Compare commits

...

1 Commits

Author SHA1 Message Date
36a5461de5 Composite is now generic over size in memory.
Previously the Composite trait accepted a Vec<Value> for reading from memory, and returned a Vec<Value> for writing to memory. This meant the caller might provide the wrong size of Vec (e.g. a Point3d requires 3 memory addresses, so the code has to check and handle if the user only passes in 2).

Now those methods accept/return a [Value; N] which is statically guaranteed to be the right size! This means there's no more need for runtime checks that the Vec is the right size -- because the array is guaranteed to be the right size.

This involves removing the SIZE constant and instead changing it into a SIZE const generic.
2023-12-04 12:33:07 -06:00
2 changed files with 36 additions and 38 deletions

View File

@ -1,36 +1,24 @@
use crate::{ExecutionError, Value}; use crate::{ExecutionError, NumericValue, Value};
/// Types that can be written to or read from KCEP program memory, /// Types that can be written to or read from KCEP program memory,
/// but require multiple values to store. /// but require multiple values to store.
/// They get laid out into multiple consecutive memory addresses. /// They get laid out into multiple consecutive memory addresses.
pub trait Composite: Sized { pub trait Composite<const SIZE: usize>: Sized {
/// How many memory addresses are required to store this value?
const SIZE: usize;
/// Store the value in memory. /// Store the value in memory.
fn into_parts(self) -> Vec<Value>; fn into_parts(self) -> [Value; SIZE];
/// Read the value from memory. /// Read the value from memory.
fn from_parts(values: Vec<Value>) -> Result<Self, ExecutionError>; fn from_parts(values: [Value; SIZE]) -> Result<Self, ExecutionError>;
} }
impl Composite for kittycad::types::Point3D { impl Composite<3> for kittycad::types::Point3D {
fn into_parts(self) -> Vec<Value> { fn into_parts(self) -> [Value; 3] {
let points = [self.x, self.y, self.z]; [self.x, self.y, self.z]
points .map(NumericValue::Float)
.into_iter() .map(Value::NumericValue)
.map(|x| Value::NumericValue(crate::NumericValue::Float(x)))
.collect()
} }
const SIZE: usize = 3; fn from_parts(values: [Value; 3]) -> Result<Self, ExecutionError> {
let [x, y, z] = values;
fn from_parts(values: Vec<Value>) -> Result<Self, ExecutionError> {
let n = values.len();
let Ok([x, y, z]): Result<[Value; 3], _> = values.try_into() else {
return Err(ExecutionError::MemoryWrongSize {
actual: n,
expected: Self::SIZE,
});
};
let x = x.try_into()?; let x = x.try_into()?;
let y = y.try_into()?; let y = y.try_into()?;
let z = z.try_into()?; let z = z.try_into()?;

View File

@ -6,9 +6,10 @@
//! You can think of it as a domain-specific language for making KittyCAD API calls and using //! You can think of it as a domain-specific language for making KittyCAD API calls and using
//! the results to make other API calls. //! the results to make other API calls.
use std::{collections::HashMap, fmt};
use composite::Composite; use composite::Composite;
use serde::{Deserialize, Serialize}; use serde::{Deserialize, Serialize};
use std::{collections::HashMap, fmt};
mod composite; mod composite;
#[cfg(test)] #[cfg(test)]
@ -48,7 +49,7 @@ impl Memory {
/// Store a composite value (i.e. a value which takes up multiple addresses in memory). /// Store a composite value (i.e. a value which takes up multiple addresses in memory).
/// Store its parts in consecutive memory addresses starting at `start`. /// Store its parts in consecutive memory addresses starting at `start`.
pub fn set_composite<T: Composite>(&mut self, composite_value: T, start: Address) { pub fn set_composite<T: Composite<{ N }>, const N: usize>(&mut self, composite_value: T, start: Address) {
let parts = composite_value.into_parts().into_iter(); let parts = composite_value.into_parts().into_iter();
for (value, addr) in parts.zip(start.0..) { for (value, addr) in parts.zip(start.0..) {
self.0.insert(addr, value); self.0.insert(addr, value);
@ -57,17 +58,14 @@ impl Memory {
/// Get a composite value (i.e. a value which takes up multiple addresses in memory). /// Get a composite value (i.e. a value which takes up multiple addresses in memory).
/// Its parts are stored in consecutive memory addresses starting at `start`. /// Its parts are stored in consecutive memory addresses starting at `start`.
pub fn get_composite<T: Composite>(&self, start: Address) -> Result<T, ExecutionError> { pub fn get_composite<T: Composite<{ N }>, const N: usize>(&self, start: Address) -> Result<T, ExecutionError> {
let addrs = start.0..start.0 + T::SIZE; let addrs: [Address; N] = core::array::from_fn(|i| Address(i + start.0));
let values: Vec<Value> = addrs let values: [Value; N] = arr_res_to_res_array(addrs.map(|addr| {
.into_iter()
.map(|a| {
let addr = Address(a);
self.get(&addr) self.get(&addr)
.map(|x| x.to_owned()) .map(|x| x.to_owned())
.ok_or(ExecutionError::MemoryEmpty { addr }) .ok_or(ExecutionError::MemoryEmpty { addr })
}) }))?;
.collect::<Result<_, _>>()?;
T::from_parts(values) T::from_parts(values)
} }
} }
@ -273,6 +271,18 @@ pub enum ExecutionError {
CannotApplyOperation { op: Operation, operands: Vec<Value> }, CannotApplyOperation { op: Operation, operands: Vec<Value> },
#[error("Tried to read a '{expected}' from KCEP program memory, found an '{actual}' instead")] #[error("Tried to read a '{expected}' from KCEP program memory, found an '{actual}' instead")]
MemoryWrongType { expected: &'static str, actual: String }, MemoryWrongType { expected: &'static str, actual: String },
#[error("Wrong size of memory trying to read value from KCEP program memory: got {actual} but wanted {expected}")] }
MemoryWrongSize { expected: usize, actual: usize },
/// Take an array of result and return a result of array.
/// If all members of the array are Ok(T), returns Ok with an array of the T values.
/// If any member of the array was Err(E), return Err with the first E value.
fn arr_res_to_res_array<T, E, const N: usize>(arr: [Result<T, E>; N]) -> Result<[T; N], E> {
let mut out = core::array::from_fn(|_| None);
for (i, res) in arr.into_iter().enumerate() {
out[i] = match res {
Ok(x) => Some(x),
Err(e) => return Err(e),
};
}
Ok(out.map(|opt| opt.unwrap()))
} }