Files
modeling-app/rust/kcl-lib/tests/kcl_samples/cpu-cooler/artifact_graph_flowchart.snap.md
Nicholas Boone 7944a4ce41 New single-file samples for the website (#6670)
* New single-file samples for the website

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Delete public/kcl-samples/piston directory

* More

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* move another test

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

---------

Signed-off-by: Jess Frazelle <github@jessfraz.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Jess Frazelle <jessfraz@users.noreply.github.com>
Co-authored-by: Jess Frazelle <github@jessfraz.com>
2025-05-13 15:05:57 -07:00

28 KiB

flowchart LR
  subgraph path22 [Path]
    22["Path<br>[323, 370, 2]"]
    65["Segment<br>[376, 444, 2]"]
    66["Segment<br>[450, 550, 2]"]
    67["Segment<br>[556, 673, 2]"]
    68["Segment<br>[679, 764, 2]"]
    69["Segment<br>[770, 777, 2]"]
    261[Solid2d]
  end
  subgraph path23 [Path]
    23["Path<br>[801, 836, 2]"]
    70["Segment<br>[801, 836, 2]"]
    242[Solid2d]
  end
  subgraph path24 [Path]
    24["Path<br>[861, 1008, 2]"]
    71["Segment<br>[861, 1008, 2]"]
    258[Solid2d]
  end
  subgraph path25 [Path]
    25["Path<br>[1033, 1181, 2]"]
    72["Segment<br>[1033, 1181, 2]"]
    250[Solid2d]
  end
  subgraph path26 [Path]
    26["Path<br>[1206, 1354, 2]"]
    73["Segment<br>[1206, 1354, 2]"]
    267[Solid2d]
  end
  subgraph path27 [Path]
    27["Path<br>[1379, 1528, 2]"]
    74["Segment<br>[1379, 1528, 2]"]
    245[Solid2d]
  end
  subgraph path28 [Path]
    28["Path<br>[1696, 1752, 2]"]
    75["Segment<br>[1758, 1823, 2]"]
    76["Segment<br>[1829, 1881, 2]"]
    77["Segment<br>[1887, 1938, 2]"]
    78["Segment<br>[1944, 1996, 2]"]
    79["Segment<br>[2002, 2068, 2]"]
    80["Segment<br>[2074, 2126, 2]"]
    81["Segment<br>[2132, 2164, 2]"]
    82["Segment<br>[2170, 2235, 2]"]
    83["Segment<br>[2241, 2248, 2]"]
    265[Solid2d]
  end
  subgraph path29 [Path]
    29["Path<br>[2597, 2710, 2]"]
    84["Segment<br>[2716, 2771, 2]"]
    85["Segment<br>[2777, 2812, 2]"]
    86["Segment<br>[2818, 2873, 2]"]
    87["Segment<br>[2879, 2915, 2]"]
    88["Segment<br>[2921, 2976, 2]"]
    89["Segment<br>[2982, 3018, 2]"]
    90["Segment<br>[3024, 3079, 2]"]
    91["Segment<br>[3085, 3141, 2]"]
  end
  subgraph path30 [Path]
    30["Path<br>[3290, 3341, 2]"]
    92["Segment<br>[3290, 3341, 2]"]
    263[Solid2d]
  end
  subgraph path31 [Path]
    31["Path<br>[3520, 3582, 2]"]
    93["Segment<br>[3588, 3656, 2]"]
    94["Segment<br>[3662, 3762, 2]"]
    95["Segment<br>[3768, 3885, 2]"]
    96["Segment<br>[3891, 3976, 2]"]
    97["Segment<br>[3982, 3989, 2]"]
    254[Solid2d]
  end
  subgraph path32 [Path]
    32["Path<br>[4013, 4064, 2]"]
    98["Segment<br>[4013, 4064, 2]"]
    247[Solid2d]
  end
  subgraph path33 [Path]
    33["Path<br>[4089, 4236, 2]"]
    99["Segment<br>[4089, 4236, 2]"]
    253[Solid2d]
  end
  subgraph path34 [Path]
    34["Path<br>[4261, 4409, 2]"]
    100["Segment<br>[4261, 4409, 2]"]
    262[Solid2d]
  end
  subgraph path35 [Path]
    35["Path<br>[4434, 4582, 2]"]
    101["Segment<br>[4434, 4582, 2]"]
    238[Solid2d]
  end
  subgraph path36 [Path]
    36["Path<br>[4607, 4756, 2]"]
    102["Segment<br>[4607, 4756, 2]"]
    266[Solid2d]
  end
  subgraph path37 [Path]
    37["Path<br>[4898, 4936, 2]"]
    103["Segment<br>[4898, 4936, 2]"]
    235[Solid2d]
  end
  subgraph path38 [Path]
    38["Path<br>[5009, 5045, 2]"]
    104["Segment<br>[5009, 5045, 2]"]
    264[Solid2d]
  end
  subgraph path39 [Path]
    39["Path<br>[271, 321, 3]"]
    105["Segment<br>[271, 321, 3]"]
    249[Solid2d]
  end
  subgraph path40 [Path]
    40["Path<br>[508, 543, 3]"]
