|
|
|
@ -78572,7 +78572,7 @@
|
|
|
|
|
"unpublished": false,
|
|
|
|
|
"deprecated": false,
|
|
|
|
|
"examples": [
|
|
|
|
|
"n = int(ceil(5 / 2))\nassertEqual(n, 3, 0.0001, \"5/2 = 2.5, rounded up makes 3\")\n// Draw n cylinders.\nstartSketchOn('XZ')\n |> circle({ center: [0, 0], radius: 2 }, %)\n |> extrude(5, %)\n |> patternTransform(n, (id) => {\n return { translate: [4 * id, 0, 0] }\n}, %)"
|
|
|
|
|
"n = int(ceil(5 / 2))\nassertEqual(n, 3, 0.0001, \"5/2 = 2.5, rounded up makes 3\")\n// Draw n cylinders.\nstartSketchOn('XZ')\n |> circle({ center: [0, 0], radius: 2 }, %)\n |> extrude(5, %)\n |> patternTransform(n, (id) => {\n return { translate: [4 * id, 0, 0] }\n }, %)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -105822,8 +105822,8 @@
|
|
|
|
|
"unpublished": false,
|
|
|
|
|
"deprecated": false,
|
|
|
|
|
"examples": [
|
|
|
|
|
"r = 10 // radius\nfn drawCircle = (id) => {\n return startSketchOn(\"XY\")\n |> circle({ center: [id * 2 * r, 0], radius: r }, %)\n}\n\n// Call `drawCircle`, passing in each element of the array.\n// The outputs from each `drawCircle` form a new array,\n// which is the return value from `map`.\ncircles = map([1..3], drawCircle)",
|
|
|
|
|
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], (id) => {\n return startSketchOn(\"XY\")\n |> circle({ center: [id * 2 * r, 0], radius: r }, %)\n})"
|
|
|
|
|
"r = 10 // radius\nfn drawCircle = (id) => {\n return startSketchOn(\"XY\")\n |> circle({ center: [id * 2 * r, 0], radius: r }, %)\n}\n\n// Call `drawCircle`, passing in each element of the array.\n// The outputs from each `drawCircle` form a new array,\n// which is the return value from `map`.\ncircles = map([1..3], drawCircle)",
|
|
|
|
|
"r = 10 // radius\n// Call `map`, using an anonymous function instead of a named one.\ncircles = map([1..3], (id) => {\n return startSketchOn(\"XY\")\n |> circle({ center: [id * 2 * r, 0], radius: r }, %)\n})"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -123903,9 +123903,9 @@
|
|
|
|
|
"examples": [
|
|
|
|
|
"// Each instance will be shifted along the X axis.\nfn transform = (id) => {\n return { translate: [4 * id, 0, 0] }\n}\n\n// Sketch 4 cylinders.\nsketch001 = startSketchOn('XZ')\n |> circle({ center: [0, 0], radius: 2 }, %)\n |> extrude(5, %)\n |> patternTransform(4, transform, %)",
|
|
|
|
|
"// Each instance will be shifted along the X axis,\n// with a gap between the original (at x = 0) and the first replica\n// (at x = 8). This is because `id` starts at 1.\nfn transform = (id) => {\n return { translate: [4 * (1 + id), 0, 0] }\n}\n\nsketch001 = startSketchOn('XZ')\n |> circle({ center: [0, 0], radius: 2 }, %)\n |> extrude(5, %)\n |> patternTransform(4, transform, %)",
|
|
|
|
|
"fn cube = (length, center) => {\n l = length / 2\n x = center[0]\n y = center[1]\n p0 = [-l + x, -l + y]\n p1 = [-l + x, l + y]\n p2 = [l + x, l + y]\n p3 = [l + x, -l + y]\n\n return startSketchAt(p0)\n |> lineTo(p1, %)\n |> lineTo(p2, %)\n |> lineTo(p3, %)\n |> lineTo(p0, %)\n |> close(%)\n |> extrude(length, %)\n}\n\nwidth = 20\nfn transform = (i) => {\n return {\n // Move down each time.\n translate: [0, 0, -i * width],\n // Make the cube longer, wider and flatter each time.\n scale: [pow(1.1, i), pow(1.1, i), pow(0.9, i)],\n // Turn by 15 degrees each time.\n rotation: { angle: 15 * i, origin: \"local\" }\n}\n}\n\nmyCubes = cube(width, [100, 0])\n |> patternTransform(25, transform, %)",
