Bug: KCL formatter removes 'fn' from closures: (#4718)
# Problem
Before this PR, our formatter reformats
```
squares_out = reduce(arr, 0, fn (i, squares) {
return 1
})
```
to
```
squares_out = reduce(arr, 0, (i, squares) {
return 1
})
```
i.e. it removes the `fn` keyword from the closure. This keyword is required, so, our formatter turned working code into invalid code.
# Cause
When this closure parameter is formatted, the ExprContext is ::Decl, so `Expr::recast` skips adding the `fn` keyword. The reason it's ::Decl is because the `squares_out = ` declaration sets it, and no subsequent call sets the context to something else.
# Solution
When recasting a call expression, set the context for every argument to `ExprContext::Other`.
This commit is contained in:
@ -45,7 +45,7 @@ circles = map([1..3], drawCircle)
|
|||||||
```js
|
```js
|
||||||
r = 10 // radius
|
r = 10 // radius
|
||||||
// Call `map`, using an anonymous function instead of a named one.
|
// Call `map`, using an anonymous function instead of a named one.
|
||||||
circles = map([1..3], (id) {
|
circles = map([1..3], fn(id) {
|
||||||
return startSketchOn("XY")
|
return startSketchOn("XY")
|
||||||
|> circle({ center = [id * 2 * r, 0], radius = r }, %)
|
|> circle({ center = [id * 2 * r, 0], radius = r }, %)
|
||||||
})
|
})
|
||||||
|
|||||||
@ -61,7 +61,7 @@ assertEqual(sum([1, 2, 3]), 6, 0.00001, "1 + 2 + 3 summed is 6")
|
|||||||
// an anonymous `add` function as its parameter, instead of declaring a
|
// an anonymous `add` function as its parameter, instead of declaring a
|
||||||
// named function outside.
|
// named function outside.
|
||||||
arr = [1, 2, 3]
|
arr = [1, 2, 3]
|
||||||
sum = reduce(arr, 0, (i, result_so_far) {
|
sum = reduce(arr, 0, fn(i, result_so_far) {
|
||||||
return i + result_so_far
|
return i + result_so_far
|
||||||
})
|
})
|
||||||
|
|
||||||
@ -84,7 +84,7 @@ fn decagon(radius) {
|
|||||||
// Use a `reduce` to draw the remaining decagon sides.
|
// Use a `reduce` to draw the remaining decagon sides.
|
||||||
// For each number in the array 1..10, run the given function,
|
// For each number in the array 1..10, run the given function,
|
||||||
// which takes a partially-sketched decagon and adds one more edge to it.
|
// which takes a partially-sketched decagon and adds one more edge to it.
|
||||||
fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) {
|
fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {
|
||||||
// Draw one edge of the decagon.
|
// Draw one edge of the decagon.
|
||||||
x = cos(stepAngle * i) * radius
|
x = cos(stepAngle * i) * radius
|
||||||
y = sin(stepAngle * i) * radius
|
y = sin(stepAngle * i) * radius
|
||||||
|
|||||||
@ -100436,7 +100436,7 @@
|
|||||||
"deprecated": false,
|
"deprecated": false,
|
||||||
"examples": [
|
"examples": [
|
||||||
"r = 10 // radius\nfn drawCircle(id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n}\n\n// Call `drawCircle`, passing in each element of the array.\n// The outputs from each `drawCircle` form a new array,\n// which is the return value from `map`.\ncircles = map([1..3], drawCircle)",
|
"r = 10 // radius\nfn drawCircle(id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n}\n\n// Call `drawCircle`, passing in each element of the array.\n// The outputs from each `drawCircle` form a new array,\n// which is the return value from `map`.\ncircles = map([1..3], drawCircle)",
|
||||||
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], (id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n})"
|
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], fn(id) {\n return startSketchOn(\"XY\")\n |> circle({ center = [id * 2 * r, 0], radius = r }, %)\n})"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -146129,8 +146129,8 @@
|
|||||||
