Files
modeling-app/rust/kcl-lib/src/execution/artifact.rs

1512 lines
57 KiB
Rust

use fnv::FnvHashMap;
use indexmap::IndexMap;
use kittycad_modeling_cmds::{
self as kcmc,
id::ModelingCmdId,
ok_response::OkModelingCmdResponse,
shared::ExtrusionFaceCapType,
websocket::{BatchResponse, OkWebSocketResponseData, WebSocketResponse},
EnableSketchMode, ModelingCmd,
};
use schemars::JsonSchema;
use serde::{ser::SerializeSeq, Serialize};
use uuid::Uuid;
use crate::{
errors::KclErrorDetails,
parsing::ast::types::{Node, Program},
KclError, NodePath, SourceRange,
};
#[cfg(test)]
mod mermaid_tests;
/// A command that may create or update artifacts on the TS side. Because
/// engine commands are batched, we don't have the response yet when these are
/// created.
#[derive(Debug, Clone, PartialEq, Serialize, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct ArtifactCommand {
/// Identifier of the command that can be matched with its response.
pub cmd_id: Uuid,
pub range: SourceRange,
/// The engine command. Each artifact command is backed by an engine
/// command. In the future, we may need to send information to the TS side
/// without an engine command, in which case, we would make this field
/// optional.
pub command: ModelingCmd,
}
impl PartialOrd for ArtifactCommand {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
// Order by the source range.
let range = self.range.cmp(&other.range);
if range != std::cmp::Ordering::Equal {
return Some(range);
}
#[cfg(test)]
{
// If the ranges are equal, order by the serde variant.
Some(
crate::variant_name::variant_name(&self.command)
.cmp(&crate::variant_name::variant_name(&other.command)),
)
}
#[cfg(not(test))]
self.cmd_id.partial_cmp(&other.cmd_id)
}
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Eq, Ord, PartialOrd, Hash, ts_rs::TS, JsonSchema)]
#[ts(export_to = "Artifact.ts")]
pub struct ArtifactId(Uuid);
impl ArtifactId {
pub fn new(uuid: Uuid) -> Self {
Self(uuid)
}
}
impl From<Uuid> for ArtifactId {
fn from(uuid: Uuid) -> Self {
Self::new(uuid)
}
}
impl From<&Uuid> for ArtifactId {
fn from(uuid: &Uuid) -> Self {
Self::new(*uuid)
}
}
impl From<ArtifactId> for Uuid {
fn from(id: ArtifactId) -> Self {
id.0
}
}
impl From<&ArtifactId> for Uuid {
fn from(id: &ArtifactId) -> Self {
id.0
}
}
impl From<ModelingCmdId> for ArtifactId {
fn from(id: ModelingCmdId) -> Self {
Self::new(*id.as_ref())
}
}
impl From<&ModelingCmdId> for ArtifactId {
fn from(id: &ModelingCmdId) -> Self {
Self::new(*id.as_ref())
}
}
pub type DummyPathToNode = Vec<()>;
fn serialize_dummy_path_to_node<S>(_path_to_node: &DummyPathToNode, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
// Always output an empty array, for now.
let seq = serializer.serialize_seq(Some(0))?;
seq.end()
}
#[derive(Debug, Clone, Default, Serialize, PartialEq, Eq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct CodeRef {
pub range: SourceRange,
pub node_path: NodePath,
// TODO: We should implement this in Rust.
#[serde(default, serialize_with = "serialize_dummy_path_to_node")]
#[ts(type = "Array<[string | number, string]>")]
pub path_to_node: DummyPathToNode,
}
impl CodeRef {
pub fn placeholder(range: SourceRange) -> Self {
Self {
range,
node_path: Default::default(),
path_to_node: Vec::new(),
}
}
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct CompositeSolid {
pub id: ArtifactId,
pub sub_type: CompositeSolidSubType,
/// Constituent solids of the composite solid.
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub solid_ids: Vec<ArtifactId>,
/// Tool solids used for asymmetric operations like subtract.
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub tool_ids: Vec<ArtifactId>,
pub code_ref: CodeRef,
/// This is the ID of the composite solid that this is part of, if any, as a
/// composite solid can be used as input for another composite solid.
#[serde(default, skip_serializing_if = "Option::is_none")]
pub composite_solid_id: Option<ArtifactId>,
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Eq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub enum CompositeSolidSubType {
Intersect,
Subtract,
Union,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Plane {
pub id: ArtifactId,
pub path_ids: Vec<ArtifactId>,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Path {
pub id: ArtifactId,
pub plane_id: ArtifactId,
pub seg_ids: Vec<ArtifactId>,
#[serde(default, skip_serializing_if = "Option::is_none")]
pub sweep_id: Option<ArtifactId>,
#[serde(default, skip_serializing_if = "Option::is_none")]
pub solid2d_id: Option<ArtifactId>,
pub code_ref: CodeRef,
/// This is the ID of the composite solid that this is part of, if any, as
/// this can be used as input for another composite solid.
#[serde(default, skip_serializing_if = "Option::is_none")]
pub composite_solid_id: Option<ArtifactId>,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Segment {
pub id: ArtifactId,
pub path_id: ArtifactId,
#[serde(default, skip_serializing_if = "Option::is_none")]
pub surface_id: Option<ArtifactId>,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_ids: Vec<ArtifactId>,
#[serde(default, skip_serializing_if = "Option::is_none")]
pub edge_cut_id: Option<ArtifactId>,
pub code_ref: CodeRef,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub common_surface_ids: Vec<ArtifactId>,
}
/// A sweep is a more generic term for extrude, revolve, loft, and sweep.
