Batch extrudes (#3764)

Adds a new KCL executor benchmark which builds a `10` wide by `n` tall lego, with varying `n`. The benchmark runs a n = 1, 2, 3 etc build, so we can get an idea of how the speed changes with size. 

This change improves execution speed by 25-36% depending on how many bumps there are. Tested by:

* Rust unit tests
* Open up modeling app, sketch a square, use the command palette to extrude it
* Open up the Bambu printer "poop chute" model, it all extrudes and works fine

Also fixes a bug: extrude, loft, revolve all trigger a GetExtrusionFaceInfo command. Due to a bug, the GetExtrusionFaceInfo command reused the Command ID from the previous extrude/loft/revolve. Fixed that.
This commit is contained in:
Adam Chalmers
2024-09-06 16:55:24 -05:00
committed by GitHub
parent b3a1796da9
commit cf266b17c1
5 changed files with 111 additions and 15 deletions

View File

@ -1,5 +1,5 @@
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion};
use kcl_lib::test_server;
use kcl_lib::{settings::types::UnitLength::Mm, test_server};
use tokio::runtime::Runtime;
pub fn bench_execute(c: &mut Criterion) {
@ -13,26 +13,42 @@ pub fn bench_execute(c: &mut Criterion) {
// Configure Criterion.rs to detect smaller differences and increase sample size to improve
// precision and counteract the resulting noise.
group.sample_size(10);
group.bench_with_input(BenchmarkId::new("execute_", name), &code, |b, &s| {
group.bench_with_input(BenchmarkId::new("execute", name), &code, |b, &s| {
let rt = Runtime::new().unwrap();
// Spawn a future onto the runtime
b.iter(|| {
rt.block_on(test_server::execute_and_snapshot(
s,
kcl_lib::settings::types::UnitLength::Mm,
))
.unwrap();
rt.block_on(test_server::execute_and_snapshot(s, Mm)).unwrap();
});
});
group.finish();
}
}
criterion_group!(benches, bench_execute);
pub fn bench_lego(c: &mut Criterion) {
let mut group = c.benchmark_group("executor_lego_pattern");
// Configure Criterion.rs to detect smaller differences and increase sample size to improve
// precision and counteract the resulting noise.
group.sample_size(10);
// Create lego bricks with N x 10 bumps, where N is each element of `sizes`.
let sizes = vec![1, 2, 4];
for size in sizes {
group.bench_with_input(BenchmarkId::from_parameter(size), &size, |b, &size| {
let rt = Runtime::new().unwrap();
let code = LEGO_PROGRAM.replace("{{N}}", &size.to_string());
// Spawn a future onto the runtime
b.iter(|| {
rt.block_on(test_server::execute_and_snapshot(&code, Mm)).unwrap();
});
});
}
group.finish();
}
criterion_group!(benches, bench_lego, bench_execute);
criterion_main!(benches);
const KITT_PROGRAM: &str = include_str!("../../tests/executor/inputs/kittycad_svg.kcl");
const CUBE_PROGRAM: &str = include_str!("../../tests/executor/inputs/cube.kcl");
const SERVER_RACK_HEAVY_PROGRAM: &str = include_str!("../../tests/executor/inputs/server-rack-heavy.kcl");
const SERVER_RACK_LITE_PROGRAM: &str = include_str!("../../tests/executor/inputs/server-rack-lite.kcl");
const LEGO_PROGRAM: &str = include_str!("../../tests/executor/inputs/slow_lego.kcl.tmpl");

