Type check and coerce arguments to user functions and return values from std Rust functions (#6958)

* Shuffle around function call code

Signed-off-by: Nick Cameron <nrc@ncameron.org>

* Refactor function calls to share more code

Signed-off-by: Nick Cameron <nrc@ncameron.org>

* Hack to leave the result of revolve as a singleton rather than array

Signed-off-by: Nick Cameron <nrc@ncameron.org>

---------

Signed-off-by: Nick Cameron <nrc@ncameron.org>
This commit is contained in:
Nick Cameron
2025-05-19 16:50:15 +12:00
committed by GitHub
parent f3e9d110c0
commit b19acd550d
197 changed files with 13837 additions and 14317 deletions

View File

@ -1,42 +1,32 @@
use std::collections::HashMap;
use async_recursion::async_recursion;
use indexmap::IndexMap;
#[cfg(feature = "artifact-graph")]
use crate::execution::cad_op::{Group, OpArg, OpKclValue, Operation};
use crate::{
errors::{KclError, KclErrorDetails},
execution::{
annotations,
fn_call::Args,
kcl_value::{FunctionSource, TypeDef},
memory,
state::ModuleState,
types::{NumericType, PrimitiveType, RuntimeType},
BodyType, EnvironmentRef, ExecState, ExecutorContext, KclValue, Metadata, PlaneType, TagEngineInfo,
BodyType, EnvironmentRef, ExecState, ExecutorContext, KclValue, Metadata, PlaneType, StatementKind,
TagIdentifier,
},
fmt,
modules::{ModuleId, ModulePath, ModuleRepr},
parsing::ast::types::{
Annotation, ArrayExpression, ArrayRangeExpression, AscribedExpression, BinaryExpression, BinaryOperator,
BinaryPart, BodyItem, CallExpressionKw, Expr, FunctionExpression, IfExpression, ImportPath, ImportSelector,
ItemVisibility, LiteralIdentifier, LiteralValue, MemberExpression, MemberObject, Name, Node, NodeRef,
ObjectExpression, PipeExpression, Program, TagDeclarator, Type, UnaryExpression, UnaryOperator,
BinaryPart, BodyItem, Expr, IfExpression, ImportPath, ImportSelector, ItemVisibility, LiteralIdentifier,
LiteralValue, MemberExpression, MemberObject, Name, Node, NodeRef, ObjectExpression, PipeExpression, Program,
TagDeclarator, Type, UnaryExpression, UnaryOperator,
},
source_range::SourceRange,
std::{
args::{Arg, Args, KwArgs, TyF64},
FunctionKind,
},
std::args::TyF64,
CompilationError,
};
enum StatementKind<'a> {
Declaration { name: &'a str },
Expression,
}
impl<'a> StatementKind<'a> {
fn expect_name(&self) -> &'a str {
match self {
@ -594,7 +584,7 @@ impl ExecutorContext {
}
#[async_recursion]
async fn execute_expr<'a: 'async_recursion>(
pub(super) async fn execute_expr<'a: 'async_recursion>(
&self,
init: &Expr,
exec_state: &mut ExecState,
@ -787,7 +777,7 @@ impl BinaryPart {
}
impl Node<Name> {
async fn get_result<'a>(
pub(super) async fn get_result<'a>(
&self,
exec_state: &'a mut ExecState,
ctx: &ExecutorContext,
@ -1305,300 +1295,6 @@ async fn inner_execute_pipe_body(
Ok(final_output)
}
impl Node<CallExpressionKw> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let fn_name = &self.callee;
let callsite: SourceRange = self.into();
// Build a hashmap from argument labels to the final evaluated values.
let mut fn_args = IndexMap::with_capacity(self.arguments.len());
let mut errors = Vec::new();
for arg_expr in &self.arguments {
let source_range = SourceRange::from(arg_expr.arg.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(&arg_expr.arg, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let arg = Arg::new(value, source_range);
match &arg_expr.label {
Some(l) => {
fn_args.insert(l.name.clone(), arg);
}
None => {
if let Some(id) = arg_expr.arg.ident_name() {
fn_args.insert(id.to_owned(), arg);
} else {
errors.push(arg);
}
}
}
}
// Evaluate the unlabeled first param, if any exists.