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Sweep {
pub id: ArtifactId,
pub sub_type: SweepSubType,
pub path_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub surface_ids: Vec<ArtifactId>,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_ids: Vec<ArtifactId>,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Eq, PartialOrd, Ord, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub enum SweepSubType {
Extrusion,
Revolve,
RevolveAboutEdge,
Loft,
Sweep,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Solid2d {
pub id: ArtifactId,
pub path_id: ArtifactId,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct StartSketchOnFace {
pub id: ArtifactId,
pub face_id: ArtifactId,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct StartSketchOnPlane {
pub id: ArtifactId,
pub plane_id: ArtifactId,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Wall {
pub id: ArtifactId,
pub seg_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_cut_edge_ids: Vec<ArtifactId>,
pub sweep_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub path_ids: Vec<ArtifactId>,
/// This is for the sketch-on-face plane, not for the wall itself. Traverse
/// to the extrude and/or segment to get the wall's code_ref.
pub face_code_ref: CodeRef,
/// The command ID that got the data for this wall. Used for stable sorting.
pub cmd_id: uuid::Uuid,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Cap {
pub id: ArtifactId,
pub sub_type: CapSubType,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_cut_edge_ids: Vec<ArtifactId>,
pub sweep_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub path_ids: Vec<ArtifactId>,
/// This is for the sketch-on-face plane, not for the cap itself. Traverse
/// to the extrude and/or segment to get the cap's code_ref.
pub face_code_ref: CodeRef,
/// The command ID that got the data for this cap. Used for stable sorting.
pub cmd_id: uuid::Uuid,
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Ord, PartialOrd, Eq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub enum CapSubType {
Start,
End,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct SweepEdge {
pub id: ArtifactId,
pub sub_type: SweepEdgeSubType,
pub seg_id: ArtifactId,
pub cmd_id: uuid::Uuid,
// This is only used for sorting, not for the actual artifact.
#[serde(skip)]
pub index: usize,
pub sweep_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub common_surface_ids: Vec<ArtifactId>,
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, Ord, PartialOrd, Eq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub enum SweepEdgeSubType {
Opposite,
Adjacent,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct EdgeCut {
pub id: ArtifactId,
pub sub_type: EdgeCutSubType,
pub consumed_edge_id: ArtifactId,
#[serde(default, skip_serializing_if = "Vec::is_empty")]
pub edge_ids: Vec<ArtifactId>,
#[serde(default, skip_serializing_if = "Option::is_none")]
pub surface_id: Option<ArtifactId>,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Copy, Serialize, PartialEq, PartialOrd, Ord, Eq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub enum EdgeCutSubType {
Fillet,
Chamfer,
}
impl From<kcmc::shared::CutType> for EdgeCutSubType {
fn from(cut_type: kcmc::shared::CutType) -> Self {
match cut_type {
kcmc::shared::CutType::Fillet => EdgeCutSubType::Fillet,
kcmc::shared::CutType::Chamfer => EdgeCutSubType::Chamfer,
}
}
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct EdgeCutEdge {
pub id: ArtifactId,
pub edge_cut_id: ArtifactId,
pub surface_id: ArtifactId,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct Helix {
pub id: ArtifactId,
/// The axis of the helix. Currently this is always an edge ID, but we may
/// add axes to the graph.
pub axis_id: Option<ArtifactId>,
pub code_ref: CodeRef,
}
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(tag = "type", rename_all = "camelCase")]
pub enum Artifact {
CompositeSolid(CompositeSolid),
Plane(Plane),
Path(Path),
Segment(Segment),
Solid2d(Solid2d),
StartSketchOnFace(StartSketchOnFace),
StartSketchOnPlane(StartSketchOnPlane),
Sweep(Sweep),
Wall(Wall),
Cap(Cap),
SweepEdge(SweepEdge),
EdgeCut(EdgeCut),
EdgeCutEdge(EdgeCutEdge),
Helix(Helix),
}
impl Artifact {
pub(crate) fn rank(&self) -> u8 {
match self {
Artifact::Plane(_) => 0,
Artifact::StartSketchOnPlane(_) => 1,
Artifact::StartSketchOnFace(_) => 2,
Artifact::Path(_) => 3,
Artifact::Segment(_) => 4,
Artifact::Solid2d(_) => 5,
Artifact::Sweep(_) => 6,
Artifact::CompositeSolid(_) => 7,
Artifact::Wall(_) => 8,
Artifact::Cap(Cap { sub_type, .. }) if *sub_type == CapSubType::Start => 9,
Artifact::Cap(Cap { sub_type, .. }) if *sub_type == CapSubType::Start => 10,
Artifact::Cap(_) => 11,
Artifact::SweepEdge(SweepEdge { sub_type, .. }) if *sub_type == SweepEdgeSubType::Adjacent => 12,
Artifact::SweepEdge(SweepEdge { sub_type, .. }) if *sub_type == SweepEdgeSubType::Opposite => 13,
Artifact::SweepEdge(_) => 14,
Artifact::EdgeCut(_) => 15,
Artifact::EdgeCutEdge(_) => 16,
Artifact::Helix(_) => 17,
}
}
}
impl PartialOrd for Artifact {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
// The only thing we want to sort is if we have two sweep edges, we want
// to sort them by the sub_type.
match (self, other) {
(Artifact::SweepEdge(a), Artifact::SweepEdge(b)) => {
if a.sub_type != b.sub_type {
return Some(a.sub_type.cmp(&b.sub_type));
}
if a.sweep_id != b.sweep_id {
return Some(a.sweep_id.cmp(&b.sweep_id));
}
if a.cmd_id != b.cmd_id {
return Some(a.cmd_id.cmp(&b.cmd_id));
}
if a.index != b.index {
return Some(a.index.cmp(&b.index));
}
Some(a.id.cmp(&b.id))
}
(Artifact::EdgeCut(a), Artifact::EdgeCut(b)) => {
if a.code_ref.range != b.code_ref.range {
return Some(a.code_ref.range.cmp(&b.code_ref.range));
}
Some(a.id.cmp(&b.id))
}
(Artifact::EdgeCutEdge(a), Artifact::EdgeCutEdge(b)) => Some(a.edge_cut_id.cmp(&b.edge_cut_id)),
(Artifact::Sweep(a), Artifact::Sweep(b)) => {
if a.code_ref.range != b.code_ref.range {
return Some(a.code_ref.range.cmp(&b.code_ref.range));
}
Some(a.id.cmp(&b.id))
}
// Sort the planes by their code_ref range.
