Files
modeling-app/rust/kcl-lib/src/parsing/parser.rs
2025-04-18 17:40:44 -05:00

5402 lines
178 KiB
Rust

// TODO optimise size of CompilationError
#![allow(clippy::result_large_err)]
use std::{cell::RefCell, collections::BTreeMap};
use indexmap::IndexMap;
use winnow::{
combinator::{alt, delimited, opt, peek, preceded, repeat, repeat_till, separated, separated_pair, terminated},
dispatch,
error::{ErrMode, StrContext, StrContextValue},
prelude::*,
stream::Stream,
token::{any, none_of, one_of, take_till},
};
use super::{
ast::types::{Ascription, ImportPath, LabelledExpression},
token::{NumericSuffix, RESERVED_WORDS},
DeprecationKind,
};
use crate::{
errors::{CompilationError, Severity, Tag},
execution::types::ArrayLen,
parsing::{
ast::types::{
Annotation, ArrayExpression, ArrayRangeExpression, BinaryExpression, BinaryOperator, BinaryPart, BodyItem,
BoxNode, CallExpression, CallExpressionKw, CommentStyle, DefaultParamVal, ElseIf, Expr,
ExpressionStatement, FunctionExpression, Identifier, IfExpression, ImportItem, ImportSelector,
ImportStatement, ItemVisibility, LabeledArg, Literal, LiteralIdentifier, LiteralValue, MemberExpression,
MemberObject, Name, Node, NodeList, NonCodeMeta, NonCodeNode, NonCodeValue, ObjectExpression,
ObjectProperty, Parameter, PipeExpression, PipeSubstitution, PrimitiveType, Program, ReturnStatement,
Shebang, TagDeclarator, Type, TypeDeclaration, UnaryExpression, UnaryOperator, VariableDeclaration,
VariableDeclarator, VariableKind,
},
math::BinaryExpressionToken,
token::{Token, TokenSlice, TokenType},
PIPE_OPERATOR, PIPE_SUBSTITUTION_OPERATOR,
},
SourceRange, IMPORT_FILE_EXTENSIONS,
};
thread_local! {
/// The current `ParseContext`. `None` if parsing is not currently happening on this thread.
static CTXT: RefCell<Option<ParseContext>> = const { RefCell::new(None) };
}
pub fn run_parser(i: TokenSlice) -> super::ParseResult {
let _stats = crate::log::LogPerfStats::new("Parsing");
ParseContext::init();
let result = match program.parse(i) {
Ok(result) => Some(result),
Err(e) => {
ParseContext::err(e.into());
None
}
};
let ctxt = ParseContext::take();
(result, ctxt.errors).into()
}
/// Context built up while parsing a program.
///
/// When returned from parsing contains the errors and warnings from the current parse.
#[derive(Debug, Clone, Default)]
struct ParseContext {
pub errors: Vec<CompilationError>,
}
impl ParseContext {
fn new() -> Self {
ParseContext { errors: Vec::new() }
}
/// Set a new `ParseContext` in thread-local storage. Panics if one already exists.
fn init() {
assert!(CTXT.with_borrow(|ctxt| ctxt.is_none()));
CTXT.with_borrow_mut(|ctxt| *ctxt = Some(ParseContext::new()));
}
/// Take the current `ParseContext` from thread-local storage, leaving `None`. Panics if a `ParseContext`
/// is not present.
fn take() -> ParseContext {
CTXT.with_borrow_mut(|ctxt| ctxt.take()).unwrap()
}
/// Add an error to the current `ParseContext`, panics if there is none.
fn err(err: CompilationError) {
CTXT.with_borrow_mut(|ctxt| {
// Avoid duplicating errors. This is possible since the parser can try one path, find
// a warning, then backtrack and decide not to take that path and try another. This can
// happen 'high up the stack', so it's impossible to fix where the errors are generated.
// Ideally we would pass errors up the call stack rather than use a context object or
// have some way to mark errors as speculative or committed, but I don't think Winnow
// is flexible enough for that (or at least, not without significant changes to the
// parser).
let errors = &mut ctxt.as_mut().unwrap().errors;
for e in errors.iter_mut().rev() {
if e.source_range == err.source_range {
*e = err;
return;
}
}
errors.push(err);
});
}
/// Add a warning to the current `ParseContext`, panics if there is none.
fn warn(mut e: CompilationError) {
e.severity = Severity::Warning;
Self::err(e);
}
}
/// Accumulate context while backtracking errors
/// Very similar to [`winnow::error::ContextError`] type,
/// but the 'cause' field is always a [`CompilationError`],
/// instead of a dynamic [`std::error::Error`] trait object.
