move conic std lib fns to sketch.kcl

This commit is contained in:
benjamaan476
2025-06-05 15:52:51 +01:00
parent 9637f1943f
commit fc0c0bf817
6 changed files with 386 additions and 209 deletions

View File

@ -169,7 +169,8 @@ test(
// error text on hover
await page.hover('.cm-lint-marker-error')
const crypticErrorText = 'tag requires a value with type `tag`, but found string'
const crypticErrorText =
'tag requires a value with type `tag`, but found string'
await expect(page.getByText(crypticErrorText).first()).toBeVisible()
// black pixel means the scene has been cleared.
@ -367,7 +368,8 @@ test(
// error text on hover
await page.hover('.cm-lint-marker-error')
const crypticErrorText = 'tag requires a value with type `tag`, but found string'
const crypticErrorText =
'tag requires a value with type `tag`, but found string'
await expect(page.getByText(crypticErrorText).first()).toBeVisible()
// black pixel means the scene has been cleared.
@ -405,7 +407,8 @@ test(
// error text on hover
await page.hover('.cm-lint-marker-error')
const crypticErrorText = 'tag requires a value with type `tag`, but found string'
const crypticErrorText =
'tag requires a value with type `tag`, but found string'
await expect(page.getByText(crypticErrorText).first()).toBeVisible()
}
)

16
rust/Cargo.lock generated
View File

@ -525,7 +525,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "117725a109d387c937a1533ce01b450cbde6b88abceea8473c4d7a85853cda3c"
dependencies = [
"lazy_static",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -949,7 +949,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33d852cb9b869c2a9b3df2f71a3074817f01e1844f839a144f5fcef059a4eb5d"
dependencies = [
"libc",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -1723,7 +1723,7 @@ checksum = "e04d7f318608d35d4b61ddd75cbdaee86b023ebe2bd5a66ee0915f0bf93095a9"
dependencies = [
"hermit-abi",
"libc",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -2049,7 +2049,7 @@ dependencies = [
[[package]]
name = "kittycad-modeling-cmds"
version = "0.2.121"
version = "0.2.122"
dependencies = [
"anyhow",
"chrono",
@ -3013,7 +3013,7 @@ dependencies = [
"once_cell",
"socket2",
"tracing",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -3325,7 +3325,7 @@ dependencies = [
"errno",
"libc",
"linux-raw-sys",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -3929,7 +3929,7 @@ dependencies = [
"getrandom 0.3.1",
"once_cell",
"rustix",
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]
@ -4778,7 +4778,7 @@ version = "0.1.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
dependencies = [
"windows-sys 0.52.0",
"windows-sys 0.59.0",
]
[[package]]

View File

@ -260,9 +260,33 @@ pub(crate) fn std_fn(path: &str, fn_name: &str) -> (crate::std::StdFn, StdFnProp
|e, a| Box::pin(crate::std::clone::clone(e, a)),
StdFnProps::default("std::clone").include_in_feature_tree(),
),
("sketch", "circle") => (
|e, a| Box::pin(crate::std::shapes::circle(e, a)),
StdFnProps::default("std::sketch::circle"),
("sketch", "conic") => (
|e, a| Box::pin(crate::std::sketch::conic(e, a)),
StdFnProps::default("std::sketch::conic").include_in_feature_tree(),
),
("sketch", "parabolic") => (
|e, a| Box::pin(crate::std::sketch::parabolic(e, a)),
StdFnProps::default("std::sketch::parabolic").include_in_feature_tree(),
),
("sketch", "parabolicPoint") => (
|e, a| Box::pin(crate::std::sketch::parabolic_point(e, a)),
StdFnProps::default("std::sketch::parabolicPoint").include_in_feature_tree(),
),
("sketch", "hyperbolic") => (
|e, a| Box::pin(crate::std::sketch::hyperbolic(e, a)),
StdFnProps::default("std::sketch::hyperbolic").include_in_feature_tree(),
),
("sketch", "hyperbolicPoint") => (
|e, a| Box::pin(crate::std::sketch::hyperbolic_point(e, a)),
StdFnProps::default("std::sketch::hyperbolicPoint").include_in_feature_tree(),
),
("sketch", "elliptic") => (
|e, a| Box::pin(crate::std::sketch::elliptic(e, a)),
StdFnProps::default("std::sketch::elliptic").include_in_feature_tree(),
),
("sketch", "ellipticPoint") => (
|e, a| Box::pin(crate::std::sketch::elliptic_point(e, a)),
StdFnProps::default("std::sketch::ellipticPoint").include_in_feature_tree(),
),
("sketch", "extrude") => (
|e, a| Box::pin(crate::std::extrude::extrude(e, a)),

View File

@ -401,7 +401,8 @@ async fn inner_polygon(
/// Sketch an ellipse.