    106["Segment<br>[508, 543, 3]"]
    237[Solid2d]
  end
  subgraph path41 [Path]
    41["Path<br>[216, 249, 4]"]
    107["Segment<br>[255, 285, 4]"]
    108["Segment<br>[291, 331, 4]"]
    109["Segment<br>[337, 361, 4]"]
    110["Segment<br>[367, 391, 4]"]
    111["Segment<br>[397, 438, 4]"]
    112["Segment<br>[444, 481, 4]"]
    113["Segment<br>[487, 510, 4]"]
    114["Segment<br>[516, 533, 4]"]
    115["Segment<br>[539, 560, 4]"]
    116["Segment<br>[566, 653, 4]"]
    117["Segment<br>[659, 696, 4]"]
    118["Segment<br>[702, 739, 4]"]
    119["Segment<br>[745, 752, 4]"]
    257[Solid2d]
  end
  subgraph path42 [Path]
    42["Path<br>[1059, 1149, 4]"]
    128["Segment<br>[2079, 2086, 4]"]
    234[Solid2d]
  end
  subgraph path43 [Path]
    43["Path<br>[1059, 1149, 4]"]
    120["Segment<br>[1157, 1226, 4]"]
    123["Segment<br>[1234, 1534, 4]"]
    124["Segment<br>[1542, 1844, 4]"]
    126["Segment<br>[1852, 2071, 4]"]
    129["Segment<br>[2079, 2086, 4]"]
    241[Solid2d]
  end
  subgraph path44 [Path]
    44["Path<br>[1059, 1149, 4]"]
    121["Segment<br>[1157, 1226, 4]"]
    122["Segment<br>[1234, 1534, 4]"]
    125["Segment<br>[1542, 1844, 4]"]
    127["Segment<br>[1852, 2071, 4]"]
    130["Segment<br>[2079, 2086, 4]"]
    251[Solid2d]
  end
  subgraph path45 [Path]
    45["Path<br>[285, 331, 5]"]
    131["Segment<br>[337, 387, 5]"]
    132["Segment<br>[393, 440, 5]"]
    133["Segment<br>[446, 482, 5]"]
    134["Segment<br>[488, 518, 5]"]
    135["Segment<br>[524, 571, 5]"]
    136["Segment<br>[577, 606, 5]"]
  end
  subgraph path46 [Path]
    46["Path<br>[731, 778, 5]"]
    137["Segment<br>[731, 778, 5]"]
    244[Solid2d]
  end
  subgraph path47 [Path]
    47["Path<br>[802, 851, 5]"]
    138["Segment<br>[802, 851, 5]"]
    246[Solid2d]
  end
  subgraph path48 [Path]
    48["Path<br>[1172, 1221, 5]"]
    139["Segment<br>[1227, 1268, 5]"]
    140["Segment<br>[1274, 1321, 5]"]
    141["Segment<br>[1327, 1365, 5]"]
    142["Segment<br>[1371, 1418, 5]"]
    143["Segment<br>[1424, 1460, 5]"]
    144["Segment<br>[1466, 1496, 5]"]
    145["Segment<br>[1502, 1550, 5]"]
    146["Segment<br>[1556, 1602, 5]"]
    147["Segment<br>[1608, 1641, 5]"]
  end
  subgraph path49 [Path]
    49["Path<br>[1766, 1815, 5]"]
    148["Segment<br>[1766, 1815, 5]"]
    256[Solid2d]
  end
  subgraph path50 [Path]
    50["Path<br>[1839, 1890, 5]"]
    149["Segment<br>[1839, 1890, 5]"]
    260[Solid2d]
  end
  subgraph path51 [Path]
    51["Path<br>[2392, 2428, 5]"]
    150["Segment<br>[2434, 2451, 5]"]
    151["Segment<br>[2457, 2508, 5]"]
    152["Segment<br>[2514, 2534, 5]"]
    153["Segment<br>[2540, 2646, 5]"]
    154["Segment<br>[2652, 2672, 5]"]
    155["Segment<br>[2678, 2724, 5]"]
    156["Segment<br>[2730, 2772, 5]"]
    157["Segment<br>[2778, 2815, 5]"]
    158["Segment<br>[2821, 2843, 5]"]
    159["Segment<br>[2897, 2904, 5]"]
    252[Solid2d]
  end
  subgraph path52 [Path]
    52["Path<br>[3238, 3276, 5]"]
    160["Segment<br>[3282, 3302, 5]"]
    161["Segment<br>[3308, 3358, 5]"]
    162["Segment<br>[3364, 3384, 5]"]
    163["Segment<br>[3390, 3438, 5]"]
    164["Segment<br>[3444, 3464, 5]"]
    165["Segment<br>[3470, 3518, 5]"]
    166["Segment<br>[3524, 3544, 5]"]
    167["Segment<br>[3550, 3568, 5]"]
    168["Segment<br>[3574, 3593, 5]"]
    169["Segment<br>[3599, 3621, 5]"]
  end
  subgraph path53 [Path]
    53["Path<br>[3718, 3756, 5]"]
    170["Segment<br>[3762, 3782, 5]"]
    171["Segment<br>[3788, 3837, 5]"]
    172["Segment<br>[3843, 3863, 5]"]
    173["Segment<br>[3869, 3916, 5]"]
    174["Segment<br>[3922, 3942, 5]"]
    175["Segment<br>[3948, 3995, 5]"]
    176["Segment<br>[4001, 4021, 5]"]
    177["Segment<br>[4027, 4045, 5]"]
