bump modeling-cmds, nuke slow world (#6753)
* bump modeling-cmds, nuke slow world Signed-off-by: Jess Frazelle <github@jessfraz.com> * more stuffs Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * i mechanical engineered today Signed-off-by: Jess Frazelle <github@jessfraz.com> * reverse uno your revolves Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * retry logic Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> * fixes Signed-off-by: Jess Frazelle <github@jessfraz.com> * updates Signed-off-by: Jess Frazelle <github@jessfraz.com> --------- Signed-off-by: Jess Frazelle <github@jessfraz.com>
This commit is contained in:
@ -1,114 +1,103 @@
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
@(lengthUnit = m)
|
||||
import "../../e2e/executor/inputs/2-5-long-m8-chc-screw.stl" as screw
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
myScrew = screw
|
||||
|
||||
// Define a function to create a helical gear
|
||||
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
surface001 = startSketchOn(XY)
|
||||
// Define the constants of the keyway and the bore hole
|
||||
keywayWidth = 2
|
||||
keywayDepth = keywayWidth / 2
|
||||
holeDiam = 7
|
||||
holeRadius = holeDiam / 2
|
||||
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||||
|
||||
// Define parameters
|
||||
nTeeth = 21
|
||||
module = 0.5
|
||||
pitchDiameter = module * nTeeth
|
||||
pressureAngle = 20
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
gearHeight = 3
|
||||
// Sketch the keyway and center hole
|
||||
holeWithKeyway = startSketchOn(XY)
|
||||
|> startProfile(at = [
|
||||
holeRadius * cos(startAngle),
|
||||
holeRadius * sin(startAngle)
|
||||
])
|
||||
|> xLine(length = keywayDepth)
|
||||
|> yLine(length = -keywayWidth)
|
||||
|> xLine(length = -keywayDepth)
|
||||
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|
||||
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|
||||
|> close()
|
||||
|
||||
// Interpolate points along the involute curve
|
||||
cmo = 101
|
||||
rs = map([0..cmo], f = fn(@i) {
|
||||
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
|
||||
})
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn helicalGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Calculate operating pressure angle
|
||||
angles = map(rs, f = fn(@r) {
|
||||
return units::toDegrees( acos(baseDiameter / 2 / r))
|
||||
})
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Calculate the involute function
|
||||
invas = map(angles, f = fn(@a) {
|
||||
return tan(units::toRadians(a)) - units::toRadians(a)
|
||||
})
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Map the involute curve
|
||||
xs = map([0..cmo], f = fn(@i) {
|
||||
return rs[i] * cos(invas[i]: number(rad))
|
||||
})
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
|> subtract2d(tool = holeWithKeyway)
|
||||
return helicalGearSketch
|
||||
}
|
||||
|
||||
ys = map([0..cmo], f = fn(@i) {
|
||||
return rs[i] * sin(invas[i]: number(rad))
|
||||
})
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = helicalGearSketch(offsetHeight = 0)
|
||||
|
||||
// Extrude the gear body
|
||||
body = startSketchOn(XY)
|
||||
|> circle(center = [0, 0], radius = baseDiameter / 2)
|
||||
|> extrude(length = gearHeight)
|
||||
// Draw a rotated gear sketch on a middle interstitial plane
|
||||
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
toothAngle = 360 / nTeeth / 1.5
|
||||
// Draw a rotated gear sketch at the gear height offset plane
|
||||
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
|
||||
|
||||
// Plot the involute curve
|
||||
fn leftInvolute(@i, accum) {
|
||||
j = 100 - i // iterate backwards
|
||||
return line(accum, endAbsolute = [xs[j], ys[j]])
|
||||
// Loft each rotated gear sketch together to form a helical gear
|
||||
helicalGear = loft([
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
])
|
||||
|
||||
return helicalGear
|
||||
}
|
||||
|
||||
fn rightInvolute(@i, accum) {
|
||||
x = rs[i] * cos(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
|
||||
y = -rs[i] * sin(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
|
||||
return line(accum, endAbsolute = [x, y])
|
||||
}
|
||||
|
||||
// Draw gear teeth
|
||||
start = startSketchOn(XY)
|
||||
|> startProfile(at = [xs[101], ys[101]])
|
||||
teeth = reduce([0..100], initial = start, f = leftInvolute)
|
||||
|> arc(
|
||||
angleStart = 0,
|
||||
angleEnd = toothAngle,
|
||||
radius = baseDiameter / 2,
|
||||
)
|
||||
|> reduce([1..101], initial = %, f = rightInvolute)
|
||||
|> close()
|
||||
|> extrude(length = gearHeight)
|
||||
|> patternCircular3d(
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
instances = nTeeth,
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
// Define the constants of the keyway and the bore hole
|
||||
keywayWidth = 0.250
|
||||
keywayDepth = keywayWidth / 2
|
||||
holeDiam = 2
|
||||
holeRadius = 1
|
||||
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||||
|
||||
// Sketch the keyway and center hole and extrude
|
||||
keyWay = startSketchOn(body, face = END)
|
||||
|> startProfile(at = [holeRadius * cos(startAngle), holeRadius * sin(startAngle)])
|
||||
|> xLine(length = keywayDepth)
|
||||
|> yLine(length = -keywayWidth)
|
||||
|> xLine(length = -keywayDepth)
|
||||
|> arc(
|
||||
angleStart = -1 * units::toDegrees(startAngle) + 360,
|
||||
angleEnd = 180,
|
||||
radius = holeRadius,
|
||||
)
|
||||
|> arc(
|
||||
angleStart = 180,
|
||||
angleEnd = units::toDegrees(startAngle),
|
||||
radius = holeRadius,
|
||||
)
|
||||
|> close()
|
||||
|> extrude(length = -gearHeight)
|
||||
helicalGear(
|
||||
nTeeth = 21,
|
||||
module = 2,
|
||||
pressureAngle = 20,
|
||||
helixAngle = 35,
|
||||
gearHeight = 7,
|
||||
)
|
||||
|
||||
myScrew
|
||||
|> translate(y=10)
|
||||
|
Reference in New Issue
Block a user