pub async fn ellipse(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let sketch_or_surface = args.get_unlabeled_kw_arg("sketchOrSurface")?;
let sketch_or_surface =
args.get_unlabeled_kw_arg_typed("sketchOrSurface", &RuntimeType::sketch_or_surface(), exec_state)?;
let center = args.get_kw_arg_typed("center", &RuntimeType::point2d(), exec_state)?;
let major_radius: TyF64 = args.get_kw_arg_typed("majorRadius", &RuntimeType::length(), exec_state)?;
let minor_radius: TyF64 = args.get_kw_arg_typed("minorRadius", &RuntimeType::length(), exec_state)?;
@ -492,6 +493,7 @@ async fn inner_ellipse(
.await?;
Ok(new_sketch)
}
pub(crate) fn get_radius(
radius: Option<TyF64>,

View File

@ -1750,23 +1750,17 @@ pub async fn elliptic_point(exec_state: &mut ExecState, args: Args) -> Result<Kc
args.make_kcl_val_from_point(elliptic_point, exec_state.length_unit().into())
}
/// ```no_run
/// point001 = ellipticPoint(x = 2, majorRadius = 2, minorRadius = 1)
/// point002 = ellipticPoint(y = 0, majorRadius = 2, minorRadius = 1)
/// assert(point001[0], isEqualTo = point002[0])
/// assert(point001[1], isEqualTo = point002[1])
///```
#[stdlib {
name = "ellipticPoint",
unlabeled_first = false,
args = {
major_radius = { docs = "The major radius a of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1." },
minor_radius = { docs = "The minor radius b of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1." },
x = { docs = "The x value of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
y = { docs = "The y value of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "ellipticPoint",
// unlabeled_first = false,
// args = {
// major_radius = { docs = "The major radius a of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1." },
// minor_radius = { docs = "The minor radius b of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1." },
// x = { docs = "The x value of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
// y = { docs = "The y value of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
// },
// tags = ["sketch"]
// }]
async fn inner_elliptic_point(
x: Option<TyF64>,
y: Option<TyF64>,
@ -1778,14 +1772,16 @@ async fn inner_elliptic_point(
let minor_radius = minor_radius.n;
if let Some(x) = x {
if x.n > major_radius {
Err(KclError::Type(KclErrorDetails::new(
format!(
"Invalid input. The x value, {}, cannot be larger than the major radius {}.",
x.n, major_radius
)
.to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
format!(
"Invalid input. The x value, {}, cannot be larger than the major radius {}.",
x.n, major_radius
)
.to_owned(),
vec![args.source_range],
),
})
} else {
Ok((
x.n,
@ -1795,14 +1791,16 @@ async fn inner_elliptic_point(
}
} else if let Some(y) = y {
if y.n > minor_radius {
Err(KclError::Type(KclErrorDetails::new(
format!(
"Invalid input. The y value, {}, cannot be larger than the major radius {}.",
y.n, major_radius
)
.to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
format!(
"Invalid input. The y value, {}, cannot be larger than the major radius {}.",
y.n, major_radius
)
.to_owned(),
vec![args.source_range],
),
})
} else {
Ok((
major_radius * (1.0 - y.n.powf(2.0) / minor_radius.powf(2.0)).sqrt(),
@ -1811,10 +1809,12 @@ async fn inner_elliptic_point(
.into())
}
} else {
Err(KclError::Type(KclErrorDetails::new(
"Invalid input. Must have either x or y, you cannot have both or neither.".to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
"Invalid input. Must have either x or y, you cannot have both or neither.".to_owned(),
vec![args.source_range],
),
})
}
}
@ -1852,32 +1852,22 @@ pub async fn elliptic(exec_state: &mut ExecState, args: Args) -> Result<KclValue