#[derive(Debug, Clone)]
pub(crate) struct ContextError<C = StrContext> {
pub context: Vec<C>,
pub cause: Option<CompilationError>,
}
impl From<winnow::error::ParseError<TokenSlice<'_>, ContextError>> for CompilationError {
fn from(err: winnow::error::ParseError<TokenSlice<'_>, ContextError>) -> Self {
let Some(last_token) = err.input().last() else {
return CompilationError::fatal(Default::default(), "file is empty");
};
let (input, offset, err) = (err.input(), err.offset(), err.clone().into_inner());
if let Some(e) = err.cause {
return e;
}
// See docs on `offset`.
if offset >= input.len() {
let context = err.context.first();
return CompilationError::fatal(
last_token.as_source_range(),
match context {
Some(what) => format!("Unexpected end of file. The compiler {what}"),
None => "Unexpected end of file while still parsing".to_owned(),
},
);
}
let bad_token = input.token(offset);
// TODO: Add the Winnow parser context to the error.
// See https://github.com/KittyCAD/modeling-app/issues/784
CompilationError::fatal(
bad_token.as_source_range(),
format!("Unexpected token: {}", bad_token.value),
)
}
}
impl<C> From<CompilationError> for ContextError<C> {
fn from(e: CompilationError) -> Self {
Self {
context: Default::default(),
cause: Some(e),
}
}
}
impl<C> std::default::Default for ContextError<C> {
fn default() -> Self {
Self {
context: Default::default(),
cause: None,
}
}
}
impl<I, C> winnow::error::ParserError<I> for ContextError<C>
where
I: Stream,
{
#[inline]
fn from_error_kind(_input: &I, _kind: winnow::error::ErrorKind) -> Self {
Self::default()
}
#[inline]
fn append(
self,
_input: &I,
_input_checkpoint: &<I as Stream>::Checkpoint,
_kind: winnow::error::ErrorKind,
) -> Self {
self
}
#[inline]
fn or(self, other: Self) -> Self {
other
}
}
impl<C, I> winnow::error::AddContext<I, C> for ContextError<C>
where
I: Stream,
{
#[inline]
fn add_context(mut self, _input: &I, _input_checkpoint: &<I as Stream>::Checkpoint, ctx: C) -> Self {
self.context.push(ctx);
self
}
}
impl<C, I> winnow::error::FromExternalError<I, CompilationError> for ContextError<C> {
#[inline]
fn from_external_error(_input: &I, _kind: winnow::error::ErrorKind, e: CompilationError) -> Self {
let mut err = Self::default();
{
err.cause = Some(e);
}
err
}
}
type PResult<O, E = ContextError> = winnow::prelude::PResult<O, E>;
fn expected(what: &'static str) -> StrContext {
StrContext::Expected(StrContextValue::Description(what))
}
fn program(i: &mut TokenSlice) -> PResult<Node<Program>> {
let shebang = opt(shebang).parse_next(i)?;
let mut out: Node<Program> = function_body.parse_next(i)?;
out.shebang = shebang;
// Match original parser behaviour, for now.
// Once this is merged and stable, consider changing this as I think it's more accurate
// without the -1.
out.end -= 1;
Ok(out)
}
fn pipe_surrounded_by_whitespace(i: &mut TokenSlice) -> PResult<()> {
(
repeat(0.., whitespace).map(|_: Vec<_>| ()),
pipe_operator,
repeat(0.., whitespace).map(|_: Vec<_>| ()),
)
.parse_next(i)?;
Ok(())
}
/// Note this is O(n).
fn count_in(target: char, s: &str) -> usize {
s.chars().filter(|&c| c == target).count()
}
/// Matches all four cases of NonCodeValue
fn non_code_node(i: &mut TokenSlice) -> PResult<Node<NonCodeNode>> {
/// Matches one case of NonCodeValue
/// See docstring on [NonCodeValue::NewLineBlockComment] for why that case is different to the others.