    178["Segment<br>[4051, 4068, 5]"]
    179["Segment<br>[4074, 4112, 5]"]
    180["Segment<br>[4118, 4140, 5]"]
  end
  subgraph path54 [Path]
    54["Path<br>[4368, 4396, 5]"]
    181["Segment<br>[4402, 4421, 5]"]
    182["Segment<br>[4427, 4473, 5]"]
    183["Segment<br>[4479, 4530, 5]"]
    184["Segment<br>[4536, 4600, 5]"]
    185["Segment<br>[4606, 4659, 5]"]
    186["Segment<br>[4665, 4732, 5]"]
    187["Segment<br>[4738, 4818, 5]"]
    188["Segment<br>[4824, 4870, 5]"]
    189["Segment<br>[4876, 4939, 5]"]
    190["Segment<br>[4945, 5009, 5]"]
    191["Segment<br>[5015, 5052, 5]"]
    192["Segment<br>[5058, 5128, 5]"]
    193["Segment<br>[5134, 5141, 5]"]
    255[Solid2d]
  end
  subgraph path55 [Path]
    55["Path<br>[5690, 5747, 5]"]
    194["Segment<br>[5690, 5747, 5]"]
    240[Solid2d]
  end
  subgraph path56 [Path]
    56["Path<br>[311, 353, 6]"]
    195["Segment<br>[359, 376, 6]"]
    196["Segment<br>[382, 419, 6]"]
    197["Segment<br>[425, 443, 6]"]
    198["Segment<br>[449, 487, 6]"]
    199["Segment<br>[493, 511, 6]"]
    200["Segment<br>[517, 554, 6]"]
    201["Segment<br>[560, 578, 6]"]
    202["Segment<br>[584, 622, 6]"]
    203["Segment<br>[628, 716, 6]"]
    204["Segment<br>[722, 773, 6]"]
  end
  subgraph path57 [Path]
    57["Path<br>[899, 941, 6]"]
    205["Segment<br>[947, 965, 6]"]
    206["Segment<br>[971, 1009, 6]"]
    207["Segment<br>[1015, 1033, 6]"]
    208["Segment<br>[1039, 1076, 6]"]
    209["Segment<br>[1082, 1101, 6]"]
    210["Segment<br>[1107, 1145, 6]"]
    211["Segment<br>[1151, 1169, 6]"]
    212["Segment<br>[1175, 1212, 6]"]
    213["Segment<br>[1218, 1309, 6]"]
    214["Segment<br>[1315, 1367, 6]"]
  end
  subgraph path58 [Path]
    58["Path<br>[1528, 1593, 6]"]
    215["Segment<br>[1528, 1593, 6]"]
    243[Solid2d]
  end
  subgraph path59 [Path]
    59["Path<br>[1642, 1707, 6]"]
    216["Segment<br>[1642, 1707, 6]"]
    259[Solid2d]
  end
  subgraph path60 [Path]
    60["Path<br>[1865, 1918, 6]"]
    217["Segment<br>[1924, 1975, 6]"]
    218["Segment<br>[1981, 2019, 6]"]
    219["Segment<br>[2025, 2074, 6]"]
    220["Segment<br>[2080, 2118, 6]"]
    221["Segment<br>[2124, 2153, 6]"]
  end
  subgraph path61 [Path]
    61["Path<br>[2280, 2333, 6]"]
    222["Segment<br>[2339, 2390, 6]"]
    223["Segment<br>[2396, 2434, 6]"]
    224["Segment<br>[2440, 2489, 6]"]
    225["Segment<br>[2495, 2533, 6]"]
    226["Segment<br>[2539, 2568, 6]"]
  end
  subgraph path62 [Path]
    62["Path<br>[2736, 2812, 6]"]
    227["Segment<br>[2736, 2812, 6]"]
    239[Solid2d]
  end
  subgraph path63 [Path]
    63["Path<br>[2863, 2939, 6]"]
    228["Segment<br>[2863, 2939, 6]"]
    236[Solid2d]
  end
  subgraph path64 [Path]
    64["Path<br>[413, 442, 7]"]
    229["Segment<br>[448, 511, 7]"]
    230["Segment<br>[517, 612, 7]"]
    231["Segment<br>[618, 735, 7]"]
    232["Segment<br>[741, 826, 7]"]
    233["Segment<br>[832, 839, 7]"]
    248[Solid2d]
  end
  1["Plane<br>[300, 317, 2]"]
  2["Plane<br>[200, 227, 3]"]
  3["Plane<br>[473, 501, 3]"]
  4["Plane<br>[193, 210, 4]"]
  5["Plane<br>[1012, 1050, 4]"]
  6["Plane<br>[1012, 1050, 4]"]
  7["Plane<br>[1012, 1050, 4]"]
  8["Plane<br>[249, 278, 5]"]
  9["Plane<br>[686, 724, 5]"]
  10["Plane<br>[1137, 1165, 5]"]
  11["Plane<br>[1721, 1759, 5]"]
  12["Plane<br>[2357, 2385, 5]"]
  13["Plane<br>[3207, 3225, 5]"]
  14["Plane<br>[4345, 4362, 5]"]
  15["Plane<br>[263, 304, 6]"]
  16["Plane<br>[851, 892, 6]"]
  17["Plane<br>[1468, 1510, 6]"]
  18["Plane<br>[1818, 1858, 6]"]
  19["Plane<br>[2233, 2273, 6]"]
  20["Plane<br>[2677, 2717, 6]"]
  21["Plane<br>[389, 407, 7]"]
  268["Sweep Extrusion<br>[1535, 1554, 2]"]
  269["Sweep Extrusion<br>[2388, 2408, 2]"]
  270["Sweep Extrusion<br>[2388, 2408, 2]"]
