Nadro/adhoc/stdlib arcTo (three point arc) (#4485)

* feat: implementing arcTo in standard library, first pass

* feat: computing center and radius for arcto

* fix: updating comment for arcTo

* fix: cargo fmt fix

* fix: bug, the x was used twice!

* fix: Cleaning up some code and adding more comments

* fix: this has to be removed

* fix: resolved merge conflicts with main and updated the codebase to remove the JSON stuff

* fix: addressing cargo clippy issues

* fix: typos

* fix: adding generated docs

* Update doc test snapshots

---------

Co-authored-by: Jonathan Tran <jonnytran@gmail.com>
This commit is contained in:
Kevin Nadro
2024-11-18 17:17:16 -05:00
committed by GitHub
parent 24bc4fcd8c
commit 79e06b3a00
8 changed files with 4265 additions and 3 deletions

View File

@ -1486,6 +1486,17 @@ pub enum ArcData {
},
}
/// Data to draw a three point arc (arcTo).
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
#[serde(rename_all = "camelCase")]
pub struct ArcToData {
/// End point of the arc. A point in 3D space
pub end: [f64; 2],
/// Interior point of the arc. A point in 3D space
pub interior: [f64; 2],
}
/// Draw an arc.
pub async fn arc(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let (data, sketch, tag): (ArcData, Sketch, Option<TagNode>) = args.get_data_and_sketch_and_tag()?;
@ -1516,7 +1527,7 @@ pub async fn arc(exec_state: &mut ExecState, args: Args) -> Result<KclValue, Kcl
/// radius: 16
/// }, %)
/// |> close(%)
// const example = extrude(10, exampleSketch)
/// const example = extrude(10, exampleSketch)
/// ```
#[stdlib {
name = "arc",
@ -1595,6 +1606,104 @@ pub(crate) async fn inner_arc(
Ok(new_sketch)
}
/// Draw a three point arc.
pub async fn arc_to(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let (data, sketch, tag): (ArcToData, Sketch, Option<TagNode>) = args.get_data_and_sketch_and_tag()?;
let new_sketch = inner_arc_to(data, sketch, tag, exec_state, args).await?;
Ok(KclValue::Sketch {
value: Box::new(new_sketch),
})
}
/// Draw a 3 point arc.
///
/// The arc is constructed such that the start point is the current position of the sketch and two more points defined as the end and interior point.
/// The interior point is placed between the start point and end point. The radius of the arc will be controlled by how far the interior point is placed from
/// the start and end.
///
/// ```no_run
/// const exampleSketch = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> arcTo({
/// end: [10,0],
/// interior: [5,5]
/// }, %)
/// |> close(%)
/// const example = extrude(10, exampleSketch)
/// ```
#[stdlib {
name = "arcTo",
}]
pub(crate) async fn inner_arc_to(
data: ArcToData,
sketch: Sketch,
tag: Option<TagNode>,
exec_state: &mut ExecState,
args: Args,
) -> Result<Sketch, KclError> {
let from: Point2d = sketch.current_pen_position()?;
let id = exec_state.id_generator.next_uuid();
// The start point is taken from the path you are extending.
args.batch_modeling_cmd(
id,
ModelingCmd::from(mcmd::ExtendPath {
path: sketch.id.into(),
segment: PathSegment::ArcTo {
end: kcmc::shared::Point3d {
x: LengthUnit(data.end[0]),
y: LengthUnit(data.end[1]),
z: LengthUnit(0.0),
},
interior: kcmc::shared::Point3d {
x: LengthUnit(data.interior[0]),
y: LengthUnit(data.interior[1]),
z: LengthUnit(0.0),
},
relative: false,
},
}),
)
.await?;
let start = [from.x, from.y];
let interior = [data.interior[0], data.interior[1]];
let end = [data.end[0], data.end[1]];
// compute the center of the circle since we do not have the value returned from the engine
let center = calculate_circle_center(start, interior, end);
// compute the radius since we do not have the value returned from the engine
// Pick any of the 3 points since they all lie along the circle
let sum_of_square_differences =
(center[0] - start[0] * center[0] - start[0]) + (center[1] - start[1] * center[1] - start[1]);
let radius = sum_of_square_differences.sqrt();
let current_path = Path::Arc {
base: BasePath {
from: from.into(),
to: data.end,
tag: tag.clone(),
geo_meta: GeoMeta {
id,
metadata: args.source_range.into(),
},
},
center,
radius,
};
let mut new_sketch = sketch.clone();
if let Some(tag) = &tag {
new_sketch.add_tag(tag, &current_path);
}
new_sketch.paths.push(current_path);
Ok(new_sketch)
}
/// Data to draw a tangential arc.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, JsonSchema, ts_rs::TS)]
#[ts(export)]
@ -1914,6 +2023,42 @@ async fn inner_tangential_arc_to_relative(
Ok(new_sketch)
}
// Calculate the center of 3 points
// To calculate the center of the 3 point circle 2 perpendicular lines are created
// These perpendicular lines will intersect at the center of the circle.
fn calculate_circle_center(p1: [f64; 2], p2: [f64; 2], p3: [f64; 2]) -> [f64; 2] {
// y2 - y1
let y_2_1 = p2[1] - p1[1];
// y3 - y2
let y_3_2 = p3[1] - p2[1];
// x2 - x1
let x_2_1 = p2[0] - p1[0];
// x3 - x2
let x_3_2 = p3[0] - p2[0];
// Slope of two perpendicular lines
let slope_a = y_2_1 / x_2_1;
let slope_b = y_3_2 / x_3_2;
// Values for line intersection
// y1 - y3
let y_1_3 = p1[1] - p3[1];
// x1 + x2
let x_1_2 = p1[0] + p2[0];
// x2 + x3
let x_2_3 = p2[0] + p3[0];
// y1 + y2
let y_1_2 = p1[1] + p2[1];
// Solve for the intersection of these two lines
let numerator = (slope_a * slope_b * y_1_3) + (slope_b * x_1_2) - (slope_a * x_2_3);
let x = numerator / (2.0 * (slope_b - slope_a));
let y = ((-1.0 / slope_a) * (x - (x_1_2 / 2.0))) + (y_1_2 / 2.0);
[x, y]
}
/// Data to draw a bezier curve.
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
#[ts(export)]
@ -2090,7 +2235,7 @@ mod tests {
use pretty_assertions::assert_eq;
use crate::{executor::TagIdentifier, std::sketch::PlaneData};
use crate::{executor::TagIdentifier, std::sketch::calculate_circle_center, std::sketch::PlaneData};
#[test]
fn test_deserialize_plane_data() {
@ -2161,4 +2306,11 @@ mod tests {
crate::std::sketch::FaceTag::StartOrEnd(crate::std::sketch::StartOrEnd::Start)
);
}
#[test]
fn test_circle_center() {
let actual = calculate_circle_center([0.0, 0.0], [5.0, 5.0], [10.0, 0.0]);
assert_eq!(actual[0], 5.0);
assert_eq!(actual[1], 0.0);
}
}