Type check and coerce arguments to user functions and return values from std Rust functions (#6958)
* Shuffle around function call code Signed-off-by: Nick Cameron <nrc@ncameron.org> * Refactor function calls to share more code Signed-off-by: Nick Cameron <nrc@ncameron.org> * Hack to leave the result of revolve as a singleton rather than array Signed-off-by: Nick Cameron <nrc@ncameron.org> --------- Signed-off-by: Nick Cameron <nrc@ncameron.org>
This commit is contained in:
979
rust/kcl-lib/src/execution/fn_call.rs
Normal file
979
rust/kcl-lib/src/execution/fn_call.rs
Normal file
@ -0,0 +1,979 @@
|
||||
use async_recursion::async_recursion;
|
||||
use indexmap::IndexMap;
|
||||
|
||||
use crate::execution::cad_op::{Group, OpArg, OpKclValue, Operation};
|
||||
use crate::{
|
||||
docs::StdLibFn,
|
||||
errors::{KclError, KclErrorDetails},
|
||||
execution::{
|
||||
kcl_value::FunctionSource, memory, types::RuntimeType, BodyType, ExecState, ExecutorContext, KclValue,
|
||||
Metadata, StatementKind, TagEngineInfo, TagIdentifier,
|
||||
},
|
||||
parsing::ast::types::{CallExpressionKw, DefaultParamVal, FunctionExpression, Node, Program, Type},
|
||||
source_range::SourceRange,
|
||||
std::StdFn,
|
||||
CompilationError,
|
||||
};
|
||||
|
||||
use super::types::ArrayLen;
|
||||
use super::EnvironmentRef;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Args {
|
||||
/// Positional args.
|
||||
pub args: Vec<Arg>,
|
||||
/// Keyword arguments
|
||||
pub kw_args: KwArgs,
|
||||
pub source_range: SourceRange,
|
||||
pub ctx: ExecutorContext,
|
||||
/// If this call happens inside a pipe (|>) expression, this holds the LHS of that |>.
|
||||
/// Otherwise it's None.
|
||||
pub pipe_value: Option<Arg>,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
pub fn new(args: Vec<Arg>, source_range: SourceRange, ctx: ExecutorContext, pipe_value: Option<Arg>) -> Self {
|
||||
Self {
|
||||
args,
|
||||
kw_args: Default::default(),
|
||||
source_range,
|
||||
ctx,
|
||||
pipe_value,
|
||||
}
|
||||
}
|
||||
|
||||
/// Collect the given keyword arguments.
|
||||
pub fn new_kw(kw_args: KwArgs, source_range: SourceRange, ctx: ExecutorContext, pipe_value: Option<Arg>) -> Self {
|
||||
Self {
|
||||
args: Default::default(),
|
||||
kw_args,
|
||||
source_range,
|
||||
ctx,
|
||||
pipe_value,
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the unlabeled keyword argument. If not set, returns None.
|
||||
pub(crate) fn unlabeled_kw_arg_unconverted(&self) -> Option<&Arg> {
|
||||
self.kw_args
|
||||
.unlabeled
|
||||
.as_ref()
|
||||
.map(|(_, a)| a)
|
||||
.or(self.args.first())
|
||||
.or(self.pipe_value.as_ref())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct Arg {
|
||||
/// The evaluated argument.
|
||||
pub value: KclValue,
|
||||
/// The source range of the unevaluated argument.
|
||||
pub source_range: SourceRange,
|
||||
}
|
||||
|
||||
impl Arg {
|
||||
pub fn new(value: KclValue, source_range: SourceRange) -> Self {
|
||||
Self { value, source_range }
|
||||
}
|
||||
|
||||
pub fn synthetic(value: KclValue) -> Self {
|
||||
Self {
|
||||
value,
|
||||
source_range: SourceRange::synthetic(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn source_ranges(&self) -> Vec<SourceRange> {
|
||||
vec![self.source_range]
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Default)]
|
||||
pub struct KwArgs {
|
||||
/// Unlabeled keyword args. Currently only the first arg can be unlabeled.
|
||||
/// If the argument was a local variable, then the first element of the tuple is its name
|
||||
/// which may be used to treat this arg as a labelled arg.
|
||||
pub unlabeled: Option<(Option<String>, Arg)>,
|
||||
/// Labeled args.
|
||||
pub labeled: IndexMap<String, Arg>,
|
||||
pub errors: Vec<Arg>,
|
||||
}
|
||||
|
||||
impl KwArgs {
|
||||
/// How many arguments are there?
|
||||
pub fn len(&self) -> usize {
|
||||
self.labeled.len() + if self.unlabeled.is_some() { 1 } else { 0 }
|
||||
}
|
||||
/// Are there no arguments?