  271["Sweep Extrusion<br>[2388, 2408, 2]"]
  272["Sweep Extrusion<br>[2388, 2408, 2]"]
  273["Sweep Extrusion<br>[3147, 3182, 2]"]
  274["Sweep Extrusion<br>[3347, 3385, 2]"]
  275["Sweep Extrusion<br>[4763, 4782, 2]"]
  276["Sweep Extrusion<br>[4942, 4962, 2]"]
  277["Sweep Extrusion<br>[5051, 5072, 2]"]
  278["Sweep Extrusion<br>[327, 347, 3]"]
  279["Sweep Extrusion<br>[549, 570, 3]"]
  280["Sweep Revolve<br>[758, 840, 4]"]
  281["Sweep Loft<br>[2412, 2431, 4]"]
  282["Sweep Sweep<br>[858, 883, 5]"]
  283["Sweep Sweep<br>[1897, 1925, 5]"]
  284["Sweep Extrusion<br>[2910, 2929, 5]"]
  285["Sweep Extrusion<br>[3651, 3704, 5]"]
  286["Sweep Extrusion<br>[4170, 4231, 5]"]
  287["Sweep Extrusion<br>[5147, 5267, 5]"]
  288["Sweep Extrusion<br>[5753, 5786, 5]"]
  289["Sweep Sweep<br>[1599, 1624, 6]"]
  290["Sweep Sweep<br>[1713, 1738, 6]"]
  291["Sweep Sweep<br>[2818, 2844, 6]"]
  292["Sweep Sweep<br>[2945, 2971, 6]"]
  293["Sweep Extrusion<br>[845, 865, 7]"]
  294[Wall]
  295[Wall]
  296[Wall]
  297[Wall]
  298[Wall]
  299[Wall]
  300[Wall]
  301[Wall]
  302[Wall]
  303[Wall]
  304[Wall]
  305[Wall]
  306[Wall]
  307[Wall]
  308[Wall]
  309[Wall]
  310[Wall]
  311[Wall]
  312[Wall]
  313[Wall]
  314[Wall]
  315[Wall]
  316[Wall]
  317[Wall]
  318[Wall]
  319[Wall]
  320[Wall]
  321[Wall]
  322[Wall]
  323[Wall]
  324[Wall]
  325[Wall]
  326[Wall]
  327[Wall]
  328[Wall]
  329[Wall]
  330[Wall]
  331[Wall]
  332[Wall]
  333[Wall]
  334[Wall]
  335[Wall]
  336[Wall]
  337[Wall]
  338[Wall]
  339[Wall]
  340[Wall]
  341[Wall]
  342[Wall]
  343[Wall]
  344[Wall]
  345[Wall]
  346[Wall]
  347[Wall]
  348[Wall]
  349[Wall]
  350["Cap Start"]
  351["Cap Start"]
  352["Cap Start"]
  353["Cap Start"]
  354["Cap Start"]
  355["Cap Start"]
  356["Cap Start"]
  357["Cap Start"]
  358["Cap Start"]
  359["Cap Start"]
  360["Cap Start"]
  361["Cap Start"]
  362["Cap End"]
  363["Cap End"]
  364["Cap End"]
  365["Cap End"]
  366["Cap End"]
  367["Cap End"]
  368["Cap End"]
  369["Cap End"]
  370["Cap End"]
  371["Cap End"]
  372["Cap End"]
  373["Cap End"]
  374["Cap End"]
  375["Cap End"]
  376["Cap End"]
  377["Cap End"]
  378["SweepEdge Opposite"]
  379["SweepEdge Opposite"]
  380["SweepEdge Opposite"]
  381["SweepEdge Opposite"]
  382["SweepEdge Opposite"]
  383["SweepEdge Opposite"]
  384["SweepEdge Opposite"]
  385["SweepEdge Opposite"]
  386["SweepEdge Opposite"]
  387["SweepEdge Opposite"]
  388["SweepEdge Opposite"]
  389["SweepEdge Opposite"]
  390["SweepEdge Opposite"]
  391["SweepEdge Opposite"]
  392["SweepEdge Opposite"]
  393["SweepEdge Opposite"]
  394["SweepEdge Opposite"]
  395["SweepEdge Opposite"]
  396["SweepEdge Opposite"]
  397["SweepEdge Opposite"]
  398["SweepEdge Opposite"]
  399["SweepEdge Opposite"]
  400["SweepEdge Opposite"]
  401["SweepEdge Opposite"]
  402["SweepEdge Opposite"]
  403["SweepEdge Opposite"]
  404["SweepEdge Opposite"]
  405["SweepEdge Opposite"]
  406["SweepEdge Opposite"]
  407["SweepEdge Opposite"]
  408["SweepEdge Opposite"]
  409["SweepEdge Opposite"]
  410["SweepEdge Opposite"]
  411["SweepEdge Opposite"]
  412["SweepEdge Opposite"]
  413["SweepEdge Opposite"]
  414["SweepEdge Opposite"]
  415["SweepEdge Opposite"]
  416["SweepEdge Opposite"]
  417["SweepEdge Opposite"]
  418["SweepEdge Opposite"]
  419["SweepEdge Opposite"]
  420["SweepEdge Opposite"]
  421["SweepEdge Opposite"]
  422["SweepEdge Opposite"]
  423["SweepEdge Opposite"]
  424["SweepEdge Opposite"]
  425["SweepEdge Opposite"]
  426["SweepEdge Opposite"]
  427["SweepEdge Opposite"]
  428["SweepEdge Opposite"]
  429["SweepEdge Opposite"]
  430["SweepEdge Opposite"]
  431["SweepEdge Opposite"]
  432["SweepEdge Opposite"]
