Move the wasm lib, and cleanup rust directory and all references (#5585)

* git mv src/wasm-lib rust

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* mv wasm-lib to workspace

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* mv kcl-lib

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* mv derive docs

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* resolve file paths

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* clippy

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* move more shit

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix more paths

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* make yarn build:wasm work

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix scripts

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fixups

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* better references

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix cargo ci

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix reference

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix more ci

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix tests

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* cargo sort

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix script

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fmt

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fix a dep

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* sort

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* remove unused deps

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* Revert "remove unused deps"

This reverts commit fbabdb062e275fd5cbc1476f8480a1afee15d972.

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* deps;

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fixes

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

---------

Signed-off-by: Jess Frazelle <github@jessfraz.com>
This commit is contained in:
Jess Frazelle
2025-03-01 13:59:01 -08:00
committed by GitHub
parent 0a2bf4b55f
commit c3bdc6f106
1443 changed files with 509 additions and 4274 deletions

View File

@ -0,0 +1,774 @@
//! Functions related to mathematics.
use anyhow::Result;
use kcl_derive_docs::stdlib;
use super::args::FromArgs;
use crate::{
errors::{KclError, KclErrorDetails},
execution::{ExecState, KclValue},
std::args::{Args, TyF64},
};
/// Compute the remainder after dividing `num` by `div`.
/// If `num` is negative, the result will be too.
pub async fn rem(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let n = args.get_unlabeled_kw_arg("number to divide")?;
let d = args.get_kw_arg("divisor")?;
let remainder = inner_rem(n, d);
Ok(args.make_user_val_from_f64(remainder))
}
/// Compute the remainder after dividing `num` by `div`.
/// If `num` is negative, the result will be too.
///
/// ```no_run
/// assertEqual(rem( 7, divisor = 4), 3, 0.01, "remainder is 3" )
/// assertEqual(rem(-7, divisor = 4), -3, 0.01, "remainder is -3")
/// assertEqual(rem( 7, divisor = -4), 3, 0.01, "remainder is 3" )
/// assertEqual(rem( 6, divisor = 2.5), 1, 0.01, "remainder is 1" )
/// assertEqual(rem( 6.5, divisor = 2.5), 1.5, 0.01, "remainder is 1.5" )
/// assertEqual(rem( 6.5, divisor = 2), 0.5, 0.01, "remainder is 0.5" )
/// ```
#[stdlib {
name = "rem",
tags = ["math"],
keywords = true,
unlabeled_first = true,
args = {
num = {docs = "The number which will be divided by `divisor`."},
divisor = {docs = "The number which will divide `num`."},
}
}]
fn inner_rem(num: f64, divisor: f64) -> f64 {
num % divisor
}
/// Compute the cosine of a number (in radians).
pub async fn cos(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.cos())))
}
/// Compute the sine of a number (in radians).
pub async fn sin(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.sin())))
}
/// Compute the tangent of a number (in radians).
pub async fn tan(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.tan())))
}
/// Return the value of `pi`. Archimedes constant (π).
pub async fn pi(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let result = inner_pi()?;
Ok(args.make_user_val_from_f64(result))
}
/// Return the value of `pi`. Archimedes constant (π).
///
/// **DEPRECATED** use the constant PI
///
/// ```no_run
/// circumference = 70
///
/// exampleSketch = startSketchOn("XZ")
/// |> circle( center = [0, 0], radius = circumference/ (2 * pi()) )
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "pi",
tags = ["math"],
deprecated = true,
}]
fn inner_pi() -> Result<f64, KclError> {
Ok(std::f64::consts::PI)
}
/// Compute the square root of a number.
pub async fn sqrt(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_sqrt(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the square root of a number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 50,
/// length = sqrt(2500),
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "sqrt",
tags = ["math"],
}]
fn inner_sqrt(num: f64) -> Result<f64, KclError> {
Ok(num.sqrt())
}
/// Compute the absolute value of a number.
pub async fn abs(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_abs(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the absolute value of a number.
///
/// ```no_run
/// myAngle = -120
///
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> line(end = [8, 0])
/// |> angledLine({
/// angle = abs(myAngle),
/// length = 5,
/// }, %)
/// |> line(end = [-5, 0])
/// |> angledLine({
/// angle = myAngle,
/// length = 5,
/// }, %)
/// |> close()
///
/// baseExtrusion = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "abs",
tags = ["math"],
}]
fn inner_abs(num: f64) -> Result<f64, KclError> {
