Files
modeling-app/public/kcl-samples/gear/main.kcl
Adam Chalmers aea82e004a KCL: Convert x/y lines to use keyword arguments (#5615)
Previously, `xLine`, `xLineTo`, `yLine` and `yLineTo` used positional arguments. Now:

- `xLineTo` and `yLineTo` have been removed
- `xLine` and `yLine` both use keyword arguments:
  - `length`, optional (i.e. a relative distance along the X or Y axis)
  - `endAbsolute` optional (i.e. an absolute point along the X or Y axis)
  - `tag` optional
- Exactly one of `length` or `endAbsolute` must be given. Not both, not neither.

For example:

```
// Old way
|> xLine(6.04, %)
|> yLineTo(20, %, $base)

// New way
|> xLine(length = 6.04)
|> yLine(endAbsolute = 20, tag = $base)
```

This also improves some of the general-purpose keyword arguments code in modeling app's TS codebase.
2025-03-07 22:07:16 -06:00

113 lines
3.0 KiB
Plaintext

// Spur Gear
// A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.
// Set Units
@settings(defaultLengthUnit = in)
// Define constants
nTeeth = 21
module = 0.5
pitchDiameter = module * nTeeth
pressureAngle = 20
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(toRadians(pressureAngle))
tipDiameter = pitchDiameter + 2 * module
gearHeight = 3
// Interpolate points along the involute curve
cmo = 101
rs = map([0..cmo], fn (i) {
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
})
// Calculate operating pressure angle
angles = map(rs, fn (r) {
return toDegrees( acos(baseDiameter / 2 / r))
})
// Calculate the involute function
invas = map(angles, fn (a) {
return tan(toRadians(a)) - toRadians(a)
})
// Map the involute curve
xs = map([0..cmo], fn (i) {
return rs[i] * cos(invas[i])
})
ys = map([0..cmo], fn (i) {
return rs[i] * sin(invas[i])
})
// Extrude the gear body
body = startSketchOn('XY')
|> circle(
center = [0, 0],
radius = baseDiameter / 2
)
|> extrude(length = gearHeight)
toothAngle = 360 / nTeeth / 1.5
// Plot the involute curve
fn leftInvolute(i, sg) {
j = 100 - i // iterate backwards
return line(sg, endAbsolute = [xs[j], ys[j]])
}
fn rightInvolute(i, sg) {
x = rs[i] * cos(toRadians(-toothAngle + toDegrees(atan(ys[i] / xs[i]))))
y = -rs[i] * sin(toRadians(-toothAngle + toDegrees(atan(ys[i] / xs[i]))))
return line(sg, endAbsolute = [x, y])
}
// Draw gear teeth
start = startSketchOn('XY')
|> startProfileAt([xs[101], ys[101]], %)
teeth = reduce([0..100], start, leftInvolute)
|> arc({
angleStart = 0,
angleEnd = toothAngle,
radius = baseDiameter / 2
}, %)
|> reduce([1..101], %, rightInvolute)
|> close()
|> extrude(length = gearHeight)
|> patternCircular3d(
axis = [0, 0, 1],
center = [0, 0, 0],
instances = nTeeth,
arcDegrees = 360,
rotateDuplicates = true
)
// Define the constants of the keyway and the bore hole
keywayWidth = 0.250
keywayDepth = keywayWidth / 2
holeDiam = 2
holeRadius = 1
startAngle = asin(keywayWidth / 2 / holeRadius)
// Sketch the keyway and center hole and extrude
keyWay = startSketchOn(body, 'END')
|> startProfileAt([
holeRadius * cos(startAngle),
holeRadius * sin(startAngle)
], %)
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc({
angleEnd = 180,
angleStart = -1 * 180 / PI * startAngle + 360,
radius = holeRadius
}, %)
|> arc({
angleEnd = 180 / PI * startAngle,
angleStart = 180,
radius = holeRadius
}, %)
|> close()
|> extrude(length = -gearHeight)