Bug: KCL formatter removes 'fn' from closures: (#4718)

# Problem

Before this PR, our formatter reformats
```
squares_out = reduce(arr, 0, fn (i, squares)  {
  return 1
})
```
to 
```
squares_out = reduce(arr, 0, (i, squares) {
  return 1
})
```
i.e. it removes the `fn` keyword from the closure. This keyword is required, so, our formatter turned working code into invalid code.

# Cause

When this closure parameter is formatted, the ExprContext is ::Decl, so `Expr::recast` skips adding the `fn` keyword. The reason it's ::Decl is because the `squares_out = ` declaration sets it, and no subsequent call sets the context to something else.

# Solution

When recasting a call expression, set the context for every argument to `ExprContext::Other`.
This commit is contained in:
Adam Chalmers
2024-12-09 19:13:49 -06:00
committed by GitHub
parent 59a6333aad
commit 6aa588f09f
4 changed files with 37 additions and 12 deletions

View File

@ -45,7 +45,7 @@ circles = map([1..3], drawCircle)
```js
r = 10 // radius
// Call `map`, using an anonymous function instead of a named one.
circles = map([1..3], (id) {
circles = map([1..3], fn(id) {
return startSketchOn("XY")
|> circle({ center = [id * 2 * r, 0], radius = r }, %)
})

View File

@ -61,7 +61,7 @@ assertEqual(sum([1, 2, 3]), 6, 0.00001, "1 + 2 + 3 summed is 6")
// an anonymous `add` function as its parameter, instead of declaring a
// named function outside.
arr = [1, 2, 3]
sum = reduce(arr, 0, (i, result_so_far) {
sum = reduce(arr, 0, fn(i, result_so_far) {
return i + result_so_far
})
@ -84,7 +84,7 @@ fn decagon(radius) {
// Use a `reduce` to draw the remaining decagon sides.
// For each number in the array 1..10, run the given function,
// which takes a partially-sketched decagon and adds one more edge to it.
fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) {
fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {
// Draw one edge of the decagon.
x = cos(stepAngle * i) * radius
y = sin(stepAngle * i) * radius

View File

@ -100436,7 +100436,7 @@
"deprecated": false,
"examples": [
"r = 10 // radius\nfn drawCircle(id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n}\n\n// Call `drawCircle`, passing in each element of the array.\n// The outputs from each `drawCircle` form a new array,\n// which is the return value from `map`.\ncircles = map([1..3], drawCircle)",
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], (id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n})"
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], fn(id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n})"
]
},
{
@ -146129,8 +146129,8 @@
"deprecated": false,
"examples": [
"// This function adds two numbers.\nfn add(a, b) {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum(arr) {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, (i, result_so_far) {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, fn(i, result_so_far) {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
]
},
{