//! Functions related to mathematics. use anyhow::Result; use kcl_derive_docs::stdlib; use super::args::FromArgs; use crate::{ errors::{KclError, KclErrorDetails}, execution::{ExecState, KclValue}, std::args::{Args, TyF64}, }; /// Compute the remainder after dividing `num` by `div`. /// If `num` is negative, the result will be too. pub async fn rem(_exec_state: &mut ExecState, args: Args) -> Result { let n = args.get_unlabeled_kw_arg("number to divide")?; let d = args.get_kw_arg("divisor")?; let remainder = inner_rem(n, d); Ok(args.make_user_val_from_f64(remainder)) } /// Compute the remainder after dividing `num` by `div`. /// If `num` is negative, the result will be too. /// /// ```no_run /// assertEqual(rem( 7, divisor = 4), 3, 0.01, "remainder is 3" ) /// assertEqual(rem(-7, divisor = 4), -3, 0.01, "remainder is -3") /// assertEqual(rem( 7, divisor = -4), 3, 0.01, "remainder is 3" ) /// assertEqual(rem( 6, divisor = 2.5), 1, 0.01, "remainder is 1" ) /// assertEqual(rem( 6.5, divisor = 2.5), 1.5, 0.01, "remainder is 1.5" ) /// assertEqual(rem( 6.5, divisor = 2), 0.5, 0.01, "remainder is 0.5" ) /// ``` #[stdlib { name = "rem", tags = ["math"], keywords = true, unlabeled_first = true, args = { num = {docs = "The number which will be divided by `divisor`."}, divisor = {docs = "The number which will divide `num`."}, } }] fn inner_rem(num: f64, divisor: f64) -> f64 { num % divisor } /// Compute the cosine of a number (in radians). pub async fn cos(_exec_state: &mut ExecState, args: Args) -> Result { let num: f64 = args.get_unlabeled_kw_arg("input")?; Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.cos()))) } /// Compute the sine of a number (in radians). pub async fn sin(_exec_state: &mut ExecState, args: Args) -> Result { let num: f64 = args.get_unlabeled_kw_arg("input")?; Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.sin()))) } /// Compute the tangent of a number (in radians). pub async fn tan(_exec_state: &mut ExecState, args: Args) -> Result { let num: f64 = args.get_unlabeled_kw_arg("input")?; Ok(args.make_user_val_from_f64_with_type(TyF64::count(num.tan()))) } /// Return the value of `pi`. Archimedes’ constant (π). pub async fn pi(_exec_state: &mut ExecState, args: Args) -> Result { let result = inner_pi()?; Ok(args.make_user_val_from_f64(result)) } /// Return the value of `pi`. Archimedes’ constant (π). /// /// **DEPRECATED** use the constant PI /// /// ```no_run /// circumference = 70 /// /// exampleSketch = startSketchOn("XZ") /// |> circle( center = [0, 0], radius = circumference/ (2 * pi()) ) /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "pi", tags = ["math"], deprecated = true, }] fn inner_pi() -> Result { Ok(std::f64::consts::PI) } /// Compute the square root of a number. pub async fn sqrt(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_sqrt(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the square root of a number. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 50, /// length = sqrt(2500), /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "sqrt", tags = ["math"], }] fn inner_sqrt(num: f64) -> Result { Ok(num.sqrt()) } /// Compute the absolute value of a number. pub async fn abs(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_abs(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the absolute value of a number. /// /// ```no_run /// myAngle = -120 /// /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> line(end = [8, 0]) /// |> angledLine({ /// angle = abs(myAngle), /// length = 5, /// }, %) /// |> line(end = [-5, 0]) /// |> angledLine({ /// angle = myAngle, /// length = 5, /// }, %) /// |> close() /// /// baseExtrusion = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "abs", tags = ["math"], }] fn inner_abs(num: f64) -> Result { Ok(num.abs()) } /// Round a number to the nearest integer. pub async fn round(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_round(num)?; Ok(args.make_user_val_from_f64(result)) } /// Round a number to the nearest integer. /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> line(endAbsolute = [12, 10]) /// |> line(end = [round(7.02986), 0]) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "round", tags = ["math"], }] fn inner_round(num: f64) -> Result { Ok(num.round()) } /// Compute the largest integer less than or equal to a number. pub async fn floor(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_floor(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the largest integer less than or equal to a number. /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> line(endAbsolute = [12, 10]) /// |> line(end = [floor(7.02986), 0]) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "floor", tags = ["math"], }] fn inner_floor(num: f64) -> Result { Ok(num.floor()) } /// Compute the smallest integer greater than or equal to a number. pub async fn ceil(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_ceil(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the smallest integer greater than or equal to a number. /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> line(endAbsolute = [12, 10]) /// |> line(end = [ceil(7.02986), 0]) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "ceil", tags = ["math"], }] fn inner_ceil(num: f64) -> Result { Ok(num.ceil()) } /// Compute the minimum of the given arguments. pub async fn min(_exec_state: &mut ExecState, args: Args) -> Result { let nums = args.get_number_array()?; let result = inner_min(nums); Ok(args.make_user_val_from_f64(result)) } /// Compute the minimum of the given arguments. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 70, /// length = min(15, 31, 4, 13, 22) /// }, %) /// |> line(end = [20, 0]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "min", tags = ["math"], }] fn inner_min(args: Vec) -> f64 { let mut min = f64::MAX; for arg in args.iter() { if *arg < min { min = *arg; } } min } /// Compute the maximum of the given arguments. pub async fn max(_exec_state: &mut ExecState, args: Args) -> Result { let nums = args.get_number_array()?; let result = inner_max(nums); Ok(args.make_user_val_from_f64(result)) } /// Compute the maximum of the given arguments. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 70, /// length = max(15, 31, 4, 13, 22) /// }, %) /// |> line(end = [20, 0]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "max", tags = ["math"], }] fn inner_max(args: Vec) -> f64 { let mut max = f64::MIN; for arg in args.iter() { if *arg > max { max = *arg; } } max } /// Compute the number to a power. pub async fn pow(_exec_state: &mut ExecState, args: Args) -> Result { let nums = args.get_number_array()?; if nums.len() > 2 { return Err(KclError::Type(KclErrorDetails { message: format!("expected 2 arguments, got {}", nums.len()), source_ranges: vec![args.source_range], })); } if nums.len() <= 1 { return Err(KclError::Type(KclErrorDetails { message: format!("expected 2 arguments, got {}", nums.len()), source_ranges: vec![args.source_range], })); } let result = inner_pow(nums[0], nums[1])?; Ok(args.make_user_val_from_f64(result)) } /// Compute the number to a power. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 50, /// length = pow(5, 2), /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "pow", tags = ["math"], }] fn inner_pow(num: f64, pow: f64) -> Result { Ok(num.powf(pow)) } /// Compute the arccosine of a number (in radians). pub async fn acos(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_acos(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the arccosine of a number (in radians). /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = toDegrees(acos(0.5)), /// length = 10, /// }, %) /// |> line(end = [5, 0]) /// |> line(endAbsolute = [12, 0]) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "acos", tags = ["math"], }] fn inner_acos(num: f64) -> Result { Ok(num.acos()) } /// Compute the arcsine of a number (in radians). pub async fn asin(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_asin(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the arcsine of a number (in radians). /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = toDegrees(asin(0.5)), /// length = 20, /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "asin", tags = ["math"], }] fn inner_asin(num: f64) -> Result { Ok(num.asin()) } /// Compute the arctangent of a number (in radians). pub async fn atan(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_atan(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the arctangent of a number (in radians). /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = toDegrees(atan(1.25)), /// length = 20, /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "atan", tags = ["math"], }] fn inner_atan(num: f64) -> Result { Ok(num.atan()) } /// Compute the four quadrant arctangent of Y and X (in radians). pub async fn atan2(_exec_state: &mut ExecState, args: Args) -> Result { let (y, x) = FromArgs::from_args(&args, 0)?; let result = inner_atan2(y, x)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the four quadrant arctangent of Y and X (in radians). /// /// ```no_run /// sketch001 = startSketchOn('XZ') /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = toDegrees(atan2(1.25, 2)), /// length = 20, /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// extrude001 = extrude(sketch001, length = 5) /// ``` #[stdlib { name = "atan2", tags = ["math"], }] fn inner_atan2(y: f64, x: f64) -> Result { Ok(y.atan2(x)) } /// Compute the logarithm of the number with respect to an arbitrary base. /// /// The result might not be correctly rounded owing to implementation /// details; `log2()` can produce more accurate results for base 2, /// and `log10()` can produce more accurate results for base 10. pub async fn log(_exec_state: &mut ExecState, args: Args) -> Result { let nums = args.get_number_array()?; if nums.len() > 2 { return Err(KclError::Type(KclErrorDetails { message: format!("expected 2 arguments, got {}", nums.len()), source_ranges: vec![args.source_range], })); } if nums.len() <= 1 { return Err(KclError::Type(KclErrorDetails { message: format!