})
}
/// ```no_run
/// exampleSketch = startSketchOn(XZ)
/// |> startProfile(at = [0, 0])
/// |> elliptic(
/// endAbsolute = [10,0],
/// interiorAbsolute = [5,5]
/// )
/// |> close()
/// example = extrude(exampleSketch, length = 10)
/// ```
#[stdlib {
name = "elliptic",
unlabeled_first = true,
args = {
sketch = { docs = "Which sketch should this path be added to?" },
center = { docs = "The center of the ellipse.", include_in_snippet = true },
angle_start = { docs = "Where along the elliptic should this arc start?", include_in_snippet = true },
angle_end = { docs = "Where along the elliptic should this arc end?", include_in_snippet = true },
major_radius = { docs = "The major radius a of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.", include_in_snippet = true },
minor_radius = { docs = "The minor radius b of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.", include_in_snippet = true },
interior_absolute = { docs = "Any point between the arc's start and end? Requires `endAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
end_absolute = { docs = "Where should this arc end? Requires `interiorAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
tag = { docs = "Create a new tag which refers to this line"},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "elliptic",
// unlabeled_first = true,
// args = {
// sketch = { docs = "Which sketch should this path be added to?" },
// center = { docs = "The center of the ellipse.", include_in_snippet = true },
// angle_start = { docs = "Where along the elliptic should this arc start?", include_in_snippet = true },
// angle_end = { docs = "Where along the elliptic should this arc end?", include_in_snippet = true },
// major_radius = { docs = "The major radius a of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.", include_in_snippet = true },
// minor_radius = { docs = "The minor radius b of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.", include_in_snippet = true },
// interior_absolute = { docs = "Any point between the arc's start and end? Requires `endAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
// end_absolute = { docs = "Where should this arc end? Requires `interiorAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
// tag = { docs = "Create a new tag which refers to this line"},
// },
// tags = ["sketch"]
// }]
#[allow(clippy::too_many_arguments)]
pub(crate) async fn inner_elliptic(
sketch: Sketch,
@ -1973,20 +1963,17 @@ pub async fn hyperbolic_point(exec_state: &mut ExecState, args: Args) -> Result<
args.make_kcl_val_from_point(hyperbolic_point, exec_state.length_unit().into())
}
/// ```no_run
/// point = hyperbolicPoint(x = 5, semiMajor = 2, semiMinor = 1)
///```
#[stdlib {
name = "hyperbolicPoint",
unlabeled_first = false,
args = {
semi_major = { docs = "The semi major value a of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
semi_minor = { docs = "The semi minor value b of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
x = { docs = "The x value of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
y = { docs = "The y value of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "hyperbolicPoint",
// unlabeled_first = false,
// args = {
// semi_major = { docs = "The semi major value a of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
// semi_minor = { docs = "The semi minor value b of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
// x = { docs = "The x value of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
// y = { docs = "The y value of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
// },
// tags = ["sketch"]
// }]
async fn inner_hyperbolic_point(
