//! Standard library shapes. use anyhow::Result; use kcl_derive_docs::stdlib; use kcmc::{ each_cmd as mcmd, length_unit::LengthUnit, shared::{Angle, Point2d as KPoint2d}, ModelingCmd, }; use kittycad_modeling_cmds as kcmc; use kittycad_modeling_cmds::shared::PathSegment; use schemars::JsonSchema; use serde::Serialize; use super::{ args::TyF64, utils::{point_to_len_unit, point_to_mm, point_to_typed, untype_point, untyped_point_to_mm}, }; use crate::{ errors::{KclError, KclErrorDetails}, execution::{ types::{RuntimeType, UnitLen}, BasePath, ExecState, GeoMeta, KclValue, Path, Sketch, SketchSurface, }, parsing::ast::types::TagNode, std::{ sketch::NEW_TAG_KW, utils::{calculate_circle_center, distance}, Args, }, }; /// A sketch surface or a sketch. #[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS, JsonSchema)] #[ts(export)] #[serde(untagged)] pub enum SketchOrSurface { SketchSurface(SketchSurface), Sketch(Box), } /// Sketch a circle. pub async fn circle(exec_state: &mut ExecState, args: Args) -> Result { let sketch_or_surface = args.get_unlabeled_kw_arg("sketchOrSurface")?; let center = args.get_kw_arg_typed("center", &RuntimeType::point2d(), exec_state)?; let radius: Option = args.get_kw_arg_opt_typed("radius", &RuntimeType::length(), exec_state)?; let diameter: Option = args.get_kw_arg_opt_typed("diameter", &RuntimeType::length(), exec_state)?; let tag = args.get_kw_arg_opt(NEW_TAG_KW)?; let sketch = inner_circle(sketch_or_surface, center, radius, diameter, tag, exec_state, args).await?; Ok(KclValue::Sketch { value: Box::new(sketch), }) } async fn inner_circle( sketch_or_surface: SketchOrSurface, center: [TyF64; 2], radius: Option, diameter: Option, tag: Option, exec_state: &mut ExecState, args: Args, ) -> Result { let sketch_surface = match sketch_or_surface { SketchOrSurface::SketchSurface(surface) => surface, SketchOrSurface::Sketch(s) => s.on, }; let (center_u, ty) = untype_point(center.clone()); let units = ty.expect_length(); let radius = match (radius, diameter) { (Some(radius), None) => radius, (None, Some(mut diameter)) => { diameter.n /= 2.0; diameter } (None, None) => { return Err(KclError::Type(KclErrorDetails::new( "This function needs either `diameter` or `radius`".to_string(), vec![args.source_range], ))) } (Some(_), Some(_)) => { return Err(KclError::Type(KclErrorDetails::new( "You cannot specify both `diameter` and `radius`, please remove one".to_string(), vec![args.source_range], ))) } }; let from = [center_u[0] + radius.to_length_units(units), center_u[1]]; let from_t = [TyF64::new(from[0], ty.clone()), TyF64::new(from[1], ty)]; let sketch = crate::std::sketch::inner_start_profile(sketch_surface, from_t, None, exec_state, args.clone()).await?; let angle_start = Angle::zero(); let angle_end = Angle::turn(); let id = exec_state.next_uuid(); args.batch_modeling_cmd( id, ModelingCmd::from(mcmd::ExtendPath { path: sketch.id.into(), segment: PathSegment::Arc { start: angle_start, end: angle_end, center: KPoint2d::from(point_to_mm(center)).map(LengthUnit), radius: LengthUnit(radius.to_mm()), relative: false, }, }), ) .await?; let current_path = Path::Circle { base: BasePath { from, to: from, tag: tag.clone(), units, geo_meta: GeoMeta { id, metadata: args.source_range.into(), }, }, radius: radius.to_length_units(units), center: center_u, ccw: angle_start < angle_end, }; let mut new_sketch = sketch.clone(); if let Some(tag) = &tag { new_sketch.add_tag(tag, ¤t_path, exec_state); } new_sketch.paths.push(current_path); args.batch_modeling_cmd(id, ModelingCmd::from(mcmd::ClosePath { path_id: new_sketch.id })) .await?; Ok(new_sketch) } /// Sketch a 3-point circle. pub async fn circle_three_point(exec_state: &mut ExecState, args: Args) -> Result { let sketch_surface_or_group = args.get_unlabeled_kw_arg("sketch_surface_or_group")?; let p1 = args.get_kw_arg_typed("p1", &RuntimeType::point2d(), exec_state)?; let p2 = args.get_kw_arg_typed("p2", &RuntimeType::point2d(), exec_state)?; let