let unlabeled = if let Some(ref arg_expr) = self.unlabeled {
let source_range = SourceRange::from(arg_expr.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(arg_expr, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let label = arg_expr.ident_name().map(str::to_owned);
Some((label, Arg::new(value, source_range)))
} else {
None
};
let mut args = Args::new_kw(
KwArgs {
unlabeled,
labeled: fn_args,
errors,
},
self.into(),
ctx.clone(),
exec_state.pipe_value().map(|v| Arg::new(v.clone(), callsite)),
);
match ctx.stdlib.get_either(fn_name) {
FunctionKind::Core(func) => {
if func.deprecated() {
exec_state.warn(CompilationError::err(
self.callee.as_source_range(),
format!("`{fn_name}` is deprecated, see the docs for a recommended replacement"),
));
}
let formals = func.args(false);
// If it's possible the input arg was meant to be labelled and we probably don't want to use
// it as the input arg, then treat it as labelled.
if let Some((Some(label), _)) = &args.kw_args.unlabeled {
if (formals.iter().all(|a| a.label_required) || exec_state.pipe_value().is_some())
&& formals.iter().any(|a| &a.name == label && a.label_required)
&& !args.kw_args.labeled.contains_key(label)
{
let (label, arg) = args.kw_args.unlabeled.take().unwrap();
args.kw_args.labeled.insert(label.unwrap(), arg);
}
}
#[cfg(feature = "artifact-graph")]
let op = if func.feature_tree_operation() {
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
Some(Operation::StdLibCall {
std_lib_fn: (&func).into(),
unlabeled_arg: args
.unlabeled_kw_arg_unconverted()
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
labeled_args: op_labeled_args,
source_range: callsite,
is_error: false,
})
} else {
None
};
for (label, arg) in &args.kw_args.labeled {
match formals.iter().find(|p| &p.name == label) {
Some(p) => {
if !p.label_required {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"The function `{fn_name}` expects an unlabeled first parameter (`{label}`), but it is labelled in the call"
),
));
}
}
None => {
exec_state.err(CompilationError::err(
arg.source_range,
format!("`{label}` is not an argument of `{fn_name}`"),
));
}
}
}
// Attempt to call the function.
let mut return_value = {
// Don't early-return in this block.
exec_state.mut_stack().push_new_env_for_rust_call();
let result = func.std_lib_fn()(exec_state, args).await;
exec_state.mut_stack().pop_env();
#[cfg(feature = "artifact-graph")]
if let Some(mut op) = op {
op.set_std_lib_call_is_error(result.is_err());
// Track call operation. We do this after the call
// since things like patternTransform may call user code
// before running, and we will likely want to use the
// return value. The call takes ownership of the args,
// so we need to build the op before the call.
exec_state.global.operations.push(op);
}
result
}?;
update_memory_for_tags_of_geometry(&mut return_value, exec_state)?;
Ok(return_value)
}
FunctionKind::UserDefined => {
// Clone the function so that we can use a mutable reference to
// exec_state.
let func = fn_name.get_result(exec_state, ctx).await?.clone();
let Some(fn_src) = func.as_fn() else {
return Err(KclError::Semantic(KclErrorDetails {
message: "cannot call this because it isn't a function".to_string(),
source_ranges: vec![callsite],
}));
};
let return_value = fn_src
.call_kw(Some(fn_name.to_string()), exec_state, ctx, args, callsite)
.await
.map_err(|e| {
// Add the call expression to the source ranges.
e.add_source_ranges(vec![callsite])
})?;
let result = return_value.ok_or_else(move || {
let mut source_ranges: Vec<SourceRange> = vec![callsite];
// We want to send the source range of the original function.
if let KclValue::Function { meta, .. } = func {
source_ranges = meta.iter().map(|m| m.source_range).collect();
};
KclError::UndefinedValue(KclErrorDetails {
message: format!("Result of user-defined function {} is undefined", fn_name),
source_ranges,
})
})?;
Ok(result)
}
}
}
}
fn update_memory_for_tags_of_geometry(result: &mut KclValue, exec_state: &mut ExecState) -> Result<(), KclError> {
// If the return result is a sketch or solid, we want to update the
// memory for the tags of the group.