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.labeled.len() == 0 && self.unlabeled.is_none()
|
||||
}
|
||||
}
|
||||
|
||||
struct FunctionDefinition<'a> {
|
||||
input_arg: Option<(String, Option<Type>)>,
|
||||
named_args: IndexMap<String, (Option<DefaultParamVal>, Option<Type>)>,
|
||||
return_type: Option<Node<Type>>,
|
||||
deprecated: bool,
|
||||
include_in_feature_tree: bool,
|
||||
is_std: bool,
|
||||
body: FunctionBody<'a>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
enum FunctionBody<'a> {
|
||||
Rust(StdFn),
|
||||
Kcl(&'a Node<Program>, EnvironmentRef),
|
||||
}
|
||||
|
||||
impl<'a> From<&'a FunctionSource> for FunctionDefinition<'a> {
|
||||
fn from(value: &'a FunctionSource) -> Self {
|
||||
#[allow(clippy::type_complexity)]
|
||||
fn args_from_ast(
|
||||
ast: &FunctionExpression,
|
||||
) -> (
|
||||
Option<(String, Option<Type>)>,
|
||||
IndexMap<String, (Option<DefaultParamVal>, Option<Type>)>,
|
||||
) {
|
||||
let mut input_arg = None;
|
||||
let mut named_args = IndexMap::new();
|
||||
for p in &ast.params {
|
||||
if !p.labeled {
|
||||
input_arg = Some((p.identifier.name.clone(), p.type_.as_ref().map(|t| t.inner.clone())));
|
||||
continue;
|
||||
}
|
||||
|
||||
named_args.insert(
|
||||
p.identifier.name.clone(),
|
||||
(p.default_value.clone(), p.type_.as_ref().map(|t| t.inner.clone())),
|
||||
);
|
||||
}
|
||||
|
||||
(input_arg, named_args)
|
||||
}
|
||||
|
||||
match value {
|
||||
FunctionSource::Std { func, ast, props } => {
|
||||
let (input_arg, named_args) = args_from_ast(ast);
|
||||
FunctionDefinition {
|
||||
input_arg,
|
||||
named_args,
|
||||
return_type: ast.return_type.clone(),
|
||||
deprecated: props.deprecated,
|
||||
include_in_feature_tree: props.include_in_feature_tree,
|
||||
is_std: true,
|
||||
body: FunctionBody::Rust(*func),
|
||||
}
|
||||
}
|
||||
FunctionSource::User { ast, memory, .. } => {
|
||||
let (input_arg, named_args) = args_from_ast(ast);
|
||||
FunctionDefinition {
|
||||
input_arg,
|
||||
named_args,
|
||||
return_type: ast.return_type.clone(),
|
||||
deprecated: false,
|
||||
include_in_feature_tree: true,
|
||||
// TODO I think this might be wrong for pure Rust std functions
|
||||
is_std: false,
|
||||
body: FunctionBody::Kcl(&ast.body, *memory),
|
||||
}
|
||||
}
|
||||
FunctionSource::None => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<&dyn StdLibFn> for FunctionDefinition<'static> {
|
||||
fn from(value: &dyn StdLibFn) -> Self {
|
||||
let mut input_arg = None;
|
||||
let mut named_args = IndexMap::new();
|
||||
for a in value.args(false) {
|
||||
if !a.label_required {
|
||||
input_arg = Some((a.name.clone(), None));
|
||||
continue;
|
||||
}
|
||||
|
||||
named_args.insert(
|
||||
a.name.clone(),
|
||||
(
|
||||
if a.required {
|
||||
None
|
||||
} else {
|
||||
Some(DefaultParamVal::none())
|
||||
},
|
||||
None,
|
||||
),
|
||||
);
|
||||
}
|
||||
FunctionDefinition {
|
||||
input_arg,
|
||||
named_args,
|
||||
return_type: None,
|
||||
deprecated: value.deprecated(),
|
||||
include_in_feature_tree: value.feature_tree_operation(),
|
||||
is_std: true,
|
||||
body: FunctionBody::Rust(value.std_lib_fn()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Node<CallExpressionKw> {
|
||||
#[async_recursion]
|
||||
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
|
||||
let fn_name = &self.callee;
|
||||
let callsite: SourceRange = self.into();
|
||||
|
||||
// Build a hashmap from argument labels to the final evaluated values.