fn non_code_node_leading_whitespace(i: &mut TokenSlice) -> PResult<Node<NonCodeNode>> {
let leading_whitespace = one_of(TokenType::Whitespace)
.context(expected("whitespace, with a newline"))
.parse_next(i)?;
let has_empty_line = count_in('\n', &leading_whitespace.value) >= 2;
non_code_node_no_leading_whitespace
.verify_map(|node: Node<NonCodeNode>| match node.inner.value {
NonCodeValue::BlockComment { value, style } => Some(Node::new(
NonCodeNode {
value: if has_empty_line {
NonCodeValue::NewLineBlockComment { value, style }
} else {
NonCodeValue::BlockComment { value, style }
},
digest: None,
},
leading_whitespace.start,
node.end + 1,
node.module_id,
)),
_ => None,
})
.context(expected("a comment or whitespace"))
.parse_next(i)
}
alt((non_code_node_leading_whitespace, non_code_node_no_leading_whitespace)).parse_next(i)
}
fn outer_annotation(i: &mut TokenSlice) -> PResult<Node<Annotation>> {
peek((at_sign, open_paren)).parse_next(i)?;
annotation(i)
}
fn annotation(i: &mut TokenSlice) -> PResult<Node<Annotation>> {
let at = at_sign.parse_next(i)?;
let name = opt(binding_name).parse_next(i)?;
let mut end = name.as_ref().map(|n| n.end).unwrap_or(at.end);
let properties = if peek(open_paren).parse_next(i).is_ok() {
open_paren(i)?;
ignore_whitespace(i);
let properties: Vec<_> = separated(
0..,
separated_pair(
terminated(identifier, opt(whitespace)),
terminated(one_of((TokenType::Operator, "=")), opt(whitespace)),
expression,
)
.map(|(key, value)| {
Node::new_node(
key.start,
value.end(),
key.module_id,
ObjectProperty {
key,
value,
digest: None,
},
)
}),
comma_sep,
)
.parse_next(i)?;
ignore_trailing_comma(i);
ignore_whitespace(i);
end = close_paren(i)?.end;
Some(properties)
} else {
None
};
if name.is_none() && properties.is_none() {
return Err(ErrMode::Cut(
CompilationError::fatal(at.as_source_range(), format!("Unexpected token: {}", at.value)).into(),
));
}
let value = Annotation {
name,
properties,
digest: None,
};
Ok(Node::new(value, at.start, end, at.module_id))
}
// Matches remaining three cases of NonCodeValue
fn non_code_node_no_leading_whitespace(i: &mut TokenSlice) -> PResult<Node<NonCodeNode>> {
any.verify_map(|token: Token| {
if token.is_code_token() {
None
} else {
let value = match token.token_type {
TokenType::Whitespace if token.value.contains("\n\n") || token.value.contains("\n\r\n") => {
NonCodeValue::NewLine
}
TokenType::LineComment => NonCodeValue::BlockComment {
value: token.value.trim_start_matches("//").trim().to_owned(),
style: CommentStyle::Line,
},
TokenType::BlockComment => NonCodeValue::BlockComment {
style: CommentStyle::Block,
value: token
.value
.trim_start_matches("/*")
.trim_end_matches("*/")
.trim()
.to_owned(),
},
_ => return None,
};
Some(Node::new(
NonCodeNode { value, digest: None },
token.start,
token.end,
token.module_id,
))
}
})
.context(expected("Non-code token (comments or whitespace)"))
.parse_next(i)
}
fn pipe_expression(i: &mut TokenSlice) -> PResult<Node<PipeExpression>> {
let mut non_code_meta = NonCodeMeta::default();
let (head, noncode): (_, Vec<_>) = terminated(
(
expression_but_not_pipe,
repeat(0.., preceded(whitespace, non_code_node)),
),
peek(pipe_surrounded_by_whitespace),
)
.context(expected("an expression, followed by the |> (pipe) operator"))
.parse_next(i)?;
for nc in noncode {
non_code_meta.insert(0, nc);
}
let mut values = vec![head];
let value_surrounded_by_comments = (
repeat(0.., preceded(opt(whitespace), non_code_node)), // Before the expression.
preceded(opt(whitespace), labelled_fn_call), // The expression.
repeat(0.., noncode_just_after_code), // After the expression.