|
|
|
|
|
"fn cube = (length, center) => {\n l = length / 2\n x = center[0]\n y = center[1]\n p0 = [-l + x, -l + y]\n p1 = [-l + x, l + y]\n p2 = [l + x, l + y]\n p3 = [l + x, -l + y]\n\n return startSketchAt(p0)\n |> lineTo(p1, %)\n |> lineTo(p2, %)\n |> lineTo(p3, %)\n |> lineTo(p0, %)\n |> close(%)\n |> extrude(length, %)\n}\n\nwidth = 20\nfn transform = (i) => {\n return {\n translate: [0, 0, -i * width],\n rotation: {\n angle: 90 * i,\n // Rotate around the overall scene's origin.\n origin: \"global\"\n }\n}\n}\nmyCubes = cube(width, [100, 100])\n |> patternTransform(4, transform, %)",
|
|
|
|
|
"// Parameters\nr = 50 // base radius\nh = 10 // layer height\nt = 0.005 // taper factor [0-1)\n// Defines how to modify each layer of the vase.\n// Each replica is shifted up the Z axis, and has a smoothly-varying radius\nfn transform = (replicaId) => {\n scale = r * abs(1 - (t * replicaId)) * (5 + cos(replicaId / 8))\n return {\n translate: [0, 0, replicaId * 10],\n scale: [scale, scale, 0]\n}\n}\n// Each layer is just a pretty thin cylinder.\nfn layer = () => {\n return startSketchOn(\"XY\")\n // or some other plane idk\n |> circle({ center: [0, 0], radius: 1 }, %, $tag1)\n |> extrude(h, %)\n}\n// The vase is 100 layers tall.\n// The 100 layers are replica of each other, with a slight transformation applied to each.\nvase = layer()\n |> patternTransform(100, transform, %)"
|
|
|
|
|
"fn cube = (length, center) => {\n l = length / 2\n x = center[0]\n y = center[1]\n p0 = [-l + x, -l + y]\n p1 = [-l + x, l + y]\n p2 = [l + x, l + y]\n p3 = [l + x, -l + y]\n\n return startSketchAt(p0)\n |> lineTo(p1, %)\n |> lineTo(p2, %)\n |> lineTo(p3, %)\n |> lineTo(p0, %)\n |> close(%)\n |> extrude(length, %)\n}\n\nwidth = 20\nfn transform = (i) => {\n return {\n // Move down each time.\n translate: [0, 0, -i * width],\n // Make the cube longer, wider and flatter each time.\n scale: [pow(1.1, i), pow(1.1, i), pow(0.9, i)],\n // Turn by 15 degrees each time.\n rotation: { angle: 15 * i, origin: \"local\" }\n }\n}\n\nmyCubes = cube(width, [100, 0])\n |> patternTransform(25, transform, %)",
|
|
|
|
|
"fn cube = (length, center) => {\n l = length / 2\n x = center[0]\n y = center[1]\n p0 = [-l + x, -l + y]\n p1 = [-l + x, l + y]\n p2 = [l + x, l + y]\n p3 = [l + x, -l + y]\n\n return startSketchAt(p0)\n |> lineTo(p1, %)\n |> lineTo(p2, %)\n |> lineTo(p3, %)\n |> lineTo(p0, %)\n |> close(%)\n |> extrude(length, %)\n}\n\nwidth = 20\nfn transform = (i) => {\n return {\n translate: [0, 0, -i * width],\n rotation: {\n angle: 90 * i,\n // Rotate around the overall scene's origin.\n origin: \"global\"\n }\n }\n}\nmyCubes = cube(width, [100, 100])\n |> patternTransform(4, transform, %)",
|
|
|
|
|
"// Parameters\nr = 50 // base radius\nh = 10 // layer height\nt = 0.005 // taper factor [0-1)\n// Defines how to modify each layer of the vase.\n// Each replica is shifted up the Z axis, and has a smoothly-varying radius\nfn transform = (replicaId) => {\n scale = r * abs(1 - (t * replicaId)) * (5 + cos(replicaId / 8))\n return {\n translate: [0, 0, replicaId * 10],\n scale: [scale, scale, 0]\n }\n}\n// Each layer is just a pretty thin cylinder.\nfn layer = () => {\n return startSketchOn(\"XY\")\n // or some other plane idk\n |> circle({ center: [0, 0], radius: 1 }, %, $tag1)\n |> extrude(h, %)\n}\n// The vase is 100 layers tall.\n// The 100 layers are replica of each other, with a slight transformation applied to each.\nvase = layer()\n |> patternTransform(100, transform, %)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -162563,7 +162563,7 @@