// TODO: This could probably be done in a better way, but as of now this was my only idea
// and it works.
match result {
KclValue::Sketch { value } => {
for (name, tag) in value.tags.iter() {
if exec_state.stack().cur_frame_contains(name) {
exec_state.mut_stack().update(name, |v, _| {
v.as_mut_tag().unwrap().merge_info(tag);
});
} else {
exec_state
.mut_stack()
.add(
name.to_owned(),
KclValue::TagIdentifier(Box::new(tag.clone())),
SourceRange::default(),
)
.unwrap();
}
}
}
KclValue::Solid { ref mut value } => {
for v in &value.value {
if let Some(tag) = v.get_tag() {
// Get the past tag and update it.
let tag_id = if let Some(t) = value.sketch.tags.get(&tag.name) {
let mut t = t.clone();
let Some(info) = t.get_cur_info() else {
return Err(KclError::Internal(KclErrorDetails {
message: format!("Tag {} does not have path info", tag.name),
source_ranges: vec![tag.into()],
}));
};
let mut info = info.clone();
info.surface = Some(v.clone());
info.sketch = value.id;
t.info.push((exec_state.stack().current_epoch(), info));
t
} else {
// It's probably a fillet or a chamfer.
// Initialize it.
TagIdentifier {
value: tag.name.clone(),
info: vec![(
exec_state.stack().current_epoch(),
TagEngineInfo {
id: v.get_id(),
surface: Some(v.clone()),
path: None,
sketch: value.id,
},
)],
meta: vec![Metadata {
source_range: tag.clone().into(),
}],
}
};
// update the sketch tags.
value.sketch.merge_tags(Some(&tag_id).into_iter());
if exec_state.stack().cur_frame_contains(&tag.name) {
exec_state.mut_stack().update(&tag.name, |v, _| {
v.as_mut_tag().unwrap().merge_info(&tag_id);
});
} else {
exec_state
.mut_stack()
.add(
tag.name.clone(),
KclValue::TagIdentifier(Box::new(tag_id)),
SourceRange::default(),
)
.unwrap();
}
}
}
// Find the stale sketch in memory and update it.
if !value.sketch.tags.is_empty() {
let sketches_to_update: Vec<_> = exec_state
.stack()
.find_keys_in_current_env(|v| match v {
KclValue::Sketch { value: sk } => sk.original_id == value.sketch.original_id,
_ => false,
})
.cloned()
.collect();
for k in sketches_to_update {
exec_state.mut_stack().update(&k, |v, _| {
let sketch = v.as_mut_sketch().unwrap();
sketch.merge_tags(value.sketch.tags.values());
});
}
}
}
KclValue::Tuple { value, .. } | KclValue::HomArray { value, .. } => {
for v in value {
update_memory_for_tags_of_geometry(v, exec_state)?;
}
}
_ => {}
}
Ok(())
}
impl Node<TagDeclarator> {
pub async fn execute(&self, exec_state: &mut ExecState) -> Result<KclValue, KclError> {
let memory_item = KclValue::TagIdentifier(Box::new(TagIdentifier {
@ -1893,409 +1589,6 @@ impl Node<PipeExpression> {
}
}
fn type_check_params_kw(
fn_name: Option<&str>,
function_expression: NodeRef<'_, FunctionExpression>,
args: &mut KwArgs,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
// If it's possible the input arg was meant to be labelled and we probably don't want to use
// it as the input arg, then treat it as labelled.