|
||||
let mut fn_args = IndexMap::with_capacity(self.arguments.len());
|
||||
let mut errors = Vec::new();
|
||||
for arg_expr in &self.arguments {
|
||||
let source_range = SourceRange::from(arg_expr.arg.clone());
|
||||
let metadata = Metadata { source_range };
|
||||
let value = ctx
|
||||
.execute_expr(&arg_expr.arg, exec_state, &metadata, &[], StatementKind::Expression)
|
||||
.await?;
|
||||
let arg = Arg::new(value, source_range);
|
||||
match &arg_expr.label {
|
||||
Some(l) => {
|
||||
fn_args.insert(l.name.clone(), arg);
|
||||
}
|
||||
None => {
|
||||
if let Some(id) = arg_expr.arg.ident_name() {
|
||||
fn_args.insert(id.to_owned(), arg);
|
||||
} else {
|
||||
errors.push(arg);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Evaluate the unlabeled first param, if any exists.
|
||||
let unlabeled = if let Some(ref arg_expr) = self.unlabeled {
|
||||
let source_range = SourceRange::from(arg_expr.clone());
|
||||
let metadata = Metadata { source_range };
|
||||
let value = ctx
|
||||
.execute_expr(arg_expr, exec_state, &metadata, &[], StatementKind::Expression)
|
||||
.await?;
|
||||
|
||||
let label = arg_expr.ident_name().map(str::to_owned);
|
||||
|
||||
Some((label, Arg::new(value, source_range)))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let args = Args::new_kw(
|
||||
KwArgs {
|
||||
unlabeled,
|
||||
labeled: fn_args,
|
||||
errors,
|
||||
},
|
||||
self.into(),
|
||||
ctx.clone(),
|
||||
exec_state.pipe_value().map(|v| Arg::new(v.clone(), callsite)),
|
||||
);
|
||||
|
||||
match ctx.stdlib.get_rust_function(fn_name) {
|
||||
Some(func) => {
|
||||
let def: FunctionDefinition = (&*func).into();
|
||||
// All std lib functions return a value, so the unwrap is safe.
|
||||
def.call_kw(Some(func.name()), exec_state, ctx, args, callsite)
|
||||
.await
|
||||
.map(Option::unwrap)
|
||||
}
|
||||
None => {
|
||||
// Clone the function so that we can use a mutable reference to
|
||||
// exec_state.
|
||||
let func = fn_name.get_result(exec_state, ctx).await?.clone();
|
||||
|
||||
let Some(fn_src) = func.as_fn() else {
|
||||
return Err(KclError::Semantic(KclErrorDetails {
|
||||
message: "cannot call this because it isn't a function".to_string(),
|
||||
source_ranges: vec![callsite],
|
||||
}));
|
||||
};
|
||||
|
||||
let return_value = fn_src
|
||||
.call_kw(Some(fn_name.to_string()), exec_state, ctx, args, callsite)
|
||||
.await
|
||||
.map_err(|e| {
|
||||
// Add the call expression to the source ranges.
|
||||
e.add_source_ranges(vec![callsite])
|
||||
})?;
|
||||
|
||||
let result = return_value.ok_or_else(move || {
|
||||
let mut source_ranges: Vec<SourceRange> = vec![callsite];
|
||||
// We want to send the source range of the original function.
|
||||
if let KclValue::Function { meta, .. } = func {
|
||||
source_ranges = meta.iter().map(|m| m.source_range).collect();
|
||||
};
|
||||
KclError::UndefinedValue(KclErrorDetails {
|
||||
message: format!("Result of user-defined function {} is undefined", fn_name),
|
||||
source_ranges,
|
||||
})
|
||||
})?;
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FunctionDefinition<'_> {
|
||||
pub async fn call_kw(
|
||||
&self,
|
||||
fn_name: Option<String>,
|
||||
exec_state: &mut ExecState,
|
||||
ctx: &ExecutorContext,
|
||||
mut args: Args,
|
||||
callsite: SourceRange,
|
||||
) -> Result<Option<KclValue>, KclError> {
|
||||
if self.deprecated {
|
||||
exec_state.warn(CompilationError::err(
|
||||
callsite,
|
||||
format!(
|
||||
"{} is deprecated, see the docs for a recommended replacement",
|
||||
match &fn_name {
|
||||
Some(n) => format!("`{n}`"),
|
||||
None => "This function".to_owned(),
|
||||
}
|
||||
),
|
||||
));
|
||||
}
|
||||
|
||||
type_check_params_kw(fn_name.as_deref(), self, &mut args.kw_args, exec_state)?;
|
||||
|
||||
// Don't early return until the stack frame is popped!