(Artifact::Plane(a), Artifact::Plane(b)) => {
if a.code_ref.range != b.code_ref.range {
return Some(a.code_ref.range.cmp(&b.code_ref.range));
}
Some(a.id.cmp(&b.id))
}
// Sort the paths by their code_ref range.
(Artifact::Path(a), Artifact::Path(b)) => {
if a.code_ref.range != b.code_ref.range {
return Some(a.code_ref.range.cmp(&b.code_ref.range));
}
Some(a.id.cmp(&b.id))
}
// Sort the segments by their code_ref range.
(Artifact::Segment(a), Artifact::Segment(b)) => {
if a.code_ref.range != b.code_ref.range {
return Some(a.code_ref.range.cmp(&b.code_ref.range));
}
Some(a.id.cmp(&b.id))
}
// Sort the solid2d by their id.
(Artifact::Solid2d(a), Artifact::Solid2d(b)) => {
if a.path_id != b.path_id {
return Some(a.path_id.cmp(&b.path_id));
}
Some(a.id.cmp(&b.id))
}
// Sort the walls by their code_ref range.
(Artifact::Wall(a), Artifact::Wall(b)) => {
if a.sweep_id != b.sweep_id {
return Some(a.sweep_id.cmp(&b.sweep_id));
}
if a.cmd_id != b.cmd_id {
return Some(a.cmd_id.cmp(&b.cmd_id));
}
if a.face_code_ref.range != b.face_code_ref.range {
return Some(a.face_code_ref.range.cmp(&b.face_code_ref.range));
}
if a.seg_id != b.seg_id {
return Some(a.seg_id.cmp(&b.seg_id));
}
Some(a.id.cmp(&b.id))
}
// Sort the caps by their code_ref range.
(Artifact::Cap(a), Artifact::Cap(b)) => {
if a.sub_type != b.sub_type {
return Some(a.sub_type.cmp(&b.sub_type));
}
if a.cmd_id != b.cmd_id {
return Some(a.cmd_id.cmp(&b.cmd_id));
}
if a.sweep_id != b.sweep_id {
return Some(a.sweep_id.cmp(&b.sweep_id));
}
if a.face_code_ref.range != b.face_code_ref.range {
return Some(a.face_code_ref.range.cmp(&b.face_code_ref.range));
}
Some(a.id.cmp(&b.id))
}
(Artifact::CompositeSolid(a), Artifact::CompositeSolid(b)) => Some(a.id.cmp(&b.id)),
(Artifact::StartSketchOnFace(a), Artifact::StartSketchOnFace(b)) => Some(a.id.cmp(&b.id)),
(Artifact::StartSketchOnPlane(a), Artifact::StartSketchOnPlane(b)) => Some(a.id.cmp(&b.id)),
// Planes are first, then paths, then segments, then solids2ds, then sweeps, then
// walls, then caps, then sweep edges, then edge cuts, then edge cut edges, then
// helixes.
_ => Some(self.rank().cmp(&other.rank())),
}
}
}
impl Artifact {
pub(crate) fn id(&self) -> ArtifactId {
match self {
Artifact::CompositeSolid(a) => a.id,
Artifact::Plane(a) => a.id,
Artifact::Path(a) => a.id,
Artifact::Segment(a) => a.id,
Artifact::Solid2d(a) => a.id,
Artifact::StartSketchOnFace(a) => a.id,
Artifact::StartSketchOnPlane(a) => a.id,
Artifact::Sweep(a) => a.id,
Artifact::Wall(a) => a.id,
Artifact::Cap(a) => a.id,
Artifact::SweepEdge(a) => a.id,
Artifact::EdgeCut(a) => a.id,
Artifact::EdgeCutEdge(a) => a.id,
Artifact::Helix(a) => a.id,
}
}
/// The [`CodeRef`] for the artifact itself. See also
/// [`Self::face_code_ref`].
pub fn code_ref(&self) -> Option<&CodeRef> {
match self {
Artifact::CompositeSolid(a) => Some(&a.code_ref),
Artifact::Plane(a) => Some(&a.code_ref),
Artifact::Path(a) => Some(&a.code_ref),
Artifact::Segment(a) => Some(&a.code_ref),
Artifact::Solid2d(_) => None,
Artifact::StartSketchOnFace(a) => Some(&a.code_ref),
Artifact::StartSketchOnPlane(a) => Some(&a.code_ref),
Artifact::Sweep(a) => Some(&a.code_ref),
Artifact::Wall(_) => None,
Artifact::Cap(_) => None,
Artifact::SweepEdge(_) => None,
Artifact::EdgeCut(a) => Some(&a.code_ref),
Artifact::EdgeCutEdge(_) => None,
Artifact::Helix(a) => Some(&a.code_ref),
}
}
/// The [`CodeRef`] referring to the face artifact that it's on, not the
/// artifact itself.
pub fn face_code_ref(&self) -> Option<&CodeRef> {
match self {
Artifact::CompositeSolid(_)
| Artifact::Plane(_)
| Artifact::Path(_)
| Artifact::Segment(_)
| Artifact::Solid2d(_)
| Artifact::StartSketchOnFace(_)
| Artifact::StartSketchOnPlane(_)
| Artifact::Sweep(_) => None,
Artifact::Wall(a) => Some(&a.face_code_ref),
Artifact::Cap(a) => Some(&a.face_code_ref),
Artifact::SweepEdge(_) | Artifact::EdgeCut(_) | Artifact::EdgeCutEdge(_) | Artifact::Helix(_) => None,
}
}
/// Merge the new artifact into self. If it can't because it's a different
/// type, return the new artifact which should be used as a replacement.