);
let tail: Vec<(Vec<_>, _, Vec<_>)> = repeat(
1..,
preceded(pipe_surrounded_by_whitespace, value_surrounded_by_comments),
)
.context(expected(
"a sequence of at least one |> (pipe) operator, followed by an expression",
))
.parse_next(i)?;
// Time to structure the return value.
let mut code_count = 0;
let mut max_noncode_end = 0;
for (noncode_before, code, noncode_after) in tail {
for nc in noncode_before {
max_noncode_end = nc.end.max(max_noncode_end);
non_code_meta.insert(code_count, nc);
}
values.push(code);
code_count += 1;
for nc in noncode_after {
max_noncode_end = nc.end.max(max_noncode_end);
non_code_meta.insert(code_count, nc);
}
}
Ok(Node::new_node(
values.first().unwrap().start(),
values.last().unwrap().end().max(max_noncode_end),
values.first().unwrap().module_id(),
PipeExpression {
body: values,
non_code_meta,
digest: None,
},
))
}
fn bool_value(i: &mut TokenSlice) -> PResult<BoxNode<Literal>> {
let (value, token) = any
.try_map(|token: Token| match token.token_type {
TokenType::Keyword if token.value == "true" => Ok((true, token)),
TokenType::Keyword if token.value == "false" => Ok((false, token)),
_ => Err(CompilationError::fatal(
token.as_source_range(),
"invalid boolean literal",
)),
})
.context(expected("a boolean literal (either true or false)"))
.parse_next(i)?;
Ok(Box::new(Node::new(
Literal {
value: LiteralValue::Bool(value),
raw: value.to_string(),
digest: None,
},
token.start,
token.end,
token.module_id,
)))
}
fn literal(i: &mut TokenSlice) -> PResult<BoxNode<Literal>> {
alt((string_literal, unsigned_number_literal))
.map(Box::new)
.context(expected("a KCL literal, like 'myPart' or 3"))
.parse_next(i)
}
/// Parse a KCL string literal
fn string_literal(i: &mut TokenSlice) -> PResult<Node<Literal>> {
let (value, token) = any
.try_map(|token: Token| match token.token_type {
TokenType::String => {
let s = token.value[1..token.value.len() - 1].to_string();
Ok((LiteralValue::from(s), token))
}
_ => Err(CompilationError::fatal(
token.as_source_range(),
"invalid string literal",
)),
})
.context(expected("string literal (like \"myPart\""))
.parse_next(i)?;
let result = Node::new(
Literal {
value,
raw: token.value.clone(),
digest: None,
},
token.start,
token.end,
token.module_id,
);
if let Some(suggestion) = super::deprecation(result.value.string_value().unwrap(), DeprecationKind::String) {
ParseContext::warn(
CompilationError::err(
result.as_source_range(),
format!(
"Using `\"{}\"` is deprecated, prefer using `{}`.",
result.value.string_value().unwrap(),
suggestion
),
)
.with_suggestion(
format!(
"Replace `\"{}\"` with `{}`",
result.value.string_value().unwrap(),
suggestion
),
suggestion,
None,
Tag::Deprecated,
),
);
}
Ok(result)
}
/// Parse a KCL literal number, with no - sign.
pub(crate) fn unsigned_number_literal(i: &mut TokenSlice) -> PResult<Node<Literal>> {
let (value, token) = any
.try_map(|token: Token| match token.token_type {
TokenType::Number => {
let value: f64 = token.numeric_value().ok_or_else(|| {
CompilationError::fatal(token.as_source_range(), format!("Invalid float: {}", token.value))
})?;
if token.numeric_suffix().is_some() {
ParseContext::warn(CompilationError::err(
(&token).into(),
"Unit of Measure suffixes are experimental and currently do nothing.",
));
}
Ok((
LiteralValue::Number {
value,
suffix: token.numeric_suffix(),
},
token,
))
}
_ => Err(CompilationError::fatal(token.as_source_range(), "invalid literal")),
})
.context(expected("an unsigned number literal (e.g. 3 or 12.5)"))
.parse_next(i)?;
Ok(Node::new(
Literal {
value,
raw: token.value.clone(),
digest: None,
},
token.start,
token.end,
token.module_id,
))
}
/// Parse a KCL operator that takes a left- and right-hand side argument.