  433["SweepEdge Opposite"]
  434["SweepEdge Adjacent"]
  435["SweepEdge Adjacent"]
  436["SweepEdge Adjacent"]
  437["SweepEdge Adjacent"]
  438["SweepEdge Adjacent"]
  439["SweepEdge Adjacent"]
  440["SweepEdge Adjacent"]
  441["SweepEdge Adjacent"]
  442["SweepEdge Adjacent"]
  443["SweepEdge Adjacent"]
  444["SweepEdge Adjacent"]
  445["SweepEdge Adjacent"]
  446["SweepEdge Adjacent"]
  447["SweepEdge Adjacent"]
  448["SweepEdge Adjacent"]
  449["SweepEdge Adjacent"]
  450["SweepEdge Adjacent"]
  451["SweepEdge Adjacent"]
  452["SweepEdge Adjacent"]
  453["SweepEdge Adjacent"]
  454["SweepEdge Adjacent"]
  455["SweepEdge Adjacent"]
  456["SweepEdge Adjacent"]
  457["SweepEdge Adjacent"]
  458["SweepEdge Adjacent"]
  459["SweepEdge Adjacent"]
  460["SweepEdge Adjacent"]
  461["SweepEdge Adjacent"]
  462["SweepEdge Adjacent"]
  463["SweepEdge Adjacent"]
  464["SweepEdge Adjacent"]
  465["SweepEdge Adjacent"]
  466["SweepEdge Adjacent"]
  467["SweepEdge Adjacent"]
  468["SweepEdge Adjacent"]
  469["SweepEdge Adjacent"]
  470["SweepEdge Adjacent"]
  471["SweepEdge Adjacent"]
  472["SweepEdge Adjacent"]
  473["SweepEdge Adjacent"]
  474["SweepEdge Adjacent"]
  475["SweepEdge Adjacent"]
  476["SweepEdge Adjacent"]
  477["SweepEdge Adjacent"]
  478["SweepEdge Adjacent"]
  479["SweepEdge Adjacent"]
  480["SweepEdge Adjacent"]
  481["SweepEdge Adjacent"]
  482["SweepEdge Adjacent"]
  483["SweepEdge Adjacent"]
  484["SweepEdge Adjacent"]
  485["SweepEdge Adjacent"]
  486["SweepEdge Adjacent"]
  487["SweepEdge Adjacent"]
  488["SweepEdge Adjacent"]
  489["SweepEdge Adjacent"]
  490["EdgeCut Fillet<br>[5113, 5624, 2]"]
  491["EdgeCut Fillet<br>[5113, 5624, 2]"]
  492["EdgeCut Fillet<br>[5113, 5624, 2]"]
  493["EdgeCut Fillet<br>[5113, 5624, 2]"]
  494["EdgeCut Fillet<br>[5113, 5624, 2]"]
  495["EdgeCut Fillet<br>[5113, 5624, 2]"]
  496["EdgeCut Fillet<br>[5113, 5624, 2]"]
  497["EdgeCut Fillet<br>[5113, 5624, 2]"]
  498["EdgeCut Fillet<br>[353, 411, 3]"]
  499["EdgeCut Fillet<br>[353, 411, 3]"]
  500["EdgeCut Fillet<br>[5273, 5543, 5]"]
  501["EdgeCut Fillet<br>[5273, 5543, 5]"]
  502["EdgeCut Fillet<br>[5273, 5543, 5]"]
  503["EdgeCut Fillet<br>[5273, 5543, 5]"]
  504["EdgeCut Chamfer<br>[5792, 5921, 5]"]
  505["EdgeCut Chamfer<br>[906, 1173, 7]"]
  506["EdgeCut Chamfer<br>[906, 1173, 7]"]
  507["EdgeCut Chamfer<br>[906, 1173, 7]"]
  508["EdgeCut Chamfer<br>[906, 1173, 7]"]
  1 --- 22
  1 --- 23
  1 --- 24
  1 --- 25
  1 --- 26
  1 --- 27
  2 --- 39
  3 --- 40
  4 --- 41
  5 --- 43
  6 --- 44
  7 --- 42
  8 --- 45
  9 --- 46
  9 --- 47
  10 --- 48
  11 --- 49
  11 --- 50
  12 --- 51
  13 --- 52
  13 --- 53
  14 --- 54
  15 --- 56
  16 --- 57
  17 --- 58
  17 --- 59
  18 --- 60
  19 --- 61
  20 --- 62
  20 --- 63
  21 --- 64
  22 --- 65
  22 --- 66
  22 --- 67
  22 --- 68
  22 --- 69
  22 --- 261
  22 ---- 268
  23 --- 70
  23 --- 242
  24 --- 71
  24 --- 258
  25 --- 72
  25 --- 250
  26 --- 73
  26 --- 267
  27 --- 74
  27 --- 245
  28 --- 75
  28 --- 76
  28 --- 77
  28 --- 78
  28 --- 79
  28 --- 80
  28 --- 81
  28 --- 82
  28 --- 83
  28 --- 265
  28 ---- 271
  370 --- 28
  29 --- 84
  29 --- 85
  29 --- 86
  29 --- 87
  29 --- 88
  29 --- 89
  29 --- 90
  29 --- 91
  29 ---- 273
  370 --- 29
  30 --- 92
  30 --- 263
  30 ---- 274
  365 --- 30
  31 --- 93
  31 --- 94
  31 --- 95
  31 --- 96
  31 --- 97
  31 --- 254
  31 ---- 275
  365 --- 31
  32 --- 98
  32 --- 247
  365 --- 32
  33 --- 99
  33 --- 253
  365 --- 33
  34 --- 100
  34 --- 262
  365 --- 34
  35 --- 101
  35 --- 238
  365 --- 35
  36 --- 102
  36 --- 266
  365 --- 36
  37 --- 103
  37 --- 235
  37 ---- 276
  370 --- 37
  38 --- 104
  38 --- 264
  38 ---- 277
  366 --- 38
  39 --- 105
