breaking change: Add more KCL reserved words, part 1 (#4502)

This commit is contained in:
Jonathan Tran
2024-11-18 19:54:25 -05:00
committed by GitHub
parent 16b7544d69
commit f71fafdece
15 changed files with 482 additions and 433 deletions

View File

@ -36,15 +36,15 @@ fn add = (a, b) => {
// This function adds an array of numbers.
// It uses the `reduce` function, to call the `add` function on every
// element of the `array` parameter. The starting value is 0.
fn sum = (array) => {
return reduce(array, 0, add)
// element of the `arr` parameter. The starting value is 0.
fn sum = (arr) => {
return reduce(arr, 0, add)
}
/* The above is basically like this pseudo-code:
fn sum(array):
fn sum(arr):
let sumSoFar = 0
for i in array:
for i in arr:
sumSoFar = add(sumSoFar, i)
return sumSoFar */
@ -60,8 +60,8 @@ assertEqual(sum([1, 2, 3]), 6, 0.00001, "1 + 2 + 3 summed is 6")
// This example works just like the previous example above, but it uses
// an anonymous `add` function as its parameter, instead of declaring a
// named function outside.
array = [1, 2, 3]
sum = reduce(array, 0, (i, result_so_far) => {
arr = [1, 2, 3]
sum = reduce(arr, 0, (i, result_so_far) => {
return i + result_so_far
})

View File

@ -162561,8 +162561,8 @@
"unpublished": false,
"deprecated": false,
"examples": [
"// This function adds two numbers.\nfn add = (a, b) => {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `array` parameter. The starting value is 0.\nfn sum = (array) => {\n return reduce(array, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(array):\n let sumSoFar = 0\n for i in array:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narray = [1, 2, 3]\nsum = reduce(array, 0, (i, result_so_far) => {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This function adds two numbers.\nfn add = (a, b) => {\n return a + b\n}\n\n// This function adds an array of numbers.\n// It uses the `reduce` function, to call the `add` function on every\n// element of the `arr` parameter. The starting value is 0.\nfn sum = (arr) => {\n return reduce(arr, 0, add)\n}\n\n/* The above is basically like this pseudo-code:\nfn sum(arr):\n let sumSoFar = 0\n for i in arr:\n sumSoFar = add(sumSoFar, i)\n return sumSoFar */\n\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum([1, 2, 3]), 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// This example works just like the previous example above, but it uses\n// an anonymous `add` function as its parameter, instead of declaring a\n// named function outside.\narr = [1, 2, 3]\nsum = reduce(arr, 0, (i, result_so_far) => {\n return i + result_so_far\n})\n\n// We use `assertEqual` to check that our `sum` function gives the\n// expected result. It's good to check your work!\nassertEqual(sum, 6, 0.00001, \"1 + 2 + 3 summed is 6\")",
"// Declare a function that sketches a decagon.\nfn decagon = (radius) => {\n // Each side of the decagon is turned this many degrees from the previous angle.\n stepAngle = 1 / 10 * tau()\n\n // Start the decagon sketch at this point.\n startOfDecagonSketch = startSketchAt([cos(0) * radius, sin(0) * radius])\n\n // Use a `reduce` to draw the remaining decagon sides.\n // For each number in the array 1..10, run the given function,\n // which takes a partially-sketched decagon and adds one more edge to it.\n fullDecagon = reduce([1..10], startOfDecagonSketch, (i, partialDecagon) => {\n // Draw one edge of the decagon.\n x = cos(stepAngle * i) * radius\n y = sin(stepAngle * i) * radius\n return lineTo([x, y], partialDecagon)\n})\n\n return fullDecagon\n}\n\n/* The `decagon` above is basically like this pseudo-code:\nfn decagon(radius):\n let stepAngle = (1/10) * tau()\n let startOfDecagonSketch = startSketchAt([(cos(0)*radius), (sin(0) * radius)])\n\n // Here's the reduce part.\n let partialDecagon = startOfDecagonSketch\n for i in [1..10]:\n let x = cos(stepAngle * i) * radius\n let y = sin(stepAngle * i) * radius\n partialDecagon = lineTo([x, y], partialDecagon)\n fullDecagon = partialDecagon // it's now full\n return fullDecagon */\n\n\n// Use the `decagon` function declared above, to sketch a decagon with radius 5.\ndecagon(5.0)\n |> close(%)"
]
},