Files
modeling-app/rust/kcl-lib/src/std/array.rs
Adam Chalmers 89bae66257 KCL: User-defined KCL functions in examples etc now use keywords (#6603)
Preparing for the removal of positional functions from the language. The first big step is to change all our KCL code examples, test code, public samples etc to all use keyword functions.

Apologies for how large this PR is. Most of it is:

- Changing example KCL that defined its own functions, so the functions now use keyword arguments rather than positional arguments. E.g. change `cube([20, 20])` to be `cube(center = [20, 20])`.
- Some parts of the code assumed positional code and didn't handle keyword calls, e.g. the linter would only check for positional calls to startSketchOn. Now they should work with either positional or keyword.
- Update all the artifacts

This does _not_ remove support for positional calls. That will be in a follow-up PR.
2025-05-01 12:36:51 -04:00

326 lines
11 KiB
Rust

use kcl_derive_docs::stdlib;
use super::{args::Arg, Args};
use crate::{
errors::{KclError, KclErrorDetails},
execution::{
kcl_value::{FunctionSource, KclValue},
ExecState,
},
source_range::SourceRange,
ExecutorContext,
};
/// Apply a function to each element of an array.
pub async fn map(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let array: Vec<KclValue> = args.get_unlabeled_kw_arg("array")?;
let f: &FunctionSource = args.get_kw_arg("f")?;
let meta = vec![args.source_range.into()];
let new_array = inner_map(array, f, exec_state, &args).await?;
Ok(KclValue::MixedArray { value: new_array, meta })
}
/// Apply a function to every element of a list.
///
/// Given a list like `[a, b, c]`, and a function like `f`, returns
/// `[f(a), f(b), f(c)]`
/// ```no_run
/// r = 10 // radius
/// fn drawCircle(@id) {
/// return startSketchOn(XY)
/// |> circle( center= [id * 2 * r, 0], radius= r)
/// }
///
/// // Call `drawCircle`, passing in each element of the array.
/// // The outputs from each `drawCircle` form a new array,
/// // which is the return value from `map`.
/// circles = map(
/// [1..3],
/// f = drawCircle
/// )
/// ```
/// ```no_run
/// r = 10 // radius
/// // Call `map`, using an anonymous function instead of a named one.
/// circles = map(
/// [1..3],
/// f = fn(id) {
/// return startSketchOn(XY)
/// |> circle( center= [id * 2 * r, 0], radius= r)
/// }
/// )
/// ```
#[stdlib {
name = "map",
keywords = true,
unlabeled_first = true,
args = {
array = { docs = "Input array. The output array is this input array, but every element has had the function `f` run on it." },
f = { docs = "A function. The output array is just the input array, but `f` has been run on every item." },
}
}]
async fn inner_map<'a>(
array: Vec<KclValue>,
f: &'a FunctionSource,
exec_state: &mut ExecState,
args: &'a Args,
) -> Result<Vec<KclValue>, KclError> {
let mut new_array = Vec::with_capacity(array.len());
for elem in array {
let new_elem = call_map_closure(elem, f, args.source_range, exec_state, &args.ctx).await?;
new_array.push(new_elem);
}
Ok(new_array)
}
async fn call_map_closure(
input: KclValue,
map_fn: &FunctionSource,
source_range: SourceRange,
exec_state: &mut ExecState,
ctxt: &ExecutorContext,
) -> Result<KclValue, KclError> {
let output = map_fn
.call(None, exec_state, ctxt, vec![Arg::synthetic(input)], source_range)
.await?;
let source_ranges = vec![source_range];
let output = output.ok_or_else(|| {
KclError::Semantic(KclErrorDetails {
message: "Map function must return a value".to_string(),
source_ranges,
})
})?;
Ok(output)
}
/// For each item in an array, update a value.
pub async fn reduce(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
let array: Vec<KclValue> = args.get_unlabeled_kw_arg("array")?;
let f: &FunctionSource = args.get_kw_arg("f")?;