p3 = args.get_kw_arg_typed("p3", &RuntimeType::point2d(), exec_state)?; let tag = args.get_kw_arg_opt("tag")?; let sketch = inner_circle_three_point(sketch_surface_or_group, p1, p2, p3, tag, exec_state, args).await?; Ok(KclValue::Sketch { value: Box::new(sketch), }) } /// Construct a circle derived from 3 points. /// /// ```no_run /// exampleSketch = startSketchOn(XY) /// |> circleThreePoint(p1 = [10,10], p2 = [20,8], p3 = [15,5]) /// |> extrude(length = 5) /// ``` #[stdlib { name = "circleThreePoint", unlabeled_first = true, args = { sketch_surface_or_group = {docs = "Plane or surface to sketch on."}, p1 = {docs = "1st point to derive the circle."}, p2 = {docs = "2nd point to derive the circle."}, p3 = {docs = "3rd point to derive the circle."}, tag = {docs = "Identifier for the circle to reference elsewhere."}, }, tags = ["sketch"] }] // Similar to inner_circle, but needs to retain 3-point information in the // path so it can be used for other features, otherwise it's lost. async fn inner_circle_three_point( sketch_surface_or_group: SketchOrSurface, p1: [TyF64; 2], p2: [TyF64; 2], p3: [TyF64; 2], tag: Option, exec_state: &mut ExecState, args: Args, ) -> Result { let ty = p1[0].ty.clone(); let units = ty.expect_length(); let p1 = point_to_len_unit(p1, units); let p2 = point_to_len_unit(p2, units); let p3 = point_to_len_unit(p3, units); let center = calculate_circle_center(p1, p2, p3); // It can be the distance to any of the 3 points - they all lay on the circumference. let radius = distance(center, p2); let sketch_surface = match sketch_surface_or_group { SketchOrSurface::SketchSurface(surface) => surface, SketchOrSurface::Sketch(group) => group.on, }; let from = [ TyF64::new(center[0] + radius, ty.clone()), TyF64::new(center[1], ty.clone()), ]; let sketch = crate::std::sketch::inner_start_profile(sketch_surface, from.clone(), None, exec_state, args.clone()).await?; let angle_start = Angle::zero(); let angle_end = Angle::turn(); let id = exec_state.next_uuid(); args.batch_modeling_cmd( id, ModelingCmd::from(mcmd::ExtendPath { path: sketch.id.into(), segment: PathSegment::Arc { start: angle_start, end: angle_end, center: KPoint2d::from(untyped_point_to_mm(center, units)).map(LengthUnit), radius: units.adjust_to(radius, UnitLen::Mm).0.into(), relative: false, }, }), ) .await?; let current_path = Path::CircleThreePoint { base: BasePath { // It's fine to untype here because we know `from` has units as its units. from: untype_point(from.clone()).0, to: untype_point(from).0, tag: tag.clone(), units, geo_meta: GeoMeta { id, metadata: args.source_range.into(), }, }, p1, p2, p3, }; let mut new_sketch = sketch.clone(); if let Some(tag) = &tag { new_sketch.add_tag(tag, ¤t_path, exec_state); } new_sketch.paths.push(current_path); args.batch_modeling_cmd(id, ModelingCmd::from(mcmd::ClosePath { path_id: new_sketch.id })) .await?; Ok(new_sketch) } /// Type of the polygon #[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS, JsonSchema, Default)] #[ts(export)] #[serde(rename_all = "lowercase")] pub enum PolygonType { #[default] Inscribed, Circumscribed, } /// Create a regular polygon with the specified number of sides and radius. pub async fn polygon(exec_state: &mut ExecState, args: Args) -> Result { let sketch_surface_or_group = args.get_unlabeled_kw_arg("sketchOrSurface")?; let radius: TyF64 = args.get_kw_arg_typed("radius", &RuntimeType::length(), exec_state)?; let num_sides: TyF64 = args.get_kw_arg_typed("numSides", &RuntimeType::count(), exec_state)?; let center = args.get_kw_arg_typed("center", &RuntimeType::point2d(), exec_state)?; let inscribed = args.get_kw_arg_opt_typed("inscribed", &RuntimeType::bool(), exec_state)?; let sketch = inner_polygon( sketch_surface_or_group, radius, num_sides.n as u64, center, inscribed, exec_state, args, ) .await?; Ok(KclValue::Sketch { value: Box::new(sketch), }) } /// Create a regular polygon with the specified number of sides that is either