x: Option<TyF64>,
y: Option<TyF64>,
@ -1998,24 +1985,28 @@ async fn inner_hyperbolic_point(
let semi_minor = semi_minor.n;
if let Some(x) = x {
if x.n < semi_major {
Err(KclError::Type(KclErrorDetails::new(
format!(
"Invalid input. The x value, {}, cannot be less than the semi major value, {}.",
x.n, semi_major
)
.to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
format!(
"Invalid input. The x value, {}, cannot be less than the semi major value, {}.",
x.n, semi_major
)
.to_owned(),
vec![args.source_range],
),
})
} else {
Ok((x.n, semi_minor * (x.n.powf(2.0) / semi_major.powf(2.0) - 1.0).sqrt()).into())
}
} else if let Some(y) = y {
Ok((semi_major * (y.n.powf(2.0) / semi_minor.powf(2.0) + 1.0).sqrt(), y.n).into())
} else {
Err(KclError::Type(KclErrorDetails::new(
"Invalid input. Must have either x or y, cannot have both or neither.".to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
"Invalid input. Must have either x or y, cannot have both or neither.".to_owned(),
vec![args.source_range],
),
})
}
}
@ -2057,32 +2048,21 @@ fn hyperbolic_tangent(point: Point2d, semi_major: f64, semi_minor: f64) -> [f64;
(point.y * semi_major.powf(2.0), point.x * semi_minor.powf(2.0)).into()
}
/// ```no_run
/// exampleSketch = startSketchOn(XY)
/// |> startProfile(at = [0,0])
/// |> hyperbolic(
/// end = [10,0],
/// semiMajor = 2,
/// semiMinor = 1,
/// interior = [0,0]
/// )
/// |>close()
///```
#[stdlib {
name = "hyperbolic",
unlabeled_first = true,
args = {
sketch = { docs = "Which sketch should this path be added to?" },
semi_major = { docs = "The semi major value a of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
semi_minor = { docs = "The semi minor value b of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
interior = { docs = "A point that lies on the conic segment. This point is relative to the start of the segment. Requires `end`. Incompatible with `interior_absolute` and `end_absolute`." },
interior_absolute = { docs = "A point that lies on the conic. Requires `end_absolute`. Incompatible with `interior` and `end`." },
end = { docs = "Where should this arc end? This point is relative to the start of the segment. Requires `interior`. Incompatible with `interior_absolute` and `end_absolute`." },
end_absolute = { docs = "Where should this arc end? Requires `interior_absolute`. Incompatible with `interior` and `end`." },
tag = { docs = "Create a new tag which refers to this line"},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "hyperbolic",
// unlabeled_first = true,
// args = {
// sketch = { docs = "Which sketch should this path be added to?" },
// semi_major = { docs = "The semi major value a of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
// semi_minor = { docs = "The semi minor value b of the hyperbolic equation x^2 / a^2 - y^2 / b^2 = 1." },
// interior = { docs = "A point that lies on the conic segment. This point is relative to the start of the segment. Requires `end`. Incompatible with `interior_absolute` and `end_absolute`." },
// interior_absolute = { docs = "A point that lies on the conic. Requires `end_absolute`. Incompatible with `interior` and `end`." },
// end = { docs = "Where should this arc end? This point is relative to the start of the segment. Requires `interior`. Incompatible with `interior_absolute` and `end_absolute`." },
// end_absolute = { docs = "Where should this arc end? Requires `interior_absolute`. Incompatible with `interior` and `end`." },
// tag = { docs = "Create a new tag which refers to this line"},
// },
// tags = ["sketch"]
// }]
#[allow(clippy::too_many_arguments)]
pub(crate) async fn inner_hyperbolic(