|
||||
self.body.prep_mem(exec_state);
|
||||
|
||||
let op = if self.include_in_feature_tree {
|
||||
let op_labeled_args = args
|
||||
.kw_args
|
||||
.labeled
|
||||
.iter()
|
||||
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
|
||||
.collect();
|
||||
|
||||
if self.is_std {
|
||||
Some(Operation::StdLibCall {
|
||||
name: fn_name.clone().unwrap_or_else(|| "unknown function".to_owned()),
|
||||
unlabeled_arg: args
|
||||
.unlabeled_kw_arg_unconverted()
|
||||
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
|
||||
labeled_args: op_labeled_args,
|
||||
source_range: callsite,
|
||||
is_error: false,
|
||||
})
|
||||
} else {
|
||||
exec_state.push_op(Operation::GroupBegin {
|
||||
group: Group::FunctionCall {
|
||||
name: fn_name.clone(),
|
||||
function_source_range: self.as_source_range().unwrap(),
|
||||
unlabeled_arg: args
|
||||
.kw_args
|
||||
.unlabeled
|
||||
.as_ref()
|
||||
.map(|arg| OpArg::new(OpKclValue::from(&arg.1.value), arg.1.source_range)),
|
||||
labeled_args: op_labeled_args,
|
||||
},
|
||||
source_range: callsite,
|
||||
});
|
||||
|
||||
None
|
||||
}
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let mut result = match &self.body {
|
||||
FunctionBody::Rust(f) => f(exec_state, args).await.map(Some),
|
||||
FunctionBody::Kcl(f, _) => {
|
||||
if let Err(e) = assign_args_to_params_kw(self, args, exec_state) {
|
||||
exec_state.mut_stack().pop_env();
|
||||
return Err(e);
|
||||
}
|
||||
|
||||
ctx.exec_block(f, exec_state, BodyType::Block).await.map(|_| {
|
||||
exec_state
|
||||
.stack()
|
||||
.get(memory::RETURN_NAME, f.as_source_range())
|
||||
.ok()
|
||||
.cloned()
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
exec_state.mut_stack().pop_env();
|
||||
|
||||
if let Some(mut op) = op {
|
||||
op.set_std_lib_call_is_error(result.is_err());
|
||||
// Track call operation. We do this after the call
|
||||
// since things like patternTransform may call user code
|
||||
// before running, and we will likely want to use the
|
||||
// return value. The call takes ownership of the args,
|
||||
// so we need to build the op before the call.
|
||||
exec_state.push_op(op);
|
||||
} else if !self.is_std {
|
||||
exec_state.push_op(Operation::GroupEnd);
|
||||
}
|
||||
|
||||
if self.is_std {
|
||||
if let Ok(Some(result)) = &mut result {
|
||||
update_memory_for_tags_of_geometry(result, exec_state)?;
|
||||
}
|
||||
}
|
||||
|
||||
coerce_result_type(result, self, exec_state)
|
||||
}
|
||||
|
||||
// Postcondition: result.is_some() if function is not in the standard library.
|
||||
fn as_source_range(&self) -> Option<SourceRange> {
|
||||
match &self.body {
|
||||
FunctionBody::Rust(_) => None,
|
||||
FunctionBody::Kcl(p, _) => Some(p.as_source_range()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FunctionBody<'_> {
|
||||
fn prep_mem(&self, exec_state: &mut ExecState) {
|
||||
match self {
|
||||
FunctionBody::Rust(_) => exec_state.mut_stack().push_new_env_for_rust_call(),
|
||||
FunctionBody::Kcl(_, memory) => exec_state.mut_stack().push_new_env_for_call(*memory),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl FunctionSource {
|
||||
pub async fn call_kw(
|
||||
&self,
|
||||
fn_name: Option<String>,
|
||||
exec_state: &mut ExecState,
|
||||
ctx: &ExecutorContext,
|
||||
args: Args,
|
||||
callsite: SourceRange,
|
||||
) -> Result<Option<KclValue>, KclError> {
|
||||
let def: FunctionDefinition = self.into();
|
||||
def.call_kw(fn_name, exec_state, ctx, args, callsite).await
|
||||
}
|
||||
}
|
||||
|
||||
fn update_memory_for_tags_of_geometry(result: &mut KclValue, exec_state: &mut ExecState) -> Result<(), KclError> {
|
||||
// If the return result is a sketch or solid, we want to update the
|
||||
// memory for the tags of the group.
|
||||
// TODO: This could probably be done in a better way, but as of now this was my only idea
|
||||
// and it works.
|
||||
match result {
|
||||
KclValue::Sketch { value } => {
|
||||
for (name, tag) in value.tags.iter() {
|
||||
if exec_state.stack().cur_frame_contains(name) {
|
||||
exec_state.mut_stack().update(name, |v, _| {
|
||||
v.as_mut_tag().unwrap().merge_info(tag);
|
||||
});
|
||||
} else {
|
||||
exec_state
|
||||
.mut_stack()
|
||||
.add(
|
||||
name.to_owned(),
|
||||
KclValue::TagIdentifier(Box::new(tag.clone())),
|
||||
SourceRange::default(),
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
KclValue::Solid { ref mut value } => {
|
||||
for v in &value.value {
|
||||
if let Some(tag) = v.get_tag() {
|
||||
// Get the past tag and update it.