  39 --- 249
  39 ---- 278
  40 --- 106
  40 --- 237
  40 ---- 279
  41 --- 107
  41 --- 108
  41 --- 109
  41 --- 110
  41 --- 111
  41 --- 112
  41 --- 113
  41 --- 114
  41 --- 115
  41 --- 116
  41 --- 117
  41 --- 118
  41 --- 119
  41 --- 257
  41 ---- 280
  42 --- 128
  42 --- 234
  42 x---> 281
  42 x--> 386
  42 x--> 387
  42 x--> 388
  42 x--> 389
  43 --- 120
  43 --- 123
  43 --- 124
  43 --- 126
  43 --- 129
  43 --- 241
  43 ---- 281
  44 --- 121
  44 --- 122
  44 --- 125
  44 --- 127
  44 --- 130
  44 --- 251
  44 x---> 281
  45 --- 131
  45 --- 132
  45 --- 133
  45 --- 134
  45 --- 135
  45 --- 136
  46 --- 137
  46 --- 244
  46 ---- 282
  47 --- 138
  47 --- 246
  48 --- 139
  48 --- 140
  48 --- 141
  48 --- 142
  48 --- 143
  48 --- 144
  48 --- 145
  48 --- 146
  48 --- 147
  49 --- 148
  49 --- 256
  49 ---- 283
  50 --- 149
  50 --- 260
  51 --- 150
  51 --- 151
  51 --- 152
  51 --- 153
  51 --- 154
  51 --- 155
  51 --- 156
  51 --- 157
  51 --- 158
  51 --- 159
  51 --- 252
  51 ---- 284
  52 --- 160
  52 --- 161
  52 --- 162
  52 --- 163
  52 --- 164
  52 --- 165
  52 --- 166
  52 --- 167
  52 --- 168
  52 --- 169
  52 ---- 285
  53 --- 170
  53 --- 171
  53 --- 172
  53 --- 173
  53 --- 174
  53 --- 175
  53 --- 176
  53 --- 177
  53 --- 178
  53 --- 179
  53 --- 180
  53 ---- 286
  54 --- 181
  54 --- 182
  54 --- 183
  54 --- 184
  54 --- 185
  54 --- 186
  54 --- 187
  54 --- 188
  54 --- 189
  54 --- 190
  54 --- 191
  54 --- 192
  54 --- 193
  54 --- 255
  54 ---- 287
  55 --- 194
  55 --- 240
  55 ---- 288
  331 --- 55
  56 --- 195
  56 --- 196
  56 --- 197
  56 --- 198
  56 --- 199
  56 --- 200
  56 --- 201
  56 --- 202
  56 --- 203
  56 --- 204
  57 --- 205
  57 --- 206
  57 --- 207
  57 --- 208
  57 --- 209
  57 --- 210
  57 --- 211
  57 --- 212
  57 --- 213
  57 --- 214
  58 --- 215
  58 --- 243
  58 ---- 289
  59 --- 216
  59 --- 259
  59 ---- 290
  60 --- 217
  60 --- 218
  60 --- 219
  60 --- 220
  60 --- 221
  61 --- 222
  61 --- 223
  61 --- 224
  61 --- 225
  61 --- 226
  62 --- 227
  62 --- 239
  62 ---- 291
  63 --- 228
  63 --- 236
  63 ---- 292
  64 --- 229
  64 --- 230
  64 --- 231
  64 --- 232
  64 --- 233
  64 --- 248
  64 ---- 293
  65 --- 298
  65 x--> 358
  65 --- 383
  65 --- 441
  66 --- 301
  66 x--> 358
  66 --- 385
  66 --- 438
  67 --- 300
  67 x--> 358
  67 --- 384
  67 --- 440
  68 --- 299
  68 x--> 358
  68 --- 382
  68 --- 439
  75 --- 320
  75 x--> 370
  75 --- 408
  75 --- 460
  76 --- 322
  76 x--> 370
  76 --- 402
  76 --- 464
  77 --- 319
  77 x--> 370
  77 --- 405
  77 --- 459
  78 --- 317
  78 x--> 370
  78 --- 407
  78 --- 458
  79 --- 318
  79 x--> 370
  79 --- 403
  79 --- 457
  80 --- 324
  80 x--> 370
  80 --- 404
  80 --- 462
  81 --- 323
  81 x--> 370
  81 --- 406
  81 --- 461
  82 --- 321
  82 x--> 370
  82 --- 401
  82 --- 463
  84 --- 314
  84 x--> 370
  84 --- 396
  84 --- 449
  85 --- 309
  85 x--> 370
  85 --- 399
  85 --- 454
  86 --- 316
  86 x--> 370
  86 --- 393
  86 --- 456
  87 --- 313
  87 x--> 370
  87 --- 395
  87 --- 453
  88 --- 311
  88 x--> 370
  88 --- 397
  88 --- 450
  89 --- 310
  89 x--> 370
  89 --- 394
  89 --- 452
  90 --- 312
  90 x--> 370
  90 --- 400
  90 --- 455
  91 --- 315
  91 x--> 370
  91 --- 398
  91 --- 451
  92 --- 306
  92 x--> 365
  92 --- 390
  92 --- 446
  93 --- 343
  93 x--> 359
  93 --- 428
  93 --- 482
  94 --- 342
  94 x--> 359
  94 --- 425
  94 --- 481
  95 --- 344
  95 x--> 359
  95 --- 426
  95 --- 483
  96 --- 341
  96 x--> 359
  96 --- 427
  96 --- 484
  103 --- 327
  103 x--> 370
  103 --- 411
  103 --- 467
  104 --- 294
  104 x--> 366
  104 --- 378
  104 --- 434
  105 --- 345
  105 x--> 350
  105 --- 429