Ok(num.abs())
}
/// Round a number to the nearest integer.
pub async fn round(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_round(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Round a number to the nearest integer.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [round(7.02986), 0])
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "round",
tags = ["math"],
}]
fn inner_round(num: f64) -> Result<f64, KclError> {
Ok(num.round())
}
/// Compute the largest integer less than or equal to a number.
pub async fn floor(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_floor(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the largest integer less than or equal to a number.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [floor(7.02986), 0])
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "floor",
tags = ["math"],
}]
fn inner_floor(num: f64) -> Result<f64, KclError> {
Ok(num.floor())
}
/// Compute the smallest integer greater than or equal to a number.
pub async fn ceil(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_ceil(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the smallest integer greater than or equal to a number.
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> line(endAbsolute = [12, 10])
/// |> line(end = [ceil(7.02986), 0])
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "ceil",
tags = ["math"],
}]
fn inner_ceil(num: f64) -> Result<f64, KclError> {
Ok(num.ceil())
}
/// Compute the minimum of the given arguments.
pub async fn min(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums = args.get_number_array()?;
let result = inner_min(nums);
Ok(args.make_user_val_from_f64(result))
}
/// Compute the minimum of the given arguments.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 70,
/// length = min(15, 31, 4, 13, 22)
/// }, %)
/// |> line(end = [20, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "min",
tags = ["math"],
}]
fn inner_min(args: Vec<f64>) -> f64 {
let mut min = f64::MAX;
for arg in args.iter() {
if *arg < min {
min = *arg;
}
}
min
}
/// Compute the maximum of the given arguments.
pub async fn max(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums = args.get_number_array()?;
let result = inner_max(nums);
Ok(args.make_user_val_from_f64(result))
}
/// Compute the maximum of the given arguments.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 70,
/// length = max(15, 31, 4, 13, 22)
/// }, %)
/// |> line(end = [20, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "max",
tags = ["math"],
}]
fn inner_max(args: Vec<f64>) -> f64 {
let mut max = f64::MIN;
for arg in args.iter() {
if *arg > max {
max = *arg;
}
}
max
}
/// Compute the number to a power.
pub async fn pow(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums = args.get_number_array()?;
if nums.len() > 2 {
return Err(KclError::Type(KclErrorDetails {
message: format!("expected 2 arguments, got {}", nums.len()),
source_ranges: vec![args.source_range],
}));
}
if nums.len() <= 1 {
return Err(KclError::Type(KclErrorDetails {
message: format!("expected 2 arguments, got {}", nums.len()),
source_ranges: vec![args.source_range],
}));
}
let result = inner_pow(nums[0], nums[1])?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the number to a power.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 50,
/// length = pow(5, 2),
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "pow",
tags = ["math"],
}]
fn inner_pow(num: f64, pow: f64) -> Result<f64, KclError> {
Ok(num.powf(pow))
}
/// Compute the arccosine of a number (in radians).
pub async fn acos(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_acos(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the arccosine of a number (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = toDegrees(acos(0.5)),
/// length = 10,
/// }, %)
/// |> line(end = [5, 0])
/// |> line(endAbsolute = [12, 0])
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "acos",
tags = ["math"],
}]
fn inner_acos(num: f64) -> Result<f64, KclError> {
Ok(num.acos())
}
/// Compute the arcsine of a number (in radians).
pub async fn asin(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_asin(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the arcsine of a number (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = toDegrees(asin(0.5)),
/// length = 20,
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "asin",
tags = ["math"],
}]
fn inner_asin(num: f64) -> Result<f64, KclError> {
Ok(num.asin())
}
/// Compute the arctangent of a number (in radians).
pub async fn atan(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_atan(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the arctangent of a number (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = toDegrees(atan(1.25)),
/// length = 20,
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "atan",
tags = ["math"],
}]
fn inner_atan(num: f64) -> Result<f64, KclError> {
Ok(num.atan())
}
/// Compute the four quadrant arctangent of Y and X (in radians).
pub async fn atan2(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let (y, x) = FromArgs::from_args(&args, 0)?;
let result = inner_atan2(y, x)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the four quadrant arctangent of Y and X (in radians).
///
/// ```no_run
/// sketch001 = startSketchOn('XZ')
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = toDegrees(atan2(1.25, 2)),
/// length = 20,
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// extrude001 = extrude(sketch001, length = 5)
/// ```
#[stdlib {
name = "atan2",
tags = ["math"],
}]
fn inner_atan2(y: f64, x: f64) -> Result<f64, KclError> {