if let Some((Some(label), _)) = &args.unlabeled {
if (function_expression.params.iter().all(|p| p.labeled) || exec_state.pipe_value().is_some())
&& function_expression
.params
.iter()
.any(|p| &p.identifier.name == label && p.labeled)
&& !args.labeled.contains_key(label)
{
let (label, arg) = args.unlabeled.take().unwrap();
args.labeled.insert(label.unwrap(), arg);
}
}
for (label, arg) in &mut args.labeled {
match function_expression.params.iter().find(|p| &p.identifier.name == label) {
Some(p) => {
if !p.labeled {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"{} expects an unlabeled first parameter (`{label}`), but it is labelled in the call",
fn_name
.map(|n| format!("The function `{}`", n))
.unwrap_or_else(|| "This function".to_owned()),
),
));
}
if let Some(ty) = &p.type_ {
arg.value = arg
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.source_range).map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|e| {
let mut message = format!(
"{label} requires a value with type `{}`, but found {}",
ty.inner,
arg.value.human_friendly_type(),
);
if let Some(ty) = e.explicit_coercion {
// TODO if we have access to the AST for the argument we could choose which example to suggest.
message = format!("{message}\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`");
}
KclError::Semantic(KclErrorDetails {
message,
source_ranges: vec![arg.source_range],
})
})?;
}
}
None => {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"`{label}` is not an argument of {}",
fn_name
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "this function".to_owned()),
),
));
}
}
}
if !args.errors.is_empty() {
let actuals = args.labeled.keys();
let formals: Vec<_> = function_expression
.params
.iter()
.filter_map(|p| {
if !p.labeled {
return None;
}
let name = &p.identifier.name;
if actuals.clone().any(|a| a == name) {
return None;
}
Some(format!("`{name}`"))
})
.collect();
let suggestion = if formals.is_empty() {
String::new()
} else {
format!("; suggested labels: {}", formals.join(", "))
};
let mut errors = args.errors.iter().map(|e| {
CompilationError::err(
e.source_range,
format!("This argument needs a label, but it doesn't have one{suggestion}"),
)
});
let first = errors.next().unwrap();
errors.for_each(|e| exec_state.err(e));
return Err(KclError::Semantic(first.into()));
}
if let Some(arg) = &mut args.unlabeled {
if let Some(p) = function_expression.params.iter().find(|p| !p.labeled) {
if let Some(ty) = &p.type_ {
arg.1.value = arg
.1
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.1.source_range)
.map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"The input argument of {} requires a value with type `{}`, but found {}",
fn_name
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "this function".to_owned()),
ty.inner,
arg.1.value.human_friendly_type()
),
source_ranges: vec![arg.1.source_range],
})
})?;
}
}
}
Ok(())
}
fn assign_args_to_params_kw(
fn_name: Option<&str>,
function_expression: NodeRef<'_, FunctionExpression>,
mut args: Args,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
type_check_params_kw(fn_name, function_expression, &mut args.kw_args, exec_state)?;
// Add the arguments to the memory. A new call frame should have already
// been created.
let source_ranges = vec![function_expression.into()];
for param in function_expression.params.iter() {
if param.labeled {
let arg = args.kw_args.labeled.get(&param.identifier.name);
let arg_val = match arg {
Some(arg) => arg.value.clone(),
None => match param.default_value {
Some(ref default_val) => KclValue::from_default_param(default_val.clone(), exec_state),
None => {
return Err(KclError::Semantic(KclErrorDetails {
source_ranges,
message: format!(
"This function requires a parameter {}, but you haven't passed it one.",
param.identifier.name
),
}));
}
},
};
exec_state
.mut_stack()
.add(param.identifier.name.clone(), arg_val, (&param.identifier).into())?;
} else {
let unlabelled = args.unlabeled_kw_arg_unconverted();
let Some(unlabeled) = unlabelled else {
let param_name = &param.identifier.name;
return Err(if args.kw_args.labeled.contains_key(param_name) {
KclError::Semantic(KclErrorDetails {
source_ranges,
message: format!("The function does declare a parameter named '{param_name}', but this parameter doesn't use a label. Try removing the `{param_name}:`"),
})
} else {
KclError::Semantic(KclErrorDetails {
source_ranges,
message: "This function expects an unlabeled first parameter, but you haven't passed it one."