  105 --- 485
  105 --- 498
  106 --- 307
  106 x--> 361
  106 --- 391
  106 --- 447
  120 --- 304
  120 x--> 372
  120 --- 388
  120 --- 442
  123 --- 305
  123 x--> 372
  123 --- 386
  123 --- 445
  124 --- 302
  124 x--> 372
  124 --- 389
  124 --- 444
  126 --- 303
  126 x--> 372
  126 --- 387
  126 --- 443
  137 --- 308
  137 x--> 351
  137 --- 392
  137 --- 448
  148 --- 340
  148 x--> 353
  148 --- 424
  148 --- 480
  181 --- 328
  181 x--> 355
  181 --- 423
  181 --- 477
  182 --- 338
  182 x--> 355
  182 --- 421
  182 --- 470
  183 --- 335
  183 x--> 355
  183 --- 418
  183 --- 468
  184 --- 329
  184 x--> 355
  184 --- 420
  184 --- 478
  185 --- 337
  185 x--> 355
  185 --- 415
  185 --- 474
  186 --- 332
  186 x--> 355
  186 --- 422
  186 --- 473
  186 --- 501
  187 --- 331
  187 x--> 355
  187 --- 413
  187 --- 472
  188 --- 336
  188 x--> 355
  188 --- 412
  188 --- 479
  189 --- 330
  189 x--> 355
  189 --- 416
  189 --- 469
  190 --- 334
  190 x--> 355
  190 --- 414
  190 --- 476
  191 --- 339
  191 x--> 355
  191 --- 419
  191 --- 475
  192 --- 333
  192 x--> 355
  192 --- 417
  192 --- 471
  192 --- 503
  194 --- 295
  194 x--> 331
  194 --- 379
  194 --- 435
  194 --- 504
  215 --- 325
  215 x--> 374
  215 --- 409
  215 --- 465
  216 --- 326
  216 x--> 357
  216 --- 410
  216 --- 466
  227 --- 296
  227 x--> 368
  227 --- 380
  227 --- 436
  228 --- 297
  228 x--> 364
  228 --- 381
  228 --- 437
  229 --- 349
  229 x--> 360
  229 --- 430
  229 --- 488
  230 --- 347
  230 x--> 360
  230 --- 432
  230 --- 489
  231 --- 346
  231 x--> 360
  231 --- 431
  231 --- 487
  232 --- 348
  232 x--> 360
  232 --- 433
  232 --- 486
  268 --- 298
  268 --- 299
  268 --- 300
  268 --- 301
  268 --- 358
  268 --- 370
  268 --- 382
  268 --- 383
  268 --- 384
  268 --- 385
  268 --- 438
  268 --- 439
  268 --- 440
  268 --- 441
  271 --- 317
  271 --- 318
  271 --- 319
  271 --- 320
  271 --- 321
  271 --- 322
  271 --- 323
  271 --- 324
  271 --- 401
  271 --- 402
  271 --- 403
  271 --- 404
  271 --- 405
  271 --- 406
  271 --- 407
  271 --- 408
  271 --- 457
  271 --- 458
  271 --- 459
  271 --- 460
  271 --- 461
  271 --- 462
  271 --- 463
  271 --- 464
  273 --- 309
  273 --- 310
  273 --- 311
  273 --- 312
  273 --- 313
  273 --- 314
  273 --- 315
  273 --- 316
  273 --- 365
  273 --- 393
  273 --- 394
  273 --- 395
  273 --- 396
  273 --- 397
  273 --- 398
  273 --- 399
  273 --- 400
  273 --- 449
  273 --- 450
  273 --- 451
  273 --- 452
  273 --- 453
  273 --- 454
  273 --- 455
  273 --- 456
  274 --- 306
  274 --- 390
  274 --- 446
  275 --- 341
  275 --- 342
  275 --- 343
  275 --- 344
  275 --- 359
  275 --- 371
  275 --- 425
  275 --- 426
  275 --- 427
  275 --- 428
  275 --- 481
  275 --- 482
  275 --- 483
  275 --- 484
  276 --- 327
  276 --- 366
  276 --- 411
  276 --- 467
  277 --- 294
  277 --- 378
  277 --- 434
  278 --- 345
  278 --- 350
  278 --- 362
  278 --- 429
  278 --- 485
  279 --- 307
  279 --- 361
  279 --- 377
  279 --- 391
  279 --- 447
  281 --- 302
  281 --- 303
  281 --- 304
  281 --- 305
  281 --- 372
  281 --- 373
  281 --- 386
  281 --- 387
  281 --- 388
  281 --- 389
  281 --- 442
  281 --- 443
  281 --- 444
  281 --- 445
  282 --- 308
  282 --- 351
  282 --- 352
  282 --- 392
  282 --- 448
  283 --- 340
  283 --- 353
  283 --- 354
  283 --- 424
  283 --- 480
  287 --- 328
  287 --- 329
  287 --- 330
  287 --- 331
  287 --- 332
  287 --- 333
  287 --- 334
  287 --- 335
  287 --- 336
  287 --- 337
  287 --- 338
  287 --- 339
  287 --- 355
  287 --- 367
  287 --- 412
  287 --- 413
  287 --- 414
  287 --- 415
  287 --- 416
  287 --- 417
  287 --- 418
  287 --- 419
  287 --- 420
  287 --- 421
  287 --- 422