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
match self {
Artifact::CompositeSolid(a) => a.merge(new),
Artifact::Plane(a) => a.merge(new),
Artifact::Path(a) => a.merge(new),
Artifact::Segment(a) => a.merge(new),
Artifact::Solid2d(_) => Some(new),
Artifact::StartSketchOnFace { .. } => Some(new),
Artifact::StartSketchOnPlane { .. } => Some(new),
Artifact::Sweep(a) => a.merge(new),
Artifact::Wall(a) => a.merge(new),
Artifact::Cap(a) => a.merge(new),
Artifact::SweepEdge(_) => Some(new),
Artifact::EdgeCut(a) => a.merge(new),
Artifact::EdgeCutEdge(_) => Some(new),
Artifact::Helix(_) => Some(new),
}
}
}
impl CompositeSolid {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::CompositeSolid(new) = new else {
return Some(new);
};
merge_ids(&mut self.solid_ids, new.solid_ids);
merge_ids(&mut self.tool_ids, new.tool_ids);
merge_opt_id(&mut self.composite_solid_id, new.composite_solid_id);
None
}
}
impl Plane {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Plane(new) = new else {
return Some(new);
};
merge_ids(&mut self.path_ids, new.path_ids);
None
}
}
impl Path {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Path(new) = new else {
return Some(new);
};
merge_opt_id(&mut self.sweep_id, new.sweep_id);
merge_ids(&mut self.seg_ids, new.seg_ids);
merge_opt_id(&mut self.solid2d_id, new.solid2d_id);
merge_opt_id(&mut self.composite_solid_id, new.composite_solid_id);
None
}
}
impl Segment {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Segment(new) = new else {
return Some(new);
};
merge_opt_id(&mut self.surface_id, new.surface_id);
merge_ids(&mut self.edge_ids, new.edge_ids);
merge_opt_id(&mut self.edge_cut_id, new.edge_cut_id);
merge_ids(&mut self.common_surface_ids, new.common_surface_ids);
None
}
}
impl Sweep {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Sweep(new) = new else {
return Some(new);
};
merge_ids(&mut self.surface_ids, new.surface_ids);
merge_ids(&mut self.edge_ids, new.edge_ids);
None
}
}
impl Wall {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Wall(new) = new else {
return Some(new);
};
merge_ids(&mut self.edge_cut_edge_ids, new.edge_cut_edge_ids);
merge_ids(&mut self.path_ids, new.path_ids);
None
}
}
impl Cap {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::Cap(new) = new else {
return Some(new);
};
merge_ids(&mut self.edge_cut_edge_ids, new.edge_cut_edge_ids);
merge_ids(&mut self.path_ids, new.path_ids);
None
}
}
impl EdgeCut {
fn merge(&mut self, new: Artifact) -> Option<Artifact> {
let Artifact::EdgeCut(new) = new else {
return Some(new);
};
merge_opt_id(&mut self.surface_id, new.surface_id);
merge_ids(&mut self.edge_ids, new.edge_ids);
None
}
}
#[derive(Debug, Clone, Default, PartialEq, Serialize, ts_rs::TS)]
#[ts(export_to = "Artifact.ts")]
#[serde(rename_all = "camelCase")]
pub struct ArtifactGraph {
map: IndexMap<ArtifactId, Artifact>,
}
impl ArtifactGraph {
pub fn len(&self) -> usize {
self.map.len()
}
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
pub fn values(&self) -> impl Iterator<Item = &Artifact> {
self.map.values()
}
/// Consume the artifact graph and return the map of artifacts.
fn into_map(self) -> IndexMap<ArtifactId, Artifact> {
self.map
}
/// Used to make the mermaid tests deterministic.
#[cfg(test)]
pub(crate) fn sort(&mut self) {
self.map
.sort_by(|_ak, av, _bk, bv| av.partial_cmp(bv).unwrap_or(std::cmp::Ordering::Equal));
}
}
/// Build the artifact graph from the artifact commands and the responses. The
/// initial graph is the graph cached from a previous execution. NodePaths of
/// `exec_artifacts` are filled in from the AST.
pub(super) fn build_artifact_graph(
artifact_commands: &[ArtifactCommand],
responses: &IndexMap<Uuid, WebSocketResponse>,
ast: &Node<Program>,
cached_body_items: usize,
exec_artifacts: &mut IndexMap<ArtifactId, Artifact>,
initial_graph: ArtifactGraph,
) -> Result<ArtifactGraph, KclError> {
let mut map = initial_graph.into_map();
let mut path_to_plane_id_map = FnvHashMap::default();
let mut current_plane_id = None;
// Fill in NodePaths for artifacts that were added directly to the map
// during execution.
for exec_artifact in exec_artifacts.values_mut() {
// Note: We only have access to the new AST. So if these artifacts
// somehow came from cached AST, this won't fill in anything.
fill_in_node_paths(exec_artifact, ast, cached_body_items);
}
for artifact_command in artifact_commands {
if let ModelingCmd::EnableSketchMode(EnableSketchMode { entity_id, .. }) = artifact_command.command {
current_plane_id = Some(entity_id);
}
// If we get a start path command, we need to set the plane ID to the
// current plane ID.
// THIS IS THE ONLY THING WE CAN ASSUME IS ALWAYS SEQUENTIAL SINCE ITS PART OF THE
// SAME ATOMIC COMMANDS BATCHING.
if let ModelingCmd::StartPath(_) = artifact_command.command {
if let Some(plane_id) = current_plane_id {
path_to_plane_id_map.insert(artifact_command.cmd_id, plane_id);
}
}
if let ModelingCmd::SketchModeDisable(_) = artifact_command.command {
current_plane_id = None;
}
let flattened_responses = flatten_modeling_command_responses(responses);
let artifact_updates = artifacts_to_update(
&map,
artifact_command,
&flattened_responses,
&path_to_plane_id_map,
ast,
cached_body_items,
exec_artifacts,
)?;
for artifact in artifact_updates {
// Merge with existing artifacts.
merge_artifact_into_map(&mut map, artifact);
}
}
for exec_artifact in exec_artifacts.values() {
merge_artifact_into_map(&mut map, exec_artifact.clone());
}
Ok(ArtifactGraph { map })
}
/// These may have been created with placeholder `CodeRef`s because we didn't
/// have the entire AST available. Now we fill them in.
fn fill_in_node_paths(artifact: &mut Artifact, program: &Node<Program>, cached_body_items: usize) {
match artifact {
Artifact::StartSketchOnFace(face) => {
if face.code_ref.node_path.is_empty() {
face.code_ref.node_path =
NodePath::from_range(program, cached_body_items, face.code_ref.range).unwrap_or_default();
}
}
Artifact::StartSketchOnPlane(plane) => {
if plane.code_ref.node_path.is_empty() {
plane.code_ref.node_path =
NodePath::from_range(program, cached_body_items, plane.code_ref.range).unwrap_or_default();
}
}
_ => {}
}
}
/// Flatten the responses into a map of command IDs to modeling command
/// responses. The raw responses from the engine contain batches.