sketch: Sketch,
@ -2108,11 +2088,11 @@ pub(crate) async fn inner_hyperbolic(
None,
None,
false,
Some(KclError::Type(KclErrorDetails::new(
Some(KclError::Type{details: KclErrorDetails::new(
"Invalid combination of arguments. Either provide (end, interior) or (endAbsolute, interiorAbsolute)"
.to_owned(),
vec![args.source_range],
))),
)}),
),
};
@ -2183,22 +2163,16 @@ pub async fn parabolic_point(exec_state: &mut ExecState, args: Args) -> Result<K
args.make_kcl_val_from_point(parabolic_point, exec_state.length_unit().into())
}
/// ```no_run
/// point001 = parabolicPoint(x = 5, a = 0.1, b = 0, c = 0)
/// point002 = parabolicPoint(y = 2.5, a = 0.1, b = 0, c = 0)
/// assert(point001[0], isEqualTo = point002[0])
/// assert(point001[1], isEqualTo = point002[1])
///```
#[stdlib {
name = "parabolicPoint",
unlabeled_first = false,
args = {
coefficients = { docs = "The coefficients [a, b, c] of the parabolic equation y = ax^2 + bx + c." },
x = { docs = "The x value of the parabolic equation y = ax^2. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
y = { docs = "The y value of the parabolic equation y = ax^2. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "parabolicPoint",
// unlabeled_first = false,
// args = {
// coefficients = { docs = "The coefficients [a, b, c] of the parabolic equation y = ax^2 + bx + c." },
// x = { docs = "The x value of the parabolic equation y = ax^2. Will calculate the point y that satisfies the equation and returns (x, y). Incompatible with `y`."},
// y = { docs = "The y value of the parabolic equation y = ax^2. Will calculate the point x that satisfies the equation and returns (x, y). Incompatible with `x`."},
// },
// tags = ["sketch"]
// }]
async fn inner_parabolic_point(
x: Option<TyF64>,
y: Option<TyF64>,
@ -2214,10 +2188,12 @@ async fn inner_parabolic_point(
let det = (b.powf(2.0) - 4.0 * a * (c - y.n)).sqrt();
Ok(((-b + det) / (2.0 * a), y.n).into())
} else {
Err(KclError::Type(KclErrorDetails::new(
"Invalid input. Must have either x or y, cannot have both or neither.".to_owned(),
vec![args.source_range],
)))
Err(KclError::Type {
details: KclErrorDetails::new(
"Invalid input. Must have either x or y, cannot have both or neither.".to_owned(),
vec![args.source_range],
),
})
}
}
@ -2244,28 +2220,18 @@ fn parabolic_tangent(point: Point2d, a: f64, b: f64) -> [f64; 2] {
(1.0, 2.0 * a * point.x + b).into()
}
/// ```no_run
/// exampleSketch = startSketchOn(XY)
/// |> startProfile(at = [0,0])
/// |> parabolic(
/// end = [10,0],
/// coefficient = 2,
/// interior = [0,0]
/// )
/// |>close()
///```
#[stdlib {
name = "parabolic",
unlabeled_first = true,
args = {
sketch = { docs = "Which sketch should this path be added to?" },
coefficients = { docs = "The coefficienta [a, b, c] of the parabolic equation y = ax^2 + bx + c. Incompatible with `interior`." },
interior = { docs = "Any point between the arc's start and end?. Incompatible with `coefficients." },
end = { docs = "Where should this arc end?" },
tag = { docs = "Create a new tag which refers to this line"},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "parabolic",
// unlabeled_first = true,
// args = {
// sketch = { docs = "Which sketch should this path be added to?" },
// coefficients = { docs = "The coefficienta [a, b, c] of the parabolic equation y = ax^2 + bx + c. Incompatible with `interior`." },
// interior = { docs = "Any point between the arc's start and end?. Incompatible with `coefficients." },
// end = { docs = "Where should this arc end?" },
// tag = { docs = "Create a new tag which refers to this line"},
// },
// tags = ["sketch"]
// }]
pub(crate) async fn inner_parabolic(