"deprecated": false,
|
"deprecated": false,
|
||||||
"examples": [
|
"examples": [
|
||||||
"// This function adds two numbers.\nfn add(a, b) {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum(arr) {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
"// This function adds two numbers.\nfn add(a, b) {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum(arr) {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
||||||
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, (i, result_so_far) {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, fn(i, result_so_far) {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
||||||
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
|
"// Declare a function that sketches a decagon.\nfn decagon(radius) {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, fn(i, partialDecagon) {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@ -166,7 +166,14 @@ pub(crate) enum ExprContext {
|
|||||||
}
|
}
|
||||||
|
|
||||||
impl Expr {
|
impl Expr {
|
||||||
pub(crate) fn recast(&self, options: &FormatOptions, indentation_level: usize, ctxt: ExprContext) -> String {
|
pub(crate) fn recast(&self, options: &FormatOptions, indentation_level: usize, mut ctxt: ExprContext) -> String {
|
||||||
|
let is_decl = matches!(ctxt, ExprContext::Decl);
|
||||||
|
if is_decl {
|
||||||
|
// Just because this expression is being bound to a variable, doesn't mean that every child
|
||||||
|
// expression is being bound. So, reset the expression context if necessary.
|
||||||
|
// This will still preserve the "::Pipe" context though.
|
||||||
|
ctxt = ExprContext::Other;
|
||||||
|
}
|
||||||
match &self {
|
match &self {
|
||||||
Expr::BinaryExpression(bin_exp) => bin_exp.recast(options),
|
Expr::BinaryExpression(bin_exp) => bin_exp.recast(options),
|
||||||
Expr::ArrayExpression(array_exp) => array_exp.recast(options, indentation_level, ctxt),
|
Expr::ArrayExpression(array_exp) => array_exp.recast(options, indentation_level, ctxt),
|
||||||
@ -175,11 +182,7 @@ impl Expr {
|
|||||||
Expr::MemberExpression(mem_exp) => mem_exp.recast(),
|
Expr::MemberExpression(mem_exp) => mem_exp.recast(),
|
||||||
Expr::Literal(literal) => literal.recast(),
|
Expr::Literal(literal) => literal.recast(),
|
||||||
Expr::FunctionExpression(func_exp) => {
|
Expr::FunctionExpression(func_exp) => {
|
||||||
let mut result = if ctxt == ExprContext::Decl {
|
let mut result = if is_decl { String::new() } else { "fn".to_owned() };
|
||||||
String::new()
|
|
||||||
} else {
|
|
||||||
"fn".to_owned()
|
|
||||||
};
|
|
||||||
result += &func_exp.recast(options, indentation_level);
|
result += &func_exp.recast(options, indentation_level);
|
||||||
result
|
result
|
||||||
}
|
}
|
||||||
@ -2170,6 +2173,28 @@ sketch002 = startSketchOn({
|
|||||||
assert_eq!(actual, expected);
|
assert_eq!(actual, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn unparse_fn_unnamed() {
|
||||||
|
let input = r#"squares_out = reduce(arr, 0, fn(i, squares) {
|
||||||
|
return 1
|
||||||
|
})
|
||||||
|
"#;
|
||||||
|
let ast = crate::parsing::top_level_parse(input).unwrap();
|
||||||
|
let actual = ast.recast(&FormatOptions::new(), 0);
|
||||||
|
assert_eq!(actual, input);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn unparse_fn_named() {
|
||||||
|
let input = r#"fn f(x) {
|
||||||
|
return 1
|
||||||
|
}
|
||||||
|
"#;
|
||||||
|
let ast = crate::parsing::top_level_parse(input).unwrap();
|
||||||
|
let actual = ast.recast(&FormatOptions::new(), 0);
|
||||||
|
assert_eq!(actual, input);
|
||||||
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn recast_objects_with_comments() {
|
fn recast_objects_with_comments() {
|
||||||
use winnow::Parser;
|
use winnow::Parser;
|
||||||
|
|||||||
Reference in New Issue
Block a user