Ok(y.atan2(x))
}
/// Compute the logarithm of the number with respect to an arbitrary base.
///
/// The result might not be correctly rounded owing to implementation
/// details; `log2()` can produce more accurate results for base 2,
/// and `log10()` can produce more accurate results for base 10.
pub async fn log(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let nums = args.get_number_array()?;
if nums.len() > 2 {
return Err(KclError::Type(KclErrorDetails {
message: format!("expected 2 arguments, got {}", nums.len()),
source_ranges: vec![args.source_range],
}));
}
if nums.len() <= 1 {
return Err(KclError::Type(KclErrorDetails {
message: format!("expected 2 arguments, got {}", nums.len()),
source_ranges: vec![args.source_range],
}));
}
let result = inner_log(nums[0], nums[1])?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the logarithm of the number with respect to an arbitrary base.
///
/// The result might not be correctly rounded owing to implementation
/// details; `log2()` can produce more accurate results for base 2,
/// and `log10()` can produce more accurate results for base 10.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> line(end = [log(100, 5), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log",
tags = ["math"],
}]
fn inner_log(num: f64, base: f64) -> Result<f64, KclError> {
Ok(num.log(base))
}
/// Compute the base 2 logarithm of the number.
pub async fn log2(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_log2(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the base 2 logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> line(end = [log2(100), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log2",
tags = ["math"],
}]
fn inner_log2(num: f64) -> Result<f64, KclError> {
Ok(num.log2())
}
/// Compute the base 10 logarithm of the number.
pub async fn log10(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_log10(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the base 10 logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> line(end = [log10(100), 0])
/// |> line(end = [5, 8])
/// |> line(end = [-10, 0])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "log10",
tags = ["math"],
}]
fn inner_log10(num: f64) -> Result<f64, KclError> {
Ok(num.log10())
}
/// Compute the natural logarithm of the number.
pub async fn ln(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_ln(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Compute the natural logarithm of the number.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> line(end = [ln(100), 15])
/// |> line(end = [5, -6])
/// |> line(end = [-10, -10])
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "ln",
tags = ["math"],
}]
fn inner_ln(num: f64) -> Result<f64, KclError> {
Ok(num.ln())
}
/// Return the value of Eulers number `e`.
pub async fn e(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let result = inner_e()?;
Ok(args.make_user_val_from_f64(result))
}
/// Return the value of Eulers number `e`.
///
/// **DEPRECATED** use the constant E
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 30,
/// length = 2 * e() ^ 2,
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 10)
/// ```
#[stdlib {
name = "e",
tags = ["math"],
deprecated = true,
}]
fn inner_e() -> Result<f64, KclError> {
Ok(std::f64::consts::E)
}
/// Return the value of `tau`. The full circle constant (τ). Equal to 2π.
pub async fn tau(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let result = inner_tau()?;
Ok(args.make_user_val_from_f64(result))
}
/// Return the value of `tau`. The full circle constant (τ). Equal to 2π.
///
/// **DEPRECATED** use the constant TAU
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 50,
/// length = 10 * tau(),
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "tau",
tags = ["math"],
deprecated = true,
}]
fn inner_tau() -> Result<f64, KclError> {
Ok(std::f64::consts::TAU)
}
/// Converts a number from degrees to radians.
pub async fn to_radians(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_to_radians(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Converts a number from degrees to radians.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 50,
/// length = 70 * cos(toRadians(45)),
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "toRadians",
tags = ["math"],
}]
fn inner_to_radians(num: f64) -> Result<f64, KclError> {
Ok(num.to_radians())
}
/// Converts a number from radians to degrees.
pub async fn to_degrees(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let num = args.get_number()?;
let result = inner_to_degrees(num)?;
Ok(args.make_user_val_from_f64(result))
}
/// Converts a number from radians to degrees.
///
/// ```no_run
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine({
/// angle = 50,
/// length = 70 * cos(toDegrees(pi()/4)),
/// }, %)
/// |> yLineTo(0, %)
/// |> close()
///
/// example = extrude(exampleSketch, length = 5)
/// ```
#[stdlib {
name = "toDegrees",
tags = ["math"],
}]
fn inner_to_degrees(num: f64) -> Result<f64, KclError> {
Ok(num.to_degrees())
}
#[cfg(test)]
mod tests {
use pretty_assertions::assert_eq;
use super::*;
#[test]
fn test_inner_max() {
let nums = vec![4.0, 5.0, 6.0];
let result = inner_max(nums);
assert_eq!(result, 6.0);
}
#[test]
fn test_inner_max_with_neg() {
let nums = vec![4.0, -5.0];
let result = inner_max(nums);
assert_eq!(result, 4.0);
}
#[test]
fn test_inner_min() {
let nums = vec![4.0, 5.0, 6.0];
let result = inner_min(nums);
assert_eq!(result, 4.0);
}
#[test]
fn test_inner_min_with_neg() {
let nums = vec![4.0, -5.0];
let result = inner_min(nums);
assert_eq!(result, -5.0);
}
}