sketch: Sketch,
coefficients: Option<[TyF64; 3]>,
@ -2279,10 +2245,12 @@ pub(crate) async fn inner_parabolic(
let id = exec_state.next_uuid();
if (coefficients.is_some() && interior.is_some()) || (coefficients.is_none() && interior.is_none()) {
return Err(KclError::Type(KclErrorDetails::new(
"Invalid combination of arguments. Either provide (a, b, c) or (interior)".to_owned(),
vec![args.source_range],
)));
return Err(KclError::Type {
details: KclErrorDetails::new(
"Invalid combination of arguments. Either provide (a, b, c) or (interior)".to_owned(),
vec![args.source_range],
),
});
}
let (end, _) = untype_point(end);
@ -2412,32 +2380,20 @@ pub async fn conic(exec_state: &mut ExecState, args: Args) -> Result<KclValue, K
})
}
/// ```no_run
/// exampleSketch = startSketchOn(XZ)
/// |> startProfile(at = [0, 0])
/// |> conic(
/// end = [10,0],
/// endTangent = [0,1],
/// interior = [5,5],
/// startTangent = [0, -1],
/// )
/// |> close()
/// example = extrude(exampleSketch, length = 10)
/// ```
#[stdlib {
name = "conic",
unlabeled_first = true,
args = {
sketch = { docs = "Which sketch should this path be added to?" },
start_tangent = { docs = "The tangent of the conic at the start point (the end of the previous path segement)" },
end_tangent = { docs = "The tangent of the conic at the end point" },
interior = { docs = "Any point between the arc's start and end? Incompatible with `coefficients`." },
coefficients = { docs = "The coefficients [a, b, c, d, e, f] of the generic conic equation ax^2 + by^2 + cxy + dx + ey + f = 0. Incompatible with `endTangent`."},
end = { docs = "Where should this arc end?" },
tag = { docs = "Create a new tag which refers to this line"},
},
tags = ["sketch"]
}]
// #[stdlib {
// name = "conic",
// unlabeled_first = true,
// args = {
// sketch = { docs = "Which sketch should this path be added to?" },
// start_tangent = { docs = "The tangent of the conic at the start point (the end of the previous path segement)" },
// end_tangent = { docs = "The tangent of the conic at the end point" },
// interior = { docs = "Any point between the arc's start and end? Incompatible with `coefficients`." },
// coefficients = { docs = "The coefficients [a, b, c, d, e, f] of the generic conic equation ax^2 + by^2 + cxy + dx + ey + f = 0. Incompatible with `endTangent`."},
// end = { docs = "Where should this arc end?" },
// tag = { docs = "Create a new tag which refers to this line"},
// },
// tags = ["sketch"]
// }]
#[allow(clippy::too_many_arguments)]
pub(crate) async fn inner_conic(
sketch: Sketch,
@ -2456,10 +2412,12 @@ pub(crate) async fn inner_conic(
if (coefficients.is_some() && (start_tangent.is_some() || end_tangent.is_some()))
|| (coefficients.is_none() && (start_tangent.is_none() && end_tangent.is_none()))
{
return Err(KclError::Type(KclErrorDetails::new(
"Invalid combination of arguments. Either provide coefficients or interior".to_owned(),
vec![args.source_range],
)));
return Err(KclError::Type {
details: KclErrorDetails::new(
"Invalid combination of arguments. Either provide coefficients or interior".to_owned(),
vec![args.source_range],
),
});
}
let (end, _) = untype_array(end);

View File

@ -291,7 +291,7 @@ export fn ellipse(
/// Create a new tag which refers to this ellipse.
tag?: tag,
): Sketch {}
=======
/// Extend a 2-dimensional sketch through a third dimension in order to
/// create new 3-dimensional volume, or if extruded into an existing volume,
/// cut into an existing solid.
@ -1939,3 +1939,193 @@ export fn subtract2d(
/// The shape(s) which should be cut out of the sketch.
tool: [Sketch; 1+],
): Sketch {}
/// Add a conic section to an existing sketch.