|
||||
let tag_id = if let Some(t) = value.sketch.tags.get(&tag.name) {
|
||||
let mut t = t.clone();
|
||||
let Some(info) = t.get_cur_info() else {
|
||||
return Err(KclError::Internal(KclErrorDetails {
|
||||
message: format!("Tag {} does not have path info", tag.name),
|
||||
source_ranges: vec![tag.into()],
|
||||
}));
|
||||
};
|
||||
|
||||
let mut info = info.clone();
|
||||
info.surface = Some(v.clone());
|
||||
info.sketch = value.id;
|
||||
t.info.push((exec_state.stack().current_epoch(), info));
|
||||
t
|
||||
} else {
|
||||
// It's probably a fillet or a chamfer.
|
||||
// Initialize it.
|
||||
TagIdentifier {
|
||||
value: tag.name.clone(),
|
||||
info: vec![(
|
||||
exec_state.stack().current_epoch(),
|
||||
TagEngineInfo {
|
||||
id: v.get_id(),
|
||||
surface: Some(v.clone()),
|
||||
path: None,
|
||||
sketch: value.id,
|
||||
},
|
||||
)],
|
||||
meta: vec![Metadata {
|
||||
source_range: tag.clone().into(),
|
||||
}],
|
||||
}
|
||||
};
|
||||
|
||||
// update the sketch tags.
|
||||
value.sketch.merge_tags(Some(&tag_id).into_iter());
|
||||
|
||||
if exec_state.stack().cur_frame_contains(&tag.name) {
|
||||
exec_state.mut_stack().update(&tag.name, |v, _| {
|
||||
v.as_mut_tag().unwrap().merge_info(&tag_id);
|
||||
});
|
||||
} else {
|
||||
exec_state
|
||||
.mut_stack()
|
||||
.add(
|
||||
tag.name.clone(),
|
||||
KclValue::TagIdentifier(Box::new(tag_id)),
|
||||
SourceRange::default(),
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find the stale sketch in memory and update it.
|
||||
if !value.sketch.tags.is_empty() {
|
||||
let sketches_to_update: Vec<_> = exec_state
|
||||
.stack()
|
||||
.find_keys_in_current_env(|v| match v {
|
||||
KclValue::Sketch { value: sk } => sk.original_id == value.sketch.original_id,
|
||||
_ => false,
|
||||
})
|
||||
.cloned()
|
||||
.collect();
|
||||
|
||||
for k in sketches_to_update {
|
||||
exec_state.mut_stack().update(&k, |v, _| {
|
||||
let sketch = v.as_mut_sketch().unwrap();
|
||||
sketch.merge_tags(value.sketch.tags.values());
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
KclValue::Tuple { value, .. } | KclValue::HomArray { value, .. } => {
|
||||
for v in value {
|
||||
update_memory_for_tags_of_geometry(v, exec_state)?;
|
||||
}
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn type_check_params_kw(
|
||||
fn_name: Option<&str>,
|
||||
fn_def: &FunctionDefinition<'_>,
|
||||
args: &mut KwArgs,
|
||||
exec_state: &mut ExecState,
|
||||
) -> Result<(), KclError> {
|
||||
// If it's possible the input arg was meant to be labelled and we probably don't want to use
|
||||
// it as the input arg, then treat it as labelled.
|
||||
if let Some((Some(label), _)) = &args.unlabeled {
|
||||
if (fn_def.input_arg.is_none() || exec_state.pipe_value().is_some())
|
||||
&& fn_def.named_args.iter().any(|p| p.0 == label)
|
||||
&& !args.labeled.contains_key(label)
|
||||
{
|
||||
let (label, arg) = args.unlabeled.take().unwrap();
|
||||
args.labeled.insert(label.unwrap(), arg);
|
||||
}
|
||||
}
|
||||
|
||||
for (label, arg) in &mut args.labeled {
|
||||
match fn_def.named_args.get(label) {
|
||||
Some((_, ty)) => {
|
||||
if let Some(ty) = ty {
|
||||
arg.value = arg
|
||||
.value
|
||||
.coerce(
|
||||
&RuntimeType::from_parsed(ty.clone(), exec_state, arg.source_range).map_err(|e| KclError::Semantic(e.into()))?,
|
||||
exec_state,
|
||||
)
|
||||
.map_err(|e| {
|
||||
let mut message = format!(
|
||||
"{label} requires a value with type `{}`, but found {}",
|
||||
ty,
|
||||
arg.value.human_friendly_type(),
|
||||
);
|
||||
if let Some(ty) = e.explicit_coercion {
|
||||
// TODO if we have access to the AST for the argument we could choose which example to suggest.