View File

@ -99,7 +99,7 @@ async fn inner_extrude(length: f64, sketch_group_set: SketchGroupSet, args: Args
)
.await?;
args.send_modeling_cmd(
args.batch_modeling_cmd(
id,
kittycad::types::ModelingCmd::Extrude {
target: sketch_group.id,
@ -112,7 +112,7 @@ async fn inner_extrude(length: f64, sketch_group_set: SketchGroupSet, args: Args
// Disable the sketch mode.
args.batch_modeling_cmd(uuid::Uuid::new_v4(), kittycad::types::ModelingCmd::SketchModeDisable {})
.await?;
extrude_groups.push(do_post_extrude(sketch_group.clone(), length, id, args.clone()).await?);
extrude_groups.push(do_post_extrude(sketch_group.clone(), length, args.clone()).await?);
}
Ok(extrude_groups.into())
@ -121,7 +121,6 @@ async fn inner_extrude(length: f64, sketch_group_set: SketchGroupSet, args: Args
pub(crate) async fn do_post_extrude(
sketch_group: SketchGroup,
length: f64,
id: Uuid,
args: Args,
) -> Result<Box<ExtrudeGroup>, KclError> {
// Bring the object to the front of the scene.
@ -165,7 +164,7 @@ pub(crate) async fn do_post_extrude(
let solid3d_info = args
.send_modeling_cmd(
id,
uuid::Uuid::new_v4(),
kittycad::types::ModelingCmd::Solid3DGetExtrusionFaceInfo {
edge_id,
object_id: sketch_group.id,

View File

@ -170,5 +170,5 @@ async fn inner_loft(
.await?;
// Using the first sketch as the base curve, idk we might want to change this later.
do_post_extrude(sketch_groups[0].clone(), 0.0, id, args).await
do_post_extrude(sketch_groups[0].clone(), 0.0, args).await
}

View File

@ -299,7 +299,7 @@ async fn inner_revolve(
}
}
do_post_extrude(sketch_group, 0.0, id, args).await
do_post_extrude(sketch_group, 0.0, args).await
}
#[cfg(test)]

View File

@ -0,0 +1,81 @@
// 2x8 Lego Brick
// A standard Lego brick with 2 bumps wide and 8 bumps long.
// Define constants
const lbumps = 10 // number of bumps long
const wbumps = {{N}} // number of bumps wide
const pitch = 8.0
const clearance = 0.1
const bumpDiam = 4.8
const bumpHeight = 1.8
const height = 9.6
const t = (pitch - (2 * clearance) - bumpDiam) / 2.0
const totalLength = lbumps * pitch - (2.0 * clearance)
const totalWidth = wbumps * pitch - (2.0 * clearance)
// Create the plane for the pegs. This is a hack so that the pegs can be patterned along the face of the lego base.
const pegFace = {
plane: {
origin: { x: 0, y: 0, z: height },
xAxis: { x: 1, y: 0, z: 0 },
yAxis: { x: 0, y: 1, z: 0 },
zAxis: { x: 0, y: 0, z: 1 }
}
}
// Create the plane for the tubes underneath the lego. This is a hack so that the tubes can be patterned underneath the lego.
const tubeFace = {
plane: {
origin: { x: 0, y: 0, z: height - t },
xAxis: { x: 1, y: 0, z: 0 },
yAxis: { x: 0, y: 1, z: 0 },
zAxis: { x: 0, y: 0, z: 1 }
}
}
// Make the base
const s = startSketchOn('XY')
|> startProfileAt([-totalWidth / 2, -totalLength / 2], %)
|> line([totalWidth, 0], %)
|> line([0, totalLength], %)
|> line([-totalWidth, 0], %)
|> close(%)
|> extrude(height, %)
// Sketch and extrude a rectangular shape to create the shell underneath the lego. This is a hack until we have a shell function.
const shellExtrude = startSketchOn(s, "start")
|> startProfileAt([
-(totalWidth / 2 - t),
-(totalLength / 2 - t)
], %)
|> line([totalWidth - (2 * t), 0], %)
|> line([0, totalLength - (2 * t)], %)
|> line([-(totalWidth - (2 * t)), 0], %)
|> close(%)
|> extrude(-(height - t), %)
fn tr = (i) => {
let j = i + 1
let x = (j/wbumps) * pitch
let y = (j % wbumps) * pitch
return {
translate: [x, y, 0],
}
}
// Create the pegs on the top of the base
const totalBumps = (wbumps * lbumps)-1
const peg = startSketchOn(s, 'end')
|> circle([
-(pitch*(wbumps-1)/2),
-(pitch*(lbumps-1)/2)
], bumpDiam / 2, %)
|> patternLinear2d({
axis: [1, 0],
repetitions: wbumps-1,
distance: pitch
}, %)
|> patternLinear2d({
axis: [0, 1],
repetitions: lbumps-1,
distance: pitch
}, %)
|> extrude(bumpHeight, %)
// |> patternTransform(int(totalBumps-1), tr, %)