///
/// ```kcl
/// exampleSketch = startSketchOn(XZ)
/// |> startProfile(at = [0, 0])
/// |> conic(
/// end = [10,0],
/// endTangent = [0,1],
/// interior = [5,5],
/// startTangent = [0, -1],
/// )
/// |> close()
/// example = extrude(exampleSketch, length = 10)
/// ```
@(impl = std_rust)
export fn conic(
/// Which sketch should this path be added to?
@sketch: Sketch,
/// Any point between the segment's start and end. Incompatible with `coefficients`.
interior: Point2d,
/// Where should the path end?.
end: Point2d,
/// The coefficients [a, b, c, d, e, f] of the generic conic equation ax^2 + by^2 + cxy + dx + ey + f = 0. If provided the start and end tangents will be calculated using this equation. Incompatible with `startTangent` and `endTangent`.
coefficients?: [number(Count); 6],
/// The tangent of the conic section at the start. If not provided the tangent of the previous path segment is used.
startTangent?: Point2d,
/// The tangnet of the conic section at the end. Incompatible with `coefficients`.
endTangent?: Point2d,
/// Create a new tag which refers to this segment.
tag?: tag,
): Sketch {}
/// Add a parabolic segment to an existing skwtch.
///
/// ```kcl
/// exampleSketch = startSketchOn(XY)
/// |> startProfile(at = [0,0])
/// |> parabolic(
/// end = [10,0],
/// coefficient = 2,
/// interior = [0,0]
/// )
/// |>close()
///```
@(impl = std_rust)
export fn parabolic(
/// Which sketch should this path be added to?
@sketch: Sketch,
/// Where should the path end?
end: Point2d,
/// The coefficients [a, b, c] of the parabolic equation y = ax^2 + bx + c. Incompatible with `interior`.
coefficients?: [number(Count); 3],
/// A point between the segment's start and end that lies on the parabola. Incompatible with `coefficients`.
interior?: Point2d,
/// Create a new tag which refers to this segment.
tag?: tag,
): Sketch {}
/// Calculate the point (x, y) on a parabola given x or y and the coefficients [a, b, c] of the parabola.
///
/// ```kcl
/// point001 = parabolicPoint(x = 5, a = 0.1, b = 0, c = 0)
/// point002 = parabolicPoint(y = 2.5, a = 0.1, b = 0, c = 0)
/// assert(point001[0], isEqualTo = point002[0])
/// assert(point001[1], isEqualTo = point002[1])
///```
@(impl = std_rust)
export fn parabolicPoint(
/// The coefficients [a, b, c] of the parabolic equation y = ax^2 + bx + c.
coefficients: [number(Count); 3],
/// The x value. Calculates y and returns (x, y). Incompatible with `y`.
x?: number(Length),
/// The y value. Calculates x and returns (x, y). Incompatible with `x`.
y?: number(Length),
): Point2d {}
/// Add a hyperbolic section to an existing sketch.
///
/// ```kcl
/// exampleSketch = startSketchOn(XY)
/// |> startProfile(at = [0,0])
/// |> hyperbolic(
/// end = [10,0],
/// semiMajor = 2,
/// semiMinor = 1,
/// interior = [0,0]
/// )
/// |>close()
///```
@(impl = std_rust)
export fn hyperbolic(
/// Which sketch should this path be added to?
@sketch: Sketch,
/// The semi major value, a, of the hyperbolic equation x^2 / a ^ 2 - y^2 / b^2 = 1.
semiMajor: number(Length),
/// The semi minor value, b, of the hyperbolic equation x^2 / a ^ 2 - y^2 / b^2 = 1.
semiMinor: number(Length),
/// Any point between the segments's start and end? Requires `end`. Incompatible with `endAbsolute` or `interiorAbsolute`.
interior?: Point2d,
/// Any point between the segments's start and end? This point is relative to the start point of the segment. Requires `endAbsolute`. Incompatible with `end` or `interior`.
interiorAbsolute?: Point2d,
/// Where should this segment endt? This point is relagive to the start point of the segment. Requires `interior`. Incompatible with `endAbsolute` or `interiorAbsolute`.
end?: Point2d,
/// Where should this segment end? Requires `interiorAbsolute`. Incompatible with `end` or `interior`.
endAbsolute?: Point2d,
/// Create a new tag which refers to this arc.
tag?: tag,
): Sketch {}
/// Calculate the point (x, y) on a hyperbola given x or y and the semi major/minor values of the hyperbolic.