inscribed or circumscribed around a circle of the specified radius. /// /// ```no_run /// // Create a regular hexagon inscribed in a circle of radius 10 /// hex = startSketchOn(XY) /// |> polygon( /// radius = 10, /// numSides = 6, /// center = [0, 0], /// inscribed = true, /// ) /// /// example = extrude(hex, length = 5) /// ``` /// /// ```no_run /// // Create a square circumscribed around a circle of radius 5 /// square = startSketchOn(XY) /// |> polygon( /// radius = 5.0, /// numSides = 4, /// center = [10, 10], /// inscribed = false, /// ) /// example = extrude(square, length = 5) /// ``` #[stdlib { name = "polygon", unlabeled_first = true, args = { sketch_surface_or_group = { docs = "Plane or surface to sketch on" }, radius = { docs = "The radius of the polygon", include_in_snippet = true }, num_sides = { docs = "The number of sides in the polygon", include_in_snippet = true }, center = { docs = "The center point of the polygon", include_in_snippet = true }, inscribed = { docs = "Whether the polygon is inscribed (true, the default) or circumscribed (false) about a circle with the specified radius" }, }, tags = ["sketch"] }] #[allow(clippy::too_many_arguments)] async fn inner_polygon( sketch_surface_or_group: SketchOrSurface, radius: TyF64, num_sides: u64, center: [TyF64; 2], inscribed: Option, exec_state: &mut ExecState, args: Args, ) -> Result { if num_sides < 3 { return Err(KclError::Type(KclErrorDetails::new( "Polygon must have at least 3 sides".to_string(), vec![args.source_range], ))); } if radius.n <= 0.0 { return Err(KclError::Type(KclErrorDetails::new( "Radius must be greater than 0".to_string(), vec![args.source_range], ))); } let (sketch_surface, units) = match sketch_surface_or_group { SketchOrSurface::SketchSurface(surface) => (surface, radius.ty.expect_length()), SketchOrSurface::Sketch(group) => (group.on, group.units), }; let half_angle = std::f64::consts::PI / num_sides as f64; let radius_to_vertices = if inscribed.unwrap_or(true) { // inscribed radius.n } else { // circumscribed radius.n / half_angle.cos() }; let angle_step = std::f64::consts::TAU / num_sides as f64; let center_u = point_to_len_unit(center, units); let vertices: Vec<[f64; 2]> = (0..num_sides) .map(|i| { let angle = angle_step * i as f64; [ center_u[0] + radius_to_vertices * angle.cos(), center_u[1] + radius_to_vertices * angle.sin(), ] }) .collect(); let mut sketch = crate::std::sketch::inner_start_profile( sketch_surface, point_to_typed(vertices[0], units), None, exec_state, args.clone(), ) .await?; // Draw all the lines with unique IDs and modified tags for vertex in vertices.iter().skip(1) { let from = sketch.current_pen_position()?; let id = exec_state.next_uuid(); args.batch_modeling_cmd( id, ModelingCmd::from(mcmd::ExtendPath { path: sketch.id.into(), segment: PathSegment::Line { end: KPoint2d::from(untyped_point_to_mm(*vertex, units)) .with_z(0.0) .map(LengthUnit), relative: false, }, }), ) .await?; let current_path = Path::ToPoint { base: BasePath { from: from.ignore_units(), to: *vertex, tag: None, units: sketch.units, geo_meta: GeoMeta { id, metadata: args.source_range.into(), }, }, }; sketch.paths.push(current_path); } // Close the polygon by connecting back to the first vertex with a new ID let from = sketch.current_pen_position()?; let close_id = exec_state.next_uuid(); args.batch_modeling_cmd( close_id, ModelingCmd::from(mcmd::ExtendPath { path: sketch.id.into(), segment: PathSegment::Line { end: KPoint2d::from(untyped_point_to_mm(vertices[0], units)) .with_z(0.0) .map(LengthUnit), relative: false, }, }), ) .await?; let current_path = Path::ToPoint { base: BasePath { from: from.ignore_units(), to: vertices[0], tag: None, units: sketch.units, geo_meta: GeoMeta { id: close_id, metadata: args.source_range.into(), }, }, }; sketch.paths.push(current_path); args.batch_modeling_cmd( exec_state.next_uuid(), ModelingCmd::from(mcmd::ClosePath { path_id: sketch.id }), ) .await?; Ok(sketch) }