|
||||
message = format!("{message}\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`");
|
||||
}
|
||||
KclError::Semantic(KclErrorDetails {
|
||||
message,
|
||||
source_ranges: vec![arg.source_range],
|
||||
})
|
||||
})?;
|
||||
}
|
||||
}
|
||||
None => {
|
||||
exec_state.err(CompilationError::err(
|
||||
arg.source_range,
|
||||
format!(
|
||||
"`{label}` is not an argument of {}",
|
||||
fn_name
|
||||
.map(|n| format!("`{}`", n))
|
||||
.unwrap_or_else(|| "this function".to_owned()),
|
||||
),
|
||||
));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !args.errors.is_empty() {
|
||||
let actuals = args.labeled.keys();
|
||||
let formals: Vec<_> = fn_def
|
||||
.named_args
|
||||
.keys()
|
||||
.filter_map(|name| {
|
||||
if actuals.clone().any(|a| a == name) {
|
||||
return None;
|
||||
}
|
||||
|
||||
Some(format!("`{name}`"))
|
||||
})
|
||||
.collect();
|
||||
|
||||
let suggestion = if formals.is_empty() {
|
||||
String::new()
|
||||
} else {
|
||||
format!("; suggested labels: {}", formals.join(", "))
|
||||
};
|
||||
|
||||
let mut errors = args.errors.iter().map(|e| {
|
||||
CompilationError::err(
|
||||
e.source_range,
|
||||
format!("This argument needs a label, but it doesn't have one{suggestion}"),
|
||||
)
|
||||
});
|
||||
|
||||
let first = errors.next().unwrap();
|
||||
errors.for_each(|e| exec_state.err(e));
|
||||
|
||||
return Err(KclError::Semantic(first.into()));
|
||||
}
|
||||
|
||||
if let Some(arg) = &mut args.unlabeled {
|
||||
if let Some((_, Some(ty))) = &fn_def.input_arg {
|
||||
arg.1.value = arg
|
||||
.1
|
||||
.value
|
||||
.coerce(
|
||||
&RuntimeType::from_parsed(ty.clone(), exec_state, arg.1.source_range)
|
||||
.map_err(|e| KclError::Semantic(e.into()))?,
|
||||
exec_state,
|
||||
)
|
||||
.map_err(|_| {
|
||||
KclError::Semantic(KclErrorDetails {
|
||||
message: format!(
|
||||
"The input argument of {} requires a value with type `{}`, but found {}",
|
||||
fn_name
|
||||
.map(|n| format!("`{}`", n))
|
||||
.unwrap_or_else(|| "this function".to_owned()),
|
||||
ty,
|
||||
arg.1.value.human_friendly_type()
|
||||
),
|
||||
source_ranges: vec![arg.1.source_range],
|
||||
})
|
||||
})?;
|
||||
}
|
||||
} else if let Some((name, _)) = &fn_def.input_arg {
|
||||
if let Some(arg) = args.labeled.get(name) {
|
||||
exec_state.err(CompilationError::err(
|
||||
arg.source_range,
|
||||
format!(
|
||||
"{} expects an unlabeled first parameter (`@{name}`), but it is labelled in the call",
|
||||
fn_name
|
||||
.map(|n| format!("The function `{}`", n))
|
||||
.unwrap_or_else(|| "This function".to_owned()),
|
||||
),
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn assign_args_to_params_kw(
|
||||
fn_def: &FunctionDefinition<'_>,
|
||||
args: Args,
|
||||
exec_state: &mut ExecState,
|
||||
) -> Result<(), KclError> {
|
||||
// Add the arguments to the memory. A new call frame should have already
|
||||
// been created.
|
||||
let source_ranges = fn_def.as_source_range().into_iter().collect();
|
||||
|
||||
for (name, (default, _)) in fn_def.named_args.iter() {
|
||||
let arg = args.kw_args.labeled.get(name);
|
||||
match arg {
|
||||
Some(arg) => {
|
||||
exec_state.mut_stack().add(
|
||||
name.clone(),
|
||||
arg.value.clone(),
|
||||
arg.source_ranges().pop().unwrap_or(SourceRange::synthetic()),
|
||||
)?;
|
||||
}
|
||||
None => match default {
|
||||
Some(ref default_val) => {
|
||||
let value = KclValue::from_default_param(default_val.clone(), exec_state);
|
||||
exec_state
|
||||
.mut_stack()
|
||||
.add(name.clone(), value, default_val.source_range())?;
|
||||
}
|
||||
None => {
|
||||
return Err(KclError::Semantic(KclErrorDetails {
|
||||
source_ranges,
|
||||
message: format!(
|
||||
"This function requires a parameter {}, but you haven't passed it one.",
|
||||
name
|
||||
),
|
||||
}));
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
if let Some((param_name, _)) = &fn_def.input_arg {
|
||||
let unlabelled = args.unlabeled_kw_arg_unconverted();
|
||||
|
||||
let Some(unlabeled) = unlabelled else {
|
||||
return Err(if args.kw_args.labeled.contains_key(param_name) {
|
||||
KclError::Semantic(KclErrorDetails {
|
||||
source_ranges,
|
||||
message: format!("The function does declare a parameter named '{param_name}', but this parameter doesn't use a label. Try removing the `{param_name}:`"),
|
||||
})
|
||||
} else {
|
||||
KclError::Semantic(KclErrorDetails {
|
||||
source_ranges,
|
||||
message: "This function expects an unlabeled first parameter, but you haven't passed it one."