///
/// ```kcl
/// point = hyperbolicPoint(x = 5, semiMajor = 2, semiMinor = 1)
///```
@(impl = std_rust)
export fn hyperbolicPoint(
/// The semi major value, a, of the hyperbolic equation x^2 / a ^ 2 - y^2 / b^2 = 1.
semiMajor: number(Count),
/// The semi minor value, b, of the hyperbolic equation x^2 / a ^ 2 - y^2 / b^2 = 1.
semiMinor: number(Count),
/// The x value. Calculates y and returns (x, y). Incompatible with `y`.
x?: number(Length),
/// The y value. Calculates x and returns (x, y). Incompatible with `x`.
y?: number(Length),
): Point2d {}
/// Add a parabolic section to an existing sketch.
///
/// ```kcl
/// exampleSketch = startSketchOn(XZ)
/// |> startProfile(at = [0, 0])
/// |> elliptic(
/// endAbsolute = [10,0],
/// interiorAbsolute = [5,5]
/// )
/// |> close()
/// example = extrude(exampleSketch, length = 10)
/// ```
@(impl = std_rust)
export fn elliptic(
/// Which sketch should this path be added to?
@sketch: Sketch,
/// The center of the ellipse.
@(snippetArray = ["0", "0"])
center: Point2d,
/// Where along the ellptic should this segment start?
@(includeInSnippet = true)
angleStart: number(Angle),
/// Where along the ellptic should this segment end?
@(includeInSnippet = true)
angleEnd: number(Angle),
/// The major radius, a, of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.
@(includeInSnippet = true)
majorRadius: number(Length),
/// The minor radius, b, of the elliptic equation x^2 / a^2 + y^2 / b^2 = 1.
@(includeInSnippet = true)
minorRadius: number(Length),
/// Any point between the segment's start and end. Requies `endAbsolute`. Incompatible with `interior` or `end`.
interiorAbsolute?: Point2d,
/// Where should this segment end? Requires `interiorAbsolute`. Incompatible with `interior` or `end`.
endAbsolute?: Point2d,
/// Any point between the segment's start and end. This point is relative to the start point. Requires `end`. Incompatible with `interiorAbsolute` or `endAbsolute`.
interior?: Point2d,
/// Where should this segment end? This point is relative to the start point. Requires `interior`. Incompatible with `interiorAbsolute` or `endAbsolute`.
end?: Point2d,
/// Create a new tag which refers to this arc.
tag?: tag,
): Sketch {}
/// Calculate the point (x, y) on an ellipse given x or y and the center and major/minor radii of the ellipse.
///
/// ```kcl
/// point001 = ellipticPoint(x = 2, majorRadius = 2, minorRadius = 1)
/// point002 = ellipticPoint(y = 0, majorRadius = 2, minorRadius = 1)
/// assert(point001[0], isEqualTo = point002[0])
/// assert(point001[1], isEqualTo = point002[1])
///```
@(impl = std_rust)
export fn ellipticPoint(
/// The major radius, a, of the elliptic equation x^2 / a ^ 2 + y^2 / b^2 = 1.
majorRadius: number(Count),
/// The minor radius, b, of the hyperbolic equation x^2 / a ^ 2 + y^2 / b^2 = 1.
minorRadius: number(Count),
/// The x value. Calculates y and returns (x, y). Incompatible with `y`.
x?: number(Length),
/// The y value. Calculates x and returns (x, y). Incompatible with `x`.
y?: number(Length),
): Point2d {}