|
|
|
|
|
"examples": [
|
|
|
|
|
"// This function adds two numbers.\nfn add = (a, b) => {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum = (arr) => {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
|
|
|
|
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, (i, result_so_far) => {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
|
|
|
|
|
"// Declare a function that sketches a decagon.\nfn decagon = (radius) => {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) => {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n})\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
|
|
|
|
|
"// Declare a function that sketches a decagon.\nfn decagon = (radius) => {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) => {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n })\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -168298,7 +168298,7 @@
|
|
|
|
|
"unpublished": false,
|
|
|
|
|
"deprecated": false,
|
|
|
|
|
"examples": [
|
|
|
|
|
"w = 15\ncube = startSketchAt([0, 0])\n |> line([w, 0], %, $line1)\n |> line([0, w], %, $line2)\n |> line([-w, 0], %, $line3)\n |> line([0, -w], %, $line4)\n |> close(%)\n |> extrude(5, %)\n\nfn cylinder = (radius, tag) => {\n return startSketchAt([0, 0])\n |> circle({ radius: radius, center: segEnd(tag) }, %)\n |> extrude(radius, %)\n}\n\ncylinder(1, line1)\ncylinder(2, line2)\ncylinder(3, line3)\ncylinder(4, line4)"
|
|
|
|
|
"w = 15\ncube = startSketchAt([0, 0])\n |> line([w, 0], %, $line1)\n |> line([0, w], %, $line2)\n |> line([-w, 0], %, $line3)\n |> line([0, -w], %, $line4)\n |> close(%)\n |> extrude(5, %)\n\nfn cylinder = (radius, tag) => {\n return startSketchAt([0, 0])\n |> circle({ radius: radius, center: segEnd(tag) }, %)\n |> extrude(radius, %)\n}\n\ncylinder(1, line1)\ncylinder(2, line2)\ncylinder(3, line3)\ncylinder(4, line4)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
@ -171895,7 +171895,7 @@
|
|
|
|
|
"unpublished": false,
|
|
|
|
|
"deprecated": false,
|
|
|
|
|
"examples": [
|
|
|
|
|
"w = 15\ncube = startSketchAt([0, 0])\n |> line([w, 0], %, $line1)\n |> line([0, w], %, $line2)\n |> line([-w, 0], %, $line3)\n |> line([0, -w], %, $line4)\n |> close(%)\n |> extrude(5, %)\n\nfn cylinder = (radius, tag) => {\n return startSketchAt([0, 0])\n |> circle({\n radius: radius,\n center: segStart(tag)\n }, %)\n |> extrude(radius, %)\n}\n\ncylinder(1, line1)\ncylinder(2, line2)\ncylinder(3, line3)\ncylinder(4, line4)"
|
|
|
|
|
"w = 15\ncube = startSketchAt([0, 0])\n |> line([w, 0], %, $line1)\n |> line([0, w], %, $line2)\n |> line([-w, 0], %, $line3)\n |> line([0, -w], %, $line4)\n |> close(%)\n |> extrude(5, %)\n\nfn cylinder = (radius, tag) => {\n return startSketchAt([0, 0])\n |> circle({\n radius: radius,\n center: segStart(tag)\n }, %)\n |> extrude(radius, %)\n}\n\ncylinder(1, line1)\ncylinder(2, line2)\ncylinder(3, line3)\ncylinder(4, line4)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|