|
||||
.to_owned(),
|
||||
})
|
||||
});
|
||||
};
|
||||
exec_state.mut_stack().add(
|
||||
param_name.clone(),
|
||||
unlabeled.value.clone(),
|
||||
unlabeled.source_ranges().pop().unwrap_or(SourceRange::synthetic()),
|
||||
)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn coerce_result_type(
|
||||
result: Result<Option<KclValue>, KclError>,
|
||||
fn_def: &FunctionDefinition<'_>,
|
||||
exec_state: &mut ExecState,
|
||||
) -> Result<Option<KclValue>, KclError> {
|
||||
if let Ok(Some(val)) = result {
|
||||
if let Some(ret_ty) = &fn_def.return_type {
|
||||
let mut ty = RuntimeType::from_parsed(ret_ty.inner.clone(), exec_state, ret_ty.as_source_range())
|
||||
.map_err(|e| KclError::Semantic(e.into()))?;
|
||||
// Treat `[T; 1+]` as `T | [T; 1+]` (which can't yet be expressed in our syntax of types).
|
||||
// This is a very specific hack which exists because some std functions can produce arrays
|
||||
// but usually only make a singleton and the frontend expects the singleton.
|
||||
// If we can make the frontend work on arrays (or at least arrays of length 1), then this
|
||||
// can be removed.
|
||||
// I believe this is safe, since anywhere which requires an array should coerce the singleton
|
||||
// to an array and we only do this hack for return values.
|
||||
if let RuntimeType::Array(inner, ArrayLen::NonEmpty) = &ty {
|
||||
ty = RuntimeType::Union(vec![(**inner).clone(), ty]);
|
||||
}
|
||||
let val = val.coerce(&ty, exec_state).map_err(|_| {
|
||||
KclError::Semantic(KclErrorDetails {
|
||||
message: format!(
|
||||
"This function requires its result to be of type `{}`, but found {}",
|
||||
ty.human_friendly_type(),
|
||||
val.human_friendly_type(),
|
||||
),
|
||||
source_ranges: ret_ty.as_source_ranges(),
|
||||
})
|
||||
})?;
|
||||
Ok(Some(val))
|
||||
} else {
|
||||
Ok(Some(val))
|
||||
}
|
||||
} else {
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::*;
|
||||
use crate::{
|
||||
execution::{memory::Stack, parse_execute, types::NumericType, ContextType},
|
||||
parsing::ast::types::{DefaultParamVal, Identifier, Parameter},
|
||||
};
|
||||
|
||||
#[tokio::test(flavor = "multi_thread")]
|
||||
async fn test_assign_args_to_params() {
|
||||
// Set up a little framework for this test.
|
||||
fn mem(number: usize) -> KclValue {
|
||||
KclValue::Number {
|
||||
value: number as f64,
|
||||
ty: NumericType::count(),
|
||||
meta: Default::default(),
|
||||
}
|
||||
}
|
||||
fn ident(s: &'static str) -> Node<Identifier> {
|
||||
Node::no_src(Identifier {
|
||||
name: s.to_owned(),
|
||||
digest: None,
|
||||
})
|
||||
}
|
||||
fn opt_param(s: &'static str) -> Parameter {
|
||||
Parameter {
|
||||
identifier: ident(s),
|
||||
type_: None,
|
||||
default_value: Some(DefaultParamVal::none()),
|
||||
labeled: true,
|
||||
digest: None,
|
||||
}
|
||||
}
|
||||
fn req_param(s: &'static str) -> Parameter {
|
||||
Parameter {
|
||||
identifier: ident(s),
|
||||
type_: None,
|
||||
default_value: None,
|
||||
labeled: true,
|
||||
digest: None,
|
||||
}
|
||||
}
|
||||
fn additional_program_memory(items: &[(String, KclValue)]) -> Stack {
|
||||
let mut program_memory = Stack::new_for_tests();
|
||||
for (name, item) in items {
|
||||
program_memory
|
||||
.add(name.clone(), item.clone(), SourceRange::default())
|
||||
.unwrap();
|
||||
}
|
||||
program_memory
|
||||
}
|
||||
// Declare the test cases.