fn flatten_modeling_command_responses(
responses: &IndexMap<Uuid, WebSocketResponse>,
) -> FnvHashMap<Uuid, OkModelingCmdResponse> {
let mut map = FnvHashMap::default();
for (cmd_id, ws_response) in responses {
let WebSocketResponse::Success(response) = ws_response else {
// Response not successful.
continue;
};
match &response.resp {
OkWebSocketResponseData::Modeling { modeling_response } => {
map.insert(*cmd_id, modeling_response.clone());
}
OkWebSocketResponseData::ModelingBatch { responses } =>
{
#[expect(
clippy::iter_over_hash_type,
reason = "Since we're moving entries to another unordered map, it's fine that the order is undefined"
)]
for (cmd_id, batch_response) in responses {
if let BatchResponse::Success {
response: modeling_response,
} = batch_response
{
map.insert(*cmd_id.as_ref(), modeling_response.clone());
}
}
}
OkWebSocketResponseData::IceServerInfo { .. }
| OkWebSocketResponseData::TrickleIce { .. }
| OkWebSocketResponseData::SdpAnswer { .. }
| OkWebSocketResponseData::Export { .. }
| OkWebSocketResponseData::MetricsRequest { .. }
| OkWebSocketResponseData::ModelingSessionData { .. }
| OkWebSocketResponseData::Debug { .. }
| OkWebSocketResponseData::Pong { .. } => {}
}
}
map
}
fn merge_artifact_into_map(map: &mut IndexMap<ArtifactId, Artifact>, new_artifact: Artifact) {
let id = new_artifact.id();
let Some(old_artifact) = map.get_mut(&id) else {
// No old artifact exists. Insert the new one.
map.insert(id, new_artifact);
return;
};
if let Some(replacement) = old_artifact.merge(new_artifact) {
*old_artifact = replacement;
}
}
/// Merge the new IDs into the base vector, avoiding duplicates. This is O(nm)
/// runtime. Rationale is that most of the ID collections in the artifact graph
/// are pretty small, but we may want to change this in the future.
fn merge_ids(base: &mut Vec<ArtifactId>, new: Vec<ArtifactId>) {
let original_len = base.len();
for id in new {
// Don't bother inspecting new items that we just pushed.
let original_base = &base[..original_len];
if !original_base.contains(&id) {
base.push(id);
}
}
}
fn merge_opt_id(base: &mut Option<ArtifactId>, new: Option<ArtifactId>) {
// Always use the new one, even if it clears it.
*base = new;
}
fn artifacts_to_update(
artifacts: &IndexMap<ArtifactId, Artifact>,
artifact_command: &ArtifactCommand,
responses: &FnvHashMap<Uuid, OkModelingCmdResponse>,
path_to_plane_id_map: &FnvHashMap<Uuid, Uuid>,
ast: &Node<Program>,
cached_body_items: usize,
exec_artifacts: &IndexMap<ArtifactId, Artifact>,
) -> Result<Vec<Artifact>, KclError> {
let uuid = artifact_command.cmd_id;
let Some(response) = responses.get(&uuid) else {
// Response not found or not successful.
return Ok(Vec::new());
};
// TODO: Build path-to-node from artifact_command source range. Right now,
// we're serializing an empty array, and the TS wrapper fills it in with the
// correct value based on NodePath.
let path_to_node = Vec::new();
let range = artifact_command.range;
let node_path = NodePath::from_range(ast, cached_body_items, range).unwrap_or_default();
let code_ref = CodeRef {
range,
node_path,
path_to_node,
};
let id = ArtifactId::new(uuid);
let cmd = &artifact_command.command;
match cmd {
ModelingCmd::MakePlane(_) => {
if range.is_synthetic() {
return Ok(Vec::new());
}
// If we're calling `make_plane` and the code range doesn't end at
// `0` it's not a default plane, but a custom one from the
// offsetPlane standard library function.
return Ok(vec![Artifact::Plane(Plane {
id,
path_ids: Vec::new(),
code_ref,
})]);
}
ModelingCmd::EnableSketchMode(EnableSketchMode { entity_id, .. }) => {
let existing_plane = artifacts.get(&ArtifactId::new(*entity_id));
match existing_plane {
Some(Artifact::Wall(wall)) => {
return Ok(vec![Artifact::Wall(Wall {
id: entity_id.into(),
seg_id: wall.seg_id,
edge_cut_edge_ids: wall.edge_cut_edge_ids.clone(),
sweep_id: wall.sweep_id,
path_ids: wall.path_ids.clone(),
face_code_ref: wall.face_code_ref.clone(),
cmd_id: artifact_command.cmd_id,
})]);
}
Some(Artifact::Cap(cap)) => {
return Ok(vec![Artifact::Cap(Cap {
id: entity_id.into(),
sub_type: cap.sub_type,
edge_cut_edge_ids: cap.edge_cut_edge_ids.clone(),
sweep_id: cap.sweep_id,
path_ids: cap.path_ids.clone(),
face_code_ref: cap.face_code_ref.clone(),
cmd_id: artifact_command.cmd_id,
})]);
}
Some(_) | None => {
let path_ids = match existing_plane {
Some(Artifact::Plane(Plane { path_ids, .. })) => path_ids.clone(),
_ => Vec::new(),
};
return Ok(vec![Artifact::Plane(Plane {
id: entity_id.into(),
path_ids,
code_ref,
})]);
}
}
}
ModelingCmd::StartPath(_) => {
let mut return_arr = Vec::new();
let current_plane_id = path_to_plane_id_map.get(&artifact_command.cmd_id).ok_or_else(|| {
KclError::Internal(KclErrorDetails {
message: format!(
"Expected a current plane ID when processing StartPath command, but we have none: {id:?}"
),
source_ranges: vec![range],
})
})?;
return_arr.push(Artifact::Path(Path {
id,
plane_id: (*current_plane_id).into(),
seg_ids: Vec::new(),
sweep_id: None,
solid2d_id: None,
code_ref,
composite_solid_id: None,
}));