("expected 2 arguments, got {}", nums.len()), source_ranges: vec![args.source_range], })); } let result = inner_log(nums[0], nums[1])?; Ok(args.make_user_val_from_f64(result)) } /// Compute the logarithm of the number with respect to an arbitrary base. /// /// The result might not be correctly rounded owing to implementation /// details; `log2()` can produce more accurate results for base 2, /// and `log10()` can produce more accurate results for base 10. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> line(end = [log(100, 5), 0]) /// |> line(end = [5, 8]) /// |> line(end = [-10, 0]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "log", tags = ["math"], }] fn inner_log(num: f64, base: f64) -> Result { Ok(num.log(base)) } /// Compute the base 2 logarithm of the number. pub async fn log2(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_log2(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the base 2 logarithm of the number. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> line(end = [log2(100), 0]) /// |> line(end = [5, 8]) /// |> line(end = [-10, 0]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "log2", tags = ["math"], }] fn inner_log2(num: f64) -> Result { Ok(num.log2()) } /// Compute the base 10 logarithm of the number. pub async fn log10(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_log10(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the base 10 logarithm of the number. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> line(end = [log10(100), 0]) /// |> line(end = [5, 8]) /// |> line(end = [-10, 0]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "log10", tags = ["math"], }] fn inner_log10(num: f64) -> Result { Ok(num.log10()) } /// Compute the natural logarithm of the number. pub async fn ln(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_ln(num)?; Ok(args.make_user_val_from_f64(result)) } /// Compute the natural logarithm of the number. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> line(end = [ln(100), 15]) /// |> line(end = [5, -6]) /// |> line(end = [-10, -10]) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "ln", tags = ["math"], }] fn inner_ln(num: f64) -> Result { Ok(num.ln()) } /// Return the value of Euler’s number `e`. pub async fn e(_exec_state: &mut ExecState, args: Args) -> Result { let result = inner_e()?; Ok(args.make_user_val_from_f64(result)) } /// Return the value of Euler’s number `e`. /// /// **DEPRECATED** use the constant E /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 30, /// length = 2 * e() ^ 2, /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 10) /// ``` #[stdlib { name = "e", tags = ["math"], deprecated = true, }] fn inner_e() -> Result { Ok(std::f64::consts::E) } /// Return the value of `tau`. The full circle constant (τ). Equal to 2π. pub async fn tau(_exec_state: &mut ExecState, args: Args) -> Result { let result = inner_tau()?; Ok(args.make_user_val_from_f64(result)) } /// Return the value of `tau`. The full circle constant (τ). Equal to 2π. /// /// **DEPRECATED** use the constant TAU /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 50, /// length = 10 * tau(), /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "tau", tags = ["math"], deprecated = true, }] fn inner_tau() -> Result { Ok(std::f64::consts::TAU) } /// Converts a number from degrees to radians. pub async fn to_radians(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_to_radians(num)?; Ok(args.make_user_val_from_f64(result)) } /// Converts a number from degrees to radians. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 50, /// length = 70 * cos(toRadians(45)), /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "toRadians", tags = ["math"], }] fn inner_to_radians(num: f64) -> Result { Ok(num.to_radians()) } /// Converts a number from radians to degrees. pub async fn to_degrees(_exec_state: &mut ExecState, args: Args) -> Result { let num = args.get_number()?; let result = inner_to_degrees(num)?; Ok(args.make_user_val_from_f64(result)) } /// Converts a number from radians to degrees. /// /// ```no_run /// exampleSketch = startSketchOn("XZ") /// |> startProfileAt([0, 0], %) /// |> angledLine({ /// angle = 50, /// length = 70 * cos(toDegrees(pi()/4)), /// }, %) /// |> yLine(endAbsolute = 0) /// |> close() /// /// example = extrude(exampleSketch, length = 5) /// ``` #[stdlib { name = "toDegrees", tags = ["math"], }] fn inner_to_degrees(num: f64) -> Result { Ok(num.to_degrees()) } #[cfg(test)] mod tests { use pretty_assertions::assert_eq; use super::*; #[test] fn test_inner_max() { let nums = vec![4.0, 5.0, 6.0]; let result = inner_max(nums); assert_eq!(result, 6.0); } #[test] fn test_inner_max_with_neg() { let nums = vec![4.0, -5.0]; let result = inner_max(nums); assert_eq!(result, 4.0); } #[test] fn test_inner_min() { let nums = vec![4.0, 5.0, 6.0]; let result = inner_min(nums); assert_eq!(result, 4.0); } #[test] fn test_inner_min_with_neg() { let nums = vec![4.0, -5.0]; let result = inner_min(nums); assert_eq!(result, -5.0); } }