.to_owned(),
})
});
};
exec_state.mut_stack().add(
param.identifier.name.clone(),
unlabeled.value.clone(),
(&param.identifier).into(),
)?;
}
}
Ok(())
}
fn coerce_result_type(
result: Result<Option<KclValue>, KclError>,
function_expression: NodeRef<'_, FunctionExpression>,
exec_state: &mut ExecState,
) -> Result<Option<KclValue>, KclError> {
if let Ok(Some(val)) = result {
if let Some(ret_ty) = &function_expression.return_type {
let ty = RuntimeType::from_parsed(ret_ty.inner.clone(), exec_state, ret_ty.as_source_range())
.map_err(|e| KclError::Semantic(e.into()))?;
let val = val.coerce(&ty, exec_state).map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"This function requires its result to be of type `{}`, but found {}",
ty.human_friendly_type(),
val.human_friendly_type(),
),
source_ranges: ret_ty.as_source_ranges(),
})
})?;
Ok(Some(val))
} else {
Ok(Some(val))
}
} else {
result
}
}
async fn call_user_defined_function_kw(
fn_name: Option<&str>,
args: Args,
memory: EnvironmentRef,
function_expression: NodeRef<'_, FunctionExpression>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
) -> Result<Option<KclValue>, KclError> {
// Create a new environment to execute the function body in so that local
// variables shadow variables in the parent scope. The new environment's
// parent should be the environment of the closure.
exec_state.mut_stack().push_new_env_for_call(memory);
if let Err(e) = assign_args_to_params_kw(fn_name, function_expression, args, exec_state) {
exec_state.mut_stack().pop_env();
return Err(e);
}
// Execute the function body using the memory we just created.
let result = ctx
.exec_block(&function_expression.body, exec_state, BodyType::Block)
.await;
let mut result = result.map(|_| {
exec_state
.stack()
.get(memory::RETURN_NAME, function_expression.as_source_range())
.ok()
.cloned()
});
result = coerce_result_type(result, function_expression, exec_state);
// Restore the previous memory.
exec_state.mut_stack().pop_env();
result
}
impl FunctionSource {
pub async fn call_kw(
&self,
fn_name: Option<String>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
mut args: Args,
callsite: SourceRange,
) -> Result<Option<KclValue>, KclError> {
match self {
FunctionSource::Std { func, ast, props } => {
if props.deprecated {
exec_state.warn(CompilationError::err(
callsite,
format!(
"`{}` is deprecated, see the docs for a recommended replacement",
props.name
),
));
}
type_check_params_kw(Some(&props.name), ast, &mut args.kw_args, exec_state)?;
if let Some(arg) = &mut args.kw_args.unlabeled {
if let Some(p) = ast.params.iter().find(|p| !p.labeled) {
if let Some(ty) = &p.type_ {
arg.1.value = arg
.1
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.1.source_range)
.map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"The input argument of {} requires a value with type `{}`, but found {}",
props.name,
ty.inner,
arg.1.value.human_friendly_type(),
),
source_ranges: vec![callsite],
})
})?;
}
}
}
#[cfg(feature = "artifact-graph")]
let op = if props.include_in_feature_tree {
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
Some(Operation::KclStdLibCall {
name: fn_name.unwrap_or_default(),
unlabeled_arg: args
.unlabeled_kw_arg_unconverted()
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
labeled_args: op_labeled_args,
source_range: callsite,
is_error: false,
})
} else {
None
};
// Attempt to call the function.
exec_state.mut_stack().push_new_env_for_rust_call();
let mut result = {
// Don't early-return in this block.
let result = func(exec_state, args).await;
exec_state.mut_stack().pop_env();
#[cfg(feature = "artifact-graph")]
if let Some(mut op) = op {
op.set_std_lib_call_is_error(result.is_err());
// Track call operation. We do this after the call
// since things like patternTransform may call user code
// before running, and we will likely want to use the
// return value. The call takes ownership of the args,
// so we need to build the op before the call.
exec_state.global.operations.push(op);
}
result
}?;
update_memory_for_tags_of_geometry(&mut result, exec_state)?;
Ok(Some(result))
}
FunctionSource::User { ast, memory, .. } => {
// Track call operation.