let plane = artifacts.get(&ArtifactId::new(*current_plane_id));
if let Some(Artifact::Plane(plane)) = plane {
let plane_code_ref = plane.code_ref.clone();
return_arr.push(Artifact::Plane(Plane {
id: (*current_plane_id).into(),
path_ids: vec![id],
code_ref: plane_code_ref,
}));
}
if let Some(Artifact::Wall(wall)) = plane {
return_arr.push(Artifact::Wall(Wall {
id: (*current_plane_id).into(),
seg_id: wall.seg_id,
edge_cut_edge_ids: wall.edge_cut_edge_ids.clone(),
sweep_id: wall.sweep_id,
path_ids: vec![id],
face_code_ref: wall.face_code_ref.clone(),
cmd_id: artifact_command.cmd_id,
}));
}
if let Some(Artifact::Cap(cap)) = plane {
return_arr.push(Artifact::Cap(Cap {
id: (*current_plane_id).into(),
sub_type: cap.sub_type,
edge_cut_edge_ids: cap.edge_cut_edge_ids.clone(),
sweep_id: cap.sweep_id,
path_ids: vec![id],
face_code_ref: cap.face_code_ref.clone(),
cmd_id: artifact_command.cmd_id,
}));
}
return Ok(return_arr);
}
ModelingCmd::ClosePath(_) | ModelingCmd::ExtendPath(_) => {
let path_id = ArtifactId::new(match cmd {
ModelingCmd::ClosePath(c) => c.path_id,
ModelingCmd::ExtendPath(e) => e.path.into(),
_ => unreachable!(),
});
let mut return_arr = Vec::new();
return_arr.push(Artifact::Segment(Segment {
id,
path_id,
surface_id: None,
edge_ids: Vec::new(),
edge_cut_id: None,
code_ref,
common_surface_ids: Vec::new(),
}));
let path = artifacts.get(&path_id);
if let Some(Artifact::Path(path)) = path {
let mut new_path = path.clone();
new_path.seg_ids = vec![id];
return_arr.push(Artifact::Path(new_path));
}
if let OkModelingCmdResponse::ClosePath(close_path) = response {
return_arr.push(Artifact::Solid2d(Solid2d {
id: close_path.face_id.into(),
path_id,
}));
if let Some(Artifact::Path(path)) = path {
let mut new_path = path.clone();
new_path.solid2d_id = Some(close_path.face_id.into());
return_arr.push(Artifact::Path(new_path));
}
}
return Ok(return_arr);
}
ModelingCmd::Extrude(kcmc::Extrude { target, .. })
| ModelingCmd::Revolve(kcmc::Revolve { target, .. })
| ModelingCmd::RevolveAboutEdge(kcmc::RevolveAboutEdge { target, .. })
| ModelingCmd::Sweep(kcmc::Sweep { target, .. }) => {
let sub_type = match cmd {
ModelingCmd::Extrude(_) => SweepSubType::Extrusion,
ModelingCmd::Revolve(_) => SweepSubType::Revolve,
ModelingCmd::RevolveAboutEdge(_) => SweepSubType::RevolveAboutEdge,
ModelingCmd::Sweep(_) => SweepSubType::Sweep,
_ => unreachable!(),
};
let mut return_arr = Vec::new();
let target = ArtifactId::from(target);
return_arr.push(Artifact::Sweep(Sweep {
id,
sub_type,
path_id: target,
surface_ids: Vec::new(),
edge_ids: Vec::new(),
code_ref,
}));
let path = artifacts.get(&target);
if let Some(Artifact::Path(path)) = path {
let mut new_path = path.clone();
new_path.sweep_id = Some(id);
return_arr.push(Artifact::Path(new_path));
}
return Ok(return_arr);
}
ModelingCmd::Loft(loft_cmd) => {
let OkModelingCmdResponse::Loft(_) = response else {
return Ok(Vec::new());
};
let mut return_arr = Vec::new();
return_arr.push(Artifact::Sweep(Sweep {
id,
sub_type: SweepSubType::Loft,
// TODO: Using the first one. Make sure to revisit this
// choice, don't think it matters for now.
path_id: ArtifactId::new(*loft_cmd.section_ids.first().ok_or_else(|| {
KclError::Internal(KclErrorDetails {
message: format!("Expected at least one section ID in Loft command: {id:?}; cmd={cmd:?}"),
source_ranges: vec![range],
})
})?),
surface_ids: Vec::new(),
edge_ids: Vec::new(),
code_ref,
}));
for section_id in &loft_cmd.section_ids {
let path = artifacts.get(&ArtifactId::new(*section_id));
if let Some(Artifact::Path(path)) = path {
let mut new_path = path.clone();
new_path.sweep_id = Some(id);
return_arr.push(Artifact::Path(new_path));
}
}
return Ok(return_arr);
}
ModelingCmd::Solid3dGetExtrusionFaceInfo(_) => {
let OkModelingCmdResponse::Solid3dGetExtrusionFaceInfo(face_info) = response else {
return Ok(Vec::new());
};
let mut return_arr = Vec::new();
let mut last_path = None;
for face in &face_info.faces {
if face.cap != ExtrusionFaceCapType::None {
continue;
}
let Some(curve_id) = face.curve_id.map(ArtifactId::new) else {
continue;
};
let Some(face_id) = face.face_id.map(ArtifactId::new) else {
continue;
};
let Some(Artifact::Segment(seg)) = artifacts.get(&curve_id) else {
continue;
};
let Some(Artifact::Path(path)) = artifacts.get(&seg.path_id) else {
continue;
};
last_path = Some(path);
let path_sweep_id = path.sweep_id.ok_or_else(|| {
KclError::Internal(KclErrorDetails {
message:format!(
"Expected a sweep ID on the path when processing Solid3dGetExtrusionFaceInfo command, but we have none: {id:?}, {path:?}"
),
source_ranges: vec![range],
})
})?;
let extra_artifact = exec_artifacts.values().find(|a| {
if let Artifact::StartSketchOnFace(s) = a {
s.face_id == face_id
} else if let Artifact::StartSketchOnPlane(s) = a {
s.plane_id == face_id
} else {
false
}
});
let sketch_on_face_code_ref = extra_artifact
.and_then(|a| match a {
Artifact::StartSketchOnFace(s) => Some(s.code_ref.clone()),
Artifact::StartSketchOnPlane(s) => Some(s.code_ref.clone()),
_ => None,
})
// TODO: If we didn't find it, it's probably a bug.