|
||||
for (test_name, params, args, expected) in [
|
||||
("empty", Vec::new(), Vec::new(), Ok(additional_program_memory(&[]))),
|
||||
(
|
||||
"all params required, and all given, should be OK",
|
||||
vec![req_param("x")],
|
||||
vec![("x", mem(1))],
|
||||
Ok(additional_program_memory(&[("x".to_owned(), mem(1))])),
|
||||
),
|
||||
(
|
||||
"all params required, none given, should error",
|
||||
vec![req_param("x")],
|
||||
vec![],
|
||||
Err(KclError::Semantic(KclErrorDetails {
|
||||
source_ranges: vec![SourceRange::default()],
|
||||
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
|
||||
})),
|
||||
),
|
||||
(
|
||||
"all params optional, none given, should be OK",
|
||||
vec![opt_param("x")],
|
||||
vec![],
|
||||
Ok(additional_program_memory(&[("x".to_owned(), KclValue::none())])),
|
||||
),
|
||||
(
|
||||
"mixed params, too few given",
|
||||
vec![req_param("x"), opt_param("y")],
|
||||
vec![],
|
||||
Err(KclError::Semantic(KclErrorDetails {
|
||||
source_ranges: vec![SourceRange::default()],
|
||||
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
|
||||
})),
|
||||
),
|
||||
(
|
||||
"mixed params, minimum given, should be OK",
|
||||
vec![req_param("x"), opt_param("y")],
|
||||
vec![("x", mem(1))],
|
||||
Ok(additional_program_memory(&[
|
||||
("x".to_owned(), mem(1)),
|
||||
("y".to_owned(), KclValue::none()),
|
||||
])),
|
||||
),
|
||||
(
|
||||
"mixed params, maximum given, should be OK",
|
||||
vec![req_param("x"), opt_param("y")],
|
||||
vec![("x", mem(1)), ("y", mem(2))],
|
||||
Ok(additional_program_memory(&[
|
||||
("x".to_owned(), mem(1)),
|
||||
("y".to_owned(), mem(2)),
|
||||
])),
|
||||
),
|
||||
] {
|
||||
// Run each test.
|
||||
let func_expr = Node::no_src(FunctionExpression {
|
||||
params,
|
||||
body: Program::empty(),
|
||||
return_type: None,
|
||||
digest: None,
|
||||
});
|
||||
let func_src = FunctionSource::User {
|
||||
ast: Box::new(func_expr),
|
||||
settings: Default::default(),
|
||||
memory: EnvironmentRef::dummy(),
|
||||
};
|
||||
let labeled = args
|
||||
.iter()
|
||||
.map(|(name, value)| {
|
||||
let arg = Arg::new(value.clone(), SourceRange::default());
|
||||
((*name).to_owned(), arg)
|
||||
})
|
||||
.collect::<IndexMap<_, _>>();
|
||||
let exec_ctxt = ExecutorContext {
|
||||
engine: Arc::new(Box::new(
|
||||
crate::engine::conn_mock::EngineConnection::new().await.unwrap(),
|
||||
)),
|
||||
fs: Arc::new(crate::fs::FileManager::new()),
|
||||
stdlib: Arc::new(crate::std::StdLib::new()),
|
||||
settings: Default::default(),
|
||||
context_type: ContextType::Mock,
|
||||
};
|
||||
let mut exec_state = ExecState::new(&exec_ctxt);
|
||||
exec_state.mod_local.stack = Stack::new_for_tests();
|
||||
|
||||
let args = Args::new_kw(
|
||||
KwArgs {
|
||||
unlabeled: None,
|
||||
labeled,
|
||||
errors: Vec::new(),
|
||||
},
|
||||
SourceRange::default(),
|
||||
exec_ctxt,
|
||||
None,
|
||||
);
|
||||
let actual = assign_args_to_params_kw(&(&func_src).into(), args, &mut exec_state)
|
||||
.map(|_| exec_state.mod_local.stack);
|
||||
assert_eq!(
|
||||
actual, expected,
|
||||
"failed test '{test_name}':\ngot {actual:?}\nbut expected\n{expected:?}"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[tokio::test(flavor = "multi_thread")]
|
||||
async fn type_check_user_args() {
|
||||
let program = r#"fn makeMessage(prefix: string, suffix: string) {
|
||||
return prefix + suffix
|
||||
}
|
||||
|
||||
msg1 = makeMessage(prefix = "world", suffix = " hello")
|
||||
msg2 = makeMessage(prefix = 1, suffix = 3)"#;
|
||||
let err = parse_execute(program).await.unwrap_err();
|
||||
assert_eq!(
|
||||
err.message(),
|
||||
"prefix requires a value with type `string`, but found number(default units)"
|
||||
)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user