let initial: KclValue = args.get_kw_arg("initial")?;
inner_reduce(array, initial, f, exec_state, &args).await
}
/// Take a starting value. Then, for each element of an array, calculate the next value,
/// using the previous value and the element.
/// ```no_run
/// // This function adds two numbers.
/// fn add(a, b) { return a + b }
///
/// // This function adds an array of numbers.
/// // It uses the `reduce` function, to call the `add` function on every
/// // element of the `arr` parameter. The starting value is 0.
/// fn sum(@arr) { return reduce(arr, initial = 0, f = add) }
///
/// /*
/// The above is basically like this pseudo-code:
/// fn sum(arr):
/// sumSoFar = 0
/// for i in arr:
/// sumSoFar = add(sumSoFar, i)
/// return sumSoFar
/// */
///
/// // We use `assert` to check that our `sum` function gives the
/// // expected result. It's good to check your work!
/// assert(sum([1, 2, 3]), isEqualTo = 6, tolerance = 0.1, error = "1 + 2 + 3 summed is 6")
/// ```
/// ```no_run
/// // This example works just like the previous example above, but it uses
/// // an anonymous `add` function as its parameter, instead of declaring a
/// // named function outside.
/// arr = [1, 2, 3]
/// sum = reduce(arr, initial = 0, f = fn (i, result_so_far) { return i + result_so_far })
///
/// // We use `assert` to check that our `sum` function gives the
/// // expected result. It's good to check your work!
/// assert(sum, isEqualTo = 6, tolerance = 0.1, error = "1 + 2 + 3 summed is 6")
/// ```
/// ```no_run
/// // Declare a function that sketches a decagon.
/// fn decagon(@radius) {
/// // Each side of the decagon is turned this many radians from the previous angle.
/// stepAngle = ((1/10) * TAU): number(rad)
///
/// // Start the decagon sketch at this point.
/// startOfDecagonSketch = startSketchOn(XY)
/// |> startProfile(at = [(cos(0)*radius), (sin(0) * radius)])
///
/// // Use a `reduce` to draw the remaining decagon sides.
/// // For each number in the array 1..10, run the given function,
/// // which takes a partially-sketched decagon and adds one more edge to it.
/// fullDecagon = reduce([1..10], initial = startOfDecagonSketch, f = fn(i, partialDecagon) {
/// // Draw one edge of the decagon.
/// x = cos(stepAngle * i) * radius
/// y = sin(stepAngle * i) * radius
/// return line(partialDecagon, end = [x, y])
/// })
///
/// return fullDecagon
///
/// }
///
/// /*
/// The `decagon` above is basically like this pseudo-code:
/// fn decagon(radius):
/// stepAngle = ((1/10) * TAU): number(rad)
/// plane = startSketchOn(XY)
/// startOfDecagonSketch = startProfile(plane, at = [(cos(0)*radius), (sin(0) * radius)])
///
/// // Here's the reduce part.
/// partialDecagon = startOfDecagonSketch
/// for i in [1..10]:
/// x = cos(stepAngle * i) * radius
/// y = sin(stepAngle * i) * radius
/// partialDecagon = line(partialDecagon, end = [x, y])
/// fullDecagon = partialDecagon // it's now full
/// return fullDecagon
/// */
///
/// // Use the `decagon` function declared above, to sketch a decagon with radius 5.
/// decagon(5.0) |> close()
/// ```
#[stdlib {
name = "reduce",
keywords = true,
unlabeled_first = true,
args = {
array = { docs = "Each element of this array gets run through the function `f`, combined with the previous output from `f`, and then used for the next run." },
initial = { docs = "The first time `f` is run, it will be called with the first item of `array` and this initial starting value."},
f = { docs = "Run once per item in the input `array`. This function takes an item from the array, and the previous output from `f` (or `initial` on the very first run). The final time `f` is run, its output is returned as the final output from `reduce`." },
}
}]
async fn inner_reduce<'a>(
array: Vec<KclValue>,
initial: KclValue,
f: &'a FunctionSource,