.unwrap_or_default();
return_arr.push(Artifact::Wall(Wall {
id: face_id,
seg_id: curve_id,
edge_cut_edge_ids: Vec::new(),
sweep_id: path_sweep_id,
path_ids: Vec::new(),
face_code_ref: sketch_on_face_code_ref,
cmd_id: artifact_command.cmd_id,
}));
let mut new_seg = seg.clone();
new_seg.surface_id = Some(face_id);
return_arr.push(Artifact::Segment(new_seg));
if let Some(Artifact::Sweep(sweep)) = path.sweep_id.and_then(|id| artifacts.get(&id)) {
let mut new_sweep = sweep.clone();
new_sweep.surface_ids = vec![face_id];
return_arr.push(Artifact::Sweep(new_sweep));
}
}
if let Some(path) = last_path {
for face in &face_info.faces {
let sub_type = match face.cap {
ExtrusionFaceCapType::Top => CapSubType::End,
ExtrusionFaceCapType::Bottom => CapSubType::Start,
ExtrusionFaceCapType::None | ExtrusionFaceCapType::Both => continue,
};
let Some(face_id) = face.face_id.map(ArtifactId::new) else {
continue;
};
let path_sweep_id = path.sweep_id.ok_or_else(|| {
KclError::Internal(KclErrorDetails {
message:format!(
"Expected a sweep ID on the path when processing last path's Solid3dGetExtrusionFaceInfo command, but we have none: {id:?}, {path:?}"
),
source_ranges: vec![range],
})
})?;
let extra_artifact = exec_artifacts.values().find(|a| {
if let Artifact::StartSketchOnFace(s) = a {
s.face_id == face_id
} else if let Artifact::StartSketchOnPlane(s) = a {
s.plane_id == face_id
} else {
false
}
});
let sketch_on_face_code_ref = extra_artifact
.and_then(|a| match a {
Artifact::StartSketchOnFace(s) => Some(s.code_ref.clone()),
Artifact::StartSketchOnPlane(s) => Some(s.code_ref.clone()),
_ => None,
})
// TODO: If we didn't find it, it's probably a bug.
.unwrap_or_default();
return_arr.push(Artifact::Cap(Cap {
id: face_id,
sub_type,
edge_cut_edge_ids: Vec::new(),
sweep_id: path_sweep_id,
path_ids: Vec::new(),
face_code_ref: sketch_on_face_code_ref,
cmd_id: artifact_command.cmd_id,
}));
let Some(Artifact::Sweep(sweep)) = artifacts.get(&path_sweep_id) else {
continue;
};
let mut new_sweep = sweep.clone();
new_sweep.surface_ids = vec![face_id];
return_arr.push(Artifact::Sweep(new_sweep));
}
}
return Ok(return_arr);
}
ModelingCmd::Solid3dGetAdjacencyInfo(kcmc::Solid3dGetAdjacencyInfo { .. }) => {
let OkModelingCmdResponse::Solid3dGetAdjacencyInfo(info) = response else {
return Ok(Vec::new());
};
let mut return_arr = Vec::new();
for (index, edge) in info.edges.iter().enumerate() {
let Some(original_info) = &edge.original_info else {
continue;
};
let edge_id = ArtifactId::new(original_info.edge_id);
let Some(artifact) = artifacts.get(&edge_id) else {
continue;
};
match artifact {
Artifact::Segment(segment) => {
let mut new_segment = segment.clone();
new_segment.common_surface_ids =
original_info.faces.iter().map(|face| ArtifactId::new(*face)).collect();
return_arr.push(Artifact::Segment(new_segment));
}
Artifact::SweepEdge(sweep_edge) => {
let mut new_sweep_edge = sweep_edge.clone();
new_sweep_edge.common_surface_ids =
original_info.faces.iter().map(|face| ArtifactId::new(*face)).collect();
return_arr.push(Artifact::SweepEdge(new_sweep_edge));
}
_ => {}
};
let Some(Artifact::Segment(segment)) = artifacts.get(&edge_id) else {
continue;
};
let Some(surface_id) = segment.surface_id else {
continue;
};
let Some(Artifact::Wall(wall)) = artifacts.get(&surface_id) else {
continue;
};
let Some(Artifact::Sweep(sweep)) = artifacts.get(&wall.sweep_id) else {
continue;
};
let Some(Artifact::Path(_)) = artifacts.get(&sweep.path_id) else {
continue;
};
if let Some(opposite_info) = &edge.opposite_info {
return_arr.push(Artifact::SweepEdge(SweepEdge {
id: opposite_info.edge_id.into(),
sub_type: SweepEdgeSubType::Opposite,
seg_id: edge_id,
cmd_id: artifact_command.cmd_id,
index,
sweep_id: sweep.id,
common_surface_ids: opposite_info.faces.iter().map(|face| ArtifactId::new(*face)).collect(),
}));
let mut new_segment = segment.clone();
new_segment.edge_ids = vec![opposite_info.edge_id.into()];
return_arr.push(Artifact::Segment(new_segment));
let mut new_sweep = sweep.clone();
new_sweep.edge_ids = vec![opposite_info.edge_id.into()];
return_arr.push(Artifact::Sweep(new_sweep));
let mut new_wall = wall.clone();
new_wall.edge_cut_edge_ids = vec![opposite_info.edge_id.into()];
return_arr.push(Artifact::Wall(new_wall));
}
if let Some(adjacent_info) = &edge.adjacent_info {
return_arr.push(Artifact::SweepEdge(SweepEdge {
id: adjacent_info.edge_id.into(),
sub_type: SweepEdgeSubType::Adjacent,
seg_id: edge_id,
cmd_id: artifact_command.cmd_id,
index,
sweep_id: sweep.id,
common_surface_ids: adjacent_info.faces.iter().map(|face| ArtifactId::new(*face)).collect(),
}));
let mut new_segment = segment.clone();
new_segment.edge_ids = vec![adjacent_info.edge_id.into()];
return_arr.push(Artifact::Segment(new_segment));
let mut new_sweep = sweep.clone();
new_sweep.edge_ids = vec![adjacent_info.edge_id.into()];
return_arr.push(Artifact::Sweep(new_sweep));
let mut new_wall = wall.clone();
new_wall.edge_cut_edge_ids = vec![adjacent_info.edge_id.into()];
return_arr.push(Artifact::Wall(new_wall));
}
}
return Ok(return_arr);
}
ModelingCmd::Solid3dFilletEdge(cmd) => {
let mut return_arr = Vec::new();
let edge_id = if let Some(edge_id) = cmd.edge_id {
ArtifactId::new(edge_id)
} else {
cmd.edge_ids.first().unwrap().into()
};
return_arr.push(Artifact::EdgeCut(EdgeCut {
id,
sub_type: cmd.cut_type.into(),
consumed_edge_id: edge_id,
edge_ids: Vec::new(),
surface_id: None,
code_ref,
}));
let consumed_edge = artifacts.get(&edge_id);
if let Some(Artifact::Segment(consumed_edge)) = consumed_edge {
let mut new_segment = consumed_edge.clone();
new_segment.edge_cut_id = Some(id);
return_arr.push(Artifact::Segment(new_segment));
} else {
// TODO: Handle other types like SweepEdge.
