(x)
}
/// Compute the logarithm of the number with respect to an arbitrary base.
///
/// The result might not be correctly rounded owing to implementation
@ -550,166 +192,31 @@ fn inner_atan2(y: f64, x: f64) -> f64 {
pub async fn log(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let base: TyF64 = args.get_kw_arg_typed("base", &RuntimeType::count(), exec_state)?;
let result = inner_log(input.n, base.n);
let result = input.n.log(base.n);
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the logarithm of the number with respect to an arbitrary base.
///
/// The result might not be correctly rounded owing to implementation
/// details; `log2()` can produce more accurate results for base 2,
/// and `log10()` can produce more accurate results for base 10.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> line(end = [log(100, base = 5), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute the logarithm of."},
base = {docs = "The base of the logarithm."},
}
}]
fn inner_log(input: f64, base: f64) -> f64 {
input.log(base)
}
/// Compute the base 2 logarithm of the number.
pub async fn log2(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_log2(input.n);
let result = input.n.log2();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the base 2 logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> line(end = [log2(100), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log2",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute the logarithm of."},
}
}]
fn inner_log2(input: f64) -> f64 {
input.log2()
}
/// Compute the base 10 logarithm of the number.
pub async fn log10(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_log10(input.n);
let result = input.n.log10();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the base 10 logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> line(end = [log10(100), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log10",
tags = ["math"],
}]
fn inner_log10(num: f64) -> f64 {
num.log10()
}
/// Compute the natural logarithm of the number.
pub async fn ln(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let input: TyF64 = args.get_unlabeled_kw_arg_typed("input", &RuntimeType::num_any(), exec_state)?;
let result = inner_ln(input.n);
let result = input.n.ln();
Ok(args.make_user_val_from_f64_with_type(TyF64::new(result, exec_state.current_default_units())))
}
/// Compute the natural logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfile(at = [0, 0])
/// |> line(end = [ln(100), 15])
/// |> line(end = [5, -6])
/// |> line(end = [-10, -10])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "ln",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
input = {docs = "The number to compute the logarithm of."},
}
}]
fn inner_ln(input: f64) -> f64 {
input.ln()
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use super::*;
#[test]
fn test_inner_max() {
let nums = vec![4.0, 5.0, 6.0];
let result = inner_max(nums);
assert_eq!(result, 6.0);
}
#[test]
fn test_inner_max_with_neg() {
let nums = vec![4.0, -5.0];
let result = inner_max(nums);
assert_eq!(result, 4.0);
}
#[test]
fn test_inner_min() {
let nums = vec![4.0, 5.0, 6.0];
let result = inner_min(nums);
assert_eq!(result, 4.0);
}
#[test]
fn test_inner_min_with_neg() {
let nums = vec![4.0, -5.0];
let result = inner_min(nums);
assert_eq!(result, -5.0);
}
}