#[cfg(feature = "artifact-graph")]
{
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
exec_state.global.operations.push(Operation::GroupBegin {
group: Group::FunctionCall {
name: fn_name.clone(),
function_source_range: ast.as_source_range(),
unlabeled_arg: args
.kw_args
.unlabeled
.as_ref()
.map(|arg| OpArg::new(OpKclValue::from(&arg.1.value), arg.1.source_range)),
labeled_args: op_labeled_args,
},
source_range: callsite,
});
}
let result =
call_user_defined_function_kw(fn_name.as_deref(), args, *memory, ast, exec_state, ctx).await;
// Track return operation.
#[cfg(feature = "artifact-graph")]
exec_state.global.operations.push(Operation::GroupEnd);
result
}
FunctionSource::None => unreachable!(),
}
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
@ -2305,151 +1598,10 @@ mod test {
use super::*;
use crate::{
exec::UnitType,
execution::{memory::Stack, parse_execute, ContextType},
parsing::ast::types::{DefaultParamVal, Identifier, Parameter},
execution::{parse_execute, ContextType},
ExecutorSettings, UnitLen,
};
#[tokio::test(flavor = "multi_thread")]
async fn test_assign_args_to_params() {
// Set up a little framework for this test.
fn mem(number: usize) -> KclValue {
KclValue::Number {
value: number as f64,
ty: NumericType::count(),
meta: Default::default(),
}
}
fn ident(s: &'static str) -> Node<Identifier> {
Node::no_src(Identifier {
name: s.to_owned(),
digest: None,
})
}
fn opt_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
}
}
fn req_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: None,
labeled: true,
digest: None,
}
}
fn additional_program_memory(items: &[(String, KclValue)]) -> Stack {
let mut program_memory = Stack::new_for_tests();
for (name, item) in items {
program_memory
.add(name.clone(), item.clone(), SourceRange::default())
.unwrap();
}
program_memory
}
// Declare the test cases.
for (test_name, params, args, expected) in [
("empty", Vec::new(), Vec::new(), Ok(additional_program_memory(&[]))),
(
"all params required, and all given, should be OK",
vec![req_param("x")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[("x".to_owned(), mem(1))])),
),
(
"all params required, none given, should error",
vec![req_param("x")],
vec![],
Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![SourceRange::default()],
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
})),
),
(
"all params optional, none given, should be OK",
vec![opt_param("x")],
vec![],
Ok(additional_program_memory(&[("x".to_owned(), KclValue::none())])),
),
(
"mixed params, too few given",
vec![req_param("x"), opt_param("y")],
vec![],
Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![SourceRange::default()],
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
})),
),
(
"mixed params, minimum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), KclValue::none()),
])),
),
(
"mixed params, maximum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1)), ("y", mem(2))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), mem(2)),
])),
),
] {
// Run each test.
let func_expr = &Node::no_src(FunctionExpression {
params,
body: Program::empty(),
return_type: None,
digest: None,
});
let labeled = args
.iter()
.map(|(name, value)| {
let arg = Arg::new(value.clone(), SourceRange::default());
((*name).to_owned(), arg)
})
.collect::<IndexMap<_, _>>();
let exec_ctxt = ExecutorContext {
engine: Arc::new(Box::new(
crate::engine::conn_mock::EngineConnection::new().await.unwrap(),
)),
fs: Arc::new(crate::fs::FileManager::new()),
stdlib: Arc::new(crate::std::StdLib::new()),
settings: Default::default(),
context_type: ContextType::Mock,
};
let mut exec_state = ExecState::new(&exec_ctxt);
exec_state.mod_local.stack = Stack::new_for_tests();
let args = Args::new_kw(
KwArgs {
unlabeled: None,
labeled,
errors: Vec::new(),
},
SourceRange::default(),
exec_ctxt,
None,
);
let actual =
assign_args_to_params_kw(None, func_expr, args, &mut exec_state).map(|_| exec_state.mod_local.stack);
assert_eq!(
actual, expected,
"failed test '{test_name}':\ngot {actual:?}\nbut expected\n{expected:?}"
);
}
}
#[tokio::test(flavor = "multi_thread")]
async fn ascription() {
let program = r#"