exec_state: &mut ExecState,
args: &'a Args,
) -> Result<KclValue, KclError> {
let mut reduced = initial;
for elem in array {
reduced = call_reduce_closure(elem, reduced, f, args.source_range, exec_state, &args.ctx).await?;
}
Ok(reduced)
}
async fn call_reduce_closure(
elem: KclValue,
start: KclValue,
reduce_fn: &FunctionSource,
source_range: SourceRange,
exec_state: &mut ExecState,
ctxt: &ExecutorContext,
) -> Result<KclValue, KclError> {
// Call the reduce fn for this repetition.
let reduce_fn_args = vec![Arg::synthetic(elem), Arg::synthetic(start)];
let transform_fn_return = reduce_fn
.call(None, exec_state, ctxt, reduce_fn_args, source_range)
.await?;
// Unpack the returned transform object.
let source_ranges = vec![source_range];
let out = transform_fn_return.ok_or_else(|| {
KclError::Semantic(KclErrorDetails {
message: "Reducer function must return a value".to_string(),
source_ranges: source_ranges.clone(),
})
})?;
Ok(out)
}
/// Append an element to the end of an array.
///
/// Returns a new array with the element appended.
///
/// ```no_run
/// arr = [1, 2, 3]
/// new_arr = push(arr, item = 4)
/// assert(new_arr[3], isEqualTo = 4, tolerance = 0.1, error = "4 was added to the end of the array")
/// ```
#[stdlib {
name = "push",
keywords = true,
unlabeled_first = true,
args = {
array = { docs = "The array which you're adding a new item to." },
item = { docs = "The new item to add to the array" },
}
}]
async fn inner_push(mut array: Vec<KclValue>, item: KclValue, args: &Args) -> Result<KclValue, KclError> {
array.push(item);
Ok(KclValue::MixedArray {
value: array,
meta: vec![args.source_range.into()],
})
}
pub async fn push(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
// Extract the array and the element from the arguments
let val: KclValue = args.get_unlabeled_kw_arg("array")?;
let item = args.get_kw_arg("item")?;
let meta = vec![args.source_range];
let KclValue::MixedArray { value: array, meta: _ } = val else {
let actual_type = val.human_friendly_type();
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: meta,
message: format!("You can't push to a value of type {actual_type}, only an array"),
}));
};
inner_push(array, item, &args).await
}
/// Remove the last element from an array.
///
/// Returns a new array with the last element removed.
///
/// ```no_run
/// arr = [1, 2, 3, 4]
/// new_arr = pop(arr)
/// assert(new_arr[0], isEqualTo = 1, tolerance = 0.00001, error = "1 is the first element of the array")
/// assert(new_arr[1], isEqualTo = 2, tolerance = 0.00001, error = "2 is the second element of the array")
/// assert(new_arr[2], isEqualTo = 3, tolerance = 0.00001, error = "3 is the third element of the array")
/// ```
#[stdlib {
name = "pop",
keywords = true,
unlabeled_first = true,
args = {
array = { docs = "The array to pop from. Must not be empty."},
}
}]
async fn inner_pop(array: Vec<KclValue>, args: &Args) -> Result<KclValue, KclError> {
if array.is_empty() {
return Err(KclError::Semantic(KclErrorDetails {
message: "Cannot pop from an empty array".to_string(),
source_ranges: vec![args.source_range],
}));
}
// Create a new array with all elements except the last one
let new_array = array[..array.len() - 1].to_vec();
Ok(KclValue::MixedArray {
value: new_array,
meta: vec![args.source_range.into()],
})
}
pub async fn pop(_exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
// Extract the array from the arguments
let val = args.get_unlabeled_kw_arg("array")?;
let meta = vec![args.source_range];
let KclValue::MixedArray { value: array, meta: _ } = val else {
let actual_type = val.human_friendly_type();
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: meta,
message: format!("You can't pop from a value of type {actual_type}, only an array"),
}));
};
inner_pop(array, &args).await
}