}
return Ok(return_arr);
}
ModelingCmd::EntityMakeHelixFromParams(_) => {
let return_arr = vec![Artifact::Helix(Helix {
id,
axis_id: None,
code_ref,
})];
return Ok(return_arr);
}
ModelingCmd::EntityMakeHelixFromEdge(helix) => {
let edge_id = ArtifactId::new(helix.edge_id);
let return_arr = vec![Artifact::Helix(Helix {
id,
axis_id: Some(edge_id),
code_ref,
})];
// We could add the reverse graph edge connecting from the edge to
// the helix here, but it's not useful right now.
return Ok(return_arr);
}
ModelingCmd::BooleanIntersection(_) | ModelingCmd::BooleanSubtract(_) | ModelingCmd::BooleanUnion(_) => {
let (sub_type, solid_ids, tool_ids) = match cmd {
ModelingCmd::BooleanIntersection(intersection) => {
let solid_ids = intersection
.solid_ids
.iter()
.copied()
.map(ArtifactId::new)
.collect::<Vec<_>>();
(CompositeSolidSubType::Intersect, solid_ids, Vec::new())
}
ModelingCmd::BooleanSubtract(subtract) => {
let solid_ids = subtract
.target_ids
.iter()
.copied()
.map(ArtifactId::new)
.collect::<Vec<_>>();
let tool_ids = subtract
.tool_ids
.iter()
.copied()
.map(ArtifactId::new)
.collect::<Vec<_>>();
(CompositeSolidSubType::Subtract, solid_ids, tool_ids)
}
ModelingCmd::BooleanUnion(union) => {
let solid_ids = union.solid_ids.iter().copied().map(ArtifactId::new).collect::<Vec<_>>();
(CompositeSolidSubType::Union, solid_ids, Vec::new())
}
_ => unreachable!(),
};
let mut new_solid_ids = vec![id];
// Make sure we don't ever create a duplicate ID since merge_ids
// can't handle it.
let not_cmd_id = move |solid_id: &ArtifactId| *solid_id != id;
match response {
OkModelingCmdResponse::BooleanIntersection(intersection) => intersection
.extra_solid_ids
.iter()
.copied()
.map(ArtifactId::new)
.filter(not_cmd_id)
.for_each(|id| new_solid_ids.push(id)),
OkModelingCmdResponse::BooleanSubtract(subtract) => subtract
.extra_solid_ids
.iter()
.copied()
.map(ArtifactId::new)
.filter(not_cmd_id)
.for_each(|id| new_solid_ids.push(id)),
OkModelingCmdResponse::BooleanUnion(union) => union
.extra_solid_ids
.iter()
.copied()
.map(ArtifactId::new)
.filter(not_cmd_id)
.for_each(|id| new_solid_ids.push(id)),
_ => {}
}
let mut return_arr = Vec::new();
// Create the new composite solids and update their linked artifacts
for solid_id in &new_solid_ids {
// Create the composite solid
return_arr.push(Artifact::CompositeSolid(CompositeSolid {
id: *solid_id,
sub_type,
solid_ids: solid_ids.clone(),
tool_ids: tool_ids.clone(),
code_ref: code_ref.clone(),
composite_solid_id: None,
}));
// Update the artifacts that were used as input for this composite solid
for input_id in &solid_ids {
if let Some(artifact) = artifacts.get(input_id) {
match artifact {
Artifact::CompositeSolid(comp) => {
let mut new_comp = comp.clone();
new_comp.composite_solid_id = Some(*solid_id);
return_arr.push(Artifact::CompositeSolid(new_comp));
}
Artifact::Path(path) => {
let mut new_path = path.clone();
new_path.composite_solid_id = Some(*solid_id);
return_arr.push(Artifact::Path(new_path));
}
_ => {}
}
}
}
// Update the tool artifacts if this is a subtract operation
for tool_id in &tool_ids {
if let Some(artifact) = artifacts.get(tool_id) {
match artifact {
Artifact::CompositeSolid(comp) => {
let mut new_comp = comp.clone();
new_comp.composite_solid_id = Some(*solid_id);
return_arr.push(Artifact::CompositeSolid(new_comp));
}
Artifact::Path(path) => {
let mut new_path = path.clone();
new_path.composite_solid_id = Some(*solid_id);
return_arr.push(Artifact::Path(new_path));
}
_ => {}
}
}
}
}
return Ok(return_arr);
}
_ => {}
}
Ok(Vec::new())
}