  287 --- 423
  287 --- 468
  287 --- 469
  287 --- 470
  287 --- 471
  287 --- 472
  287 --- 473
  287 --- 474
  287 --- 475
  287 --- 476
  287 --- 477
  287 --- 478
  287 --- 479
  288 --- 295
  288 --- 379
  288 --- 435
  289 --- 325
  289 --- 374
  289 --- 375
  289 --- 409
  289 --- 465
  290 --- 326
  290 --- 356
  290 --- 357
  290 --- 410
  290 --- 466
  291 --- 296
  291 --- 368
  291 --- 369
  291 --- 380
  291 --- 436
  292 --- 297
  292 --- 363
  292 --- 364
  292 --- 381
  292 --- 437
  293 --- 346
  293 --- 347
  293 --- 348
  293 --- 349
  293 --- 360
  293 --- 376
  293 --- 430
  293 --- 431
  293 --- 432
  293 --- 433
  293 --- 486
  293 --- 487
  293 --- 488
  293 --- 489
  378 <--x 294
  434 <--x 294
  379 <--x 295
  435 <--x 295
  380 <--x 296
  436 <--x 296
  381 <--x 297
  437 <--x 297
  383 <--x 298
  382 <--x 299
  384 <--x 300
  385 <--x 301
  389 <--x 302
  443 <--x 302
  444 <--x 302
  387 <--x 303
  442 <--x 303
  443 <--x 303
  388 <--x 304
  442 <--x 304
  445 <--x 304
  386 <--x 305
  444 <--x 305
  445 <--x 305
  390 <--x 306
  446 <--x 306
  391 <--x 307
  447 <--x 307
  392 <--x 308
  448 <--x 308
  399 <--x 309
  449 <--x 309
  454 <--x 309
  394 <--x 310
  450 <--x 310
  452 <--x 310
  397 <--x 311
  450 <--x 311
  453 <--x 311
  400 <--x 312
  452 <--x 312
  455 <--x 312
  395 <--x 313
  453 <--x 313
  456 <--x 313
  396 <--x 314
  449 <--x 314
  451 <--x 314
  398 <--x 315
  451 <--x 315
  455 <--x 315
  393 <--x 316
  454 <--x 316
  456 <--x 316
  407 <--x 317
  458 <--x 317
  459 <--x 317
  403 <--x 318
  457 <--x 318
  458 <--x 318
  405 <--x 319
  459 <--x 319
  464 <--x 319
  408 <--x 320
  460 <--x 320
  463 <--x 320
  401 <--x 321
  461 <--x 321
  463 <--x 321
  402 <--x 322
  460 <--x 322
  464 <--x 322
  406 <--x 323
  461 <--x 323
  462 <--x 323
  404 <--x 324
  457 <--x 324
  462 <--x 324
  409 <--x 325
  465 <--x 325
  410 <--x 326
  466 <--x 326
  411 <--x 327
  467 <--x 327
  423 <--x 328
  471 <--x 328
  477 <--x 328
  420 <--x 329
  468 <--x 329
  478 <--x 329
  416 <--x 330
  469 <--x 330
  479 <--x 330
  413 <--x 331
  472 <--x 331
  473 <--x 331
  422 <--x 332
  473 <--x 332
  474 <--x 332
  417 <--x 333
  471 <--x 333
  475 <--x 333
  414 <--x 334
  469 <--x 334
  476 <--x 334
  418 <--x 335
  468 <--x 335
  470 <--x 335
  412 <--x 336
  472 <--x 336
  479 <--x 336
  379 <--x 337
  415 <--x 337
  474 <--x 337
  478 <--x 337
  421 <--x 338
  470 <--x 338
  477 <--x 338
  419 <--x 339
  475 <--x 339
  476 <--x 339
  424 <--x 340
  480 <--x 340
  427 <--x 341
  425 <--x 342
  428 <--x 343
  426 <--x 344
  485 <--x 345
  431 <--x 346
  432 <--x 347
  433 <--x 348
  430 <--x 349
  392 <--x 352
  424 <--x 354
  410 <--x 356
  401 <--x 358
  402 <--x 358
  403 <--x 358
  404 <--x 358
  405 <--x 358
  406 <--x 358
  407 <--x 358
  408 <--x 358
  381 <--x 363
  393 <--x 365
  394 <--x 365
  395 <--x 365
  396 <--x 365
  397 <--x 365
  398 <--x 365
  399 <--x 365
  400 <--x 365
  411 <--x 366
  412 <--x 367
  413 <--x 367
  414 <--x 367
  415 <--x 367
  416 <--x 367
  417 <--x 367
  418 <--x 367
  419 <--x 367
  420 <--x 367
  421 <--x 367
  422 <--x 367
  423 <--x 367
  380 <--x 369
  378 <--x 370
  382 <--x 370
  383 <--x 370
  384 <--x 370
  385 <--x 370
  390 <--x 370
  425 <--x 371
  426 <--x 371
  427 <--x 371
  428 <--x 371
  386 <--x 373
  387 <--x 373
  388 <--x 373
  389 <--x 373
  409 <--x 375
  430 <--x 376
  431 <--x 376
  432 <--x 376
  433 <--x 376
  391 <--x 377
  417 <--x 500
  422 <--x 502
  429 <--x 499
  438 <--x 491
  439 <--x 490
  440 <--x 493
  441 <--x 496
  481 <--x 494
  482 <--x 492
  483 <--x 495
  484 <--x 497
  486 <--x 505
  487 <--x 507
  488 <--x 506
  489 <--x 508