bump modeling-cmds, nuke slow world (#6753)

* bump modeling-cmds, nuke slow world

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* more stuffs

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* i mechanical engineered today

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* reverse uno your revolves

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* retry logic

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fixes

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

---------

Signed-off-by: Jess Frazelle <github@jessfraz.com>
This commit is contained in:
Jess Frazelle
2025-05-13 21:07:24 -07:00
committed by GitHub
parent 068b9129cf
commit 78b6854c6b
286 changed files with 30229 additions and 375601 deletions

View File

@ -1,114 +1,103 @@
@settings(defaultLengthUnit = mm)
@(lengthUnit = m)
import "../../e2e/executor/inputs/2-5-long-m8-chc-screw.stl" as screw
// Set units
@settings(defaultLengthUnit = mm)
myScrew = screw
// Define a function to create a helical gear
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
surface001 = startSketchOn(XY)
// Define the constants of the keyway and the bore hole
keywayWidth = 2
keywayDepth = keywayWidth / 2
holeDiam = 7
holeRadius = holeDiam / 2
startAngle = asin(keywayWidth / 2 / holeRadius)
// Define parameters
nTeeth = 21
module = 0.5
pitchDiameter = module * nTeeth
pressureAngle = 20
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
gearHeight = 3
// Sketch the keyway and center hole
holeWithKeyway = startSketchOn(XY)
|> startProfile(at = [
holeRadius * cos(startAngle),
holeRadius * sin(startAngle)
])
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|> close()
// Interpolate points along the involute curve
cmo = 101
rs = map([0..cmo], f = fn(@i) {
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
})
// Define a function to create a rotated gear sketch on an offset plane
fn helicalGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Calculate operating pressure angle
angles = map(rs, f = fn(@r) {
return units::toDegrees( acos(baseDiameter / 2 / r))
})
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Calculate the involute function
invas = map(angles, f = fn(@a) {
return tan(units::toRadians(a)) - units::toRadians(a)
})
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Map the involute curve
xs = map([0..cmo], f = fn(@i) {
return rs[i] * cos(invas[i]: number(rad))
})
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
|> subtract2d(tool = holeWithKeyway)
return helicalGearSketch
}
ys = map([0..cmo], f = fn(@i) {
return rs[i] * sin(invas[i]: number(rad))
})
// Draw a gear sketch on the base plane
gearSketch001 = helicalGearSketch(offsetHeight = 0)
// Extrude the gear body
body = startSketchOn(XY)
|> circle(center = [0, 0], radius = baseDiameter / 2)
|> extrude(length = gearHeight)
// Draw a rotated gear sketch on a middle interstitial plane
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
toothAngle = 360 / nTeeth / 1.5
// Draw a rotated gear sketch at the gear height offset plane
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
// Plot the involute curve
fn leftInvolute(@i, accum) {
j = 100 - i // iterate backwards
return line(accum, endAbsolute = [xs[j], ys[j]])
// Loft each rotated gear sketch together to form a helical gear
helicalGear = loft([
gearSketch001,
gearSketch002,
gearSketch003
])
return helicalGear
}
fn rightInvolute(@i, accum) {
x = rs[i] * cos(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
y = -rs[i] * sin(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
return line(accum, endAbsolute = [x, y])
}
// Draw gear teeth
start = startSketchOn(XY)
|> startProfile(at = [xs[101], ys[101]])
teeth = reduce([0..100], initial = start, f = leftInvolute)
|> arc(
angleStart = 0,
angleEnd = toothAngle,
radius = baseDiameter / 2,
)
|> reduce([1..101], initial = %, f = rightInvolute)
|> close()
|> extrude(length = gearHeight)
|> patternCircular3d(
axis = [0, 0, 1],
center = [0, 0, 0],
instances = nTeeth,
arcDegrees = 360,
rotateDuplicates = true,
)
// Define the constants of the keyway and the bore hole
keywayWidth = 0.250
keywayDepth = keywayWidth / 2
holeDiam = 2
holeRadius = 1
startAngle = asin(keywayWidth / 2 / holeRadius)
// Sketch the keyway and center hole and extrude
keyWay = startSketchOn(body, face = END)
|> startProfile(at = [holeRadius * cos(startAngle), holeRadius * sin(startAngle)])
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc(
angleStart = -1 * units::toDegrees(startAngle) + 360,
angleEnd = 180,
radius = holeRadius,
)
|> arc(
angleStart = 180,
angleEnd = units::toDegrees(startAngle),
radius = holeRadius,
)
|> close()
|> extrude(length = -gearHeight)
helicalGear(
nTeeth = 21,
module = 2,
pressureAngle = 20,
helixAngle = 35,
gearHeight = 7,
)
myScrew
|> translate(y=10)