fn binary_operator(i: &mut TokenSlice) -> PResult<BinaryOperator> {
any.try_map(|token: Token| {
if !matches!(token.token_type, TokenType::Operator) {
return Err(CompilationError::fatal(
token.as_source_range(),
format!("unexpected token, should be an operator but was {}", token.token_type),
));
}
let op = match token.value.as_str() {
"+" => BinaryOperator::Add,
"-" => BinaryOperator::Sub,
"/" => BinaryOperator::Div,
"*" => BinaryOperator::Mul,
"%" => BinaryOperator::Mod,
"^" => BinaryOperator::Pow,
"==" => BinaryOperator::Eq,
"!=" => BinaryOperator::Neq,
">" => BinaryOperator::Gt,
">=" => BinaryOperator::Gte,
"<" => BinaryOperator::Lt,
"<=" => BinaryOperator::Lte,
"|" => BinaryOperator::Or,
"&" => BinaryOperator::And,
_ => {
return Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not a binary operator", token.value.as_str()),
))
}
};
Ok(op)
})
.context(expected("a binary operator (like + or *)"))
.parse_next(i)
}
/// Parse a KCL operand that can be used with an operator.
fn operand(i: &mut TokenSlice) -> PResult<BinaryPart> {
const TODO_783: &str = "found a value, but this kind of value cannot be used as the operand to an operator yet (see https://github.com/KittyCAD/modeling-app/issues/783)";
let op = possible_operands
.try_map(|part| {
let source_range = SourceRange::from(&part);
let expr = match part {
// TODO: these should be valid operands eventually,
// users should be able to run "let x = f() + g()"
// see https://github.com/KittyCAD/modeling-app/issues/783
Expr::FunctionExpression(_)
| Expr::PipeExpression(_)
| Expr::PipeSubstitution(_)
| Expr::ArrayExpression(_)
| Expr::ArrayRangeExpression(_)
| Expr::ObjectExpression(_)
| Expr::LabelledExpression(..)
| Expr::AscribedExpression(..) => return Err(CompilationError::fatal(source_range, TODO_783)),
Expr::None(_) => {
return Err(CompilationError::fatal(
source_range,
// TODO: Better error message here.
// Once we have ways to use None values (e.g. by replacing with a default value)
// we should suggest one of them here.
"cannot use a KCL None value as an operand",
));
}
Expr::TagDeclarator(_) => {
return Err(CompilationError::fatal(
source_range,
// TODO: Better error message here.
// Once we have ways to use None values (e.g. by replacing with a default value)
// we should suggest one of them here.
"cannot use a KCL tag declaration as an operand",
));
}
Expr::UnaryExpression(x) => BinaryPart::UnaryExpression(x),
Expr::Literal(x) => BinaryPart::Literal(x),
Expr::Name(x) => BinaryPart::Name(x),
Expr::BinaryExpression(x) => BinaryPart::BinaryExpression(x),
Expr::CallExpression(x) => BinaryPart::CallExpression(x),
Expr::CallExpressionKw(x) => BinaryPart::CallExpressionKw(x),
Expr::MemberExpression(x) => BinaryPart::MemberExpression(x),
Expr::IfExpression(x) => BinaryPart::IfExpression(x),
};
Ok(expr)
})
.context(expected("an operand (a value which can be used with an operator)"))
.parse_next(i)?;
Ok(op)
}
impl TokenType {
fn parse_from(self, i: &mut TokenSlice) -> PResult<Token> {
any.try_map(|token: Token| {
if token.token_type == self {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!(
"expected {self} but found {} which is a {}",
token.value.as_str(),
token.token_type
),
))
}
})
.parse_next(i)
}
}
/// Parse some whitespace (i.e. at least one whitespace token)
fn whitespace(i: &mut TokenSlice) -> PResult<Vec<Token>> {
repeat(
1..,
any.try_map(|token: Token| {
if token.token_type == TokenType::Whitespace {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!(
"expected whitespace, found '{}' which is {}",
token.value.as_str(),
token.token_type
),
))
}
}),
)
.context(expected("some whitespace (e.g. spaces, tabs, new lines)"))
.parse_next(i)
}
/// A shebang is a line at the start of a file that starts with `#!`.
/// If the shebang is present it takes up the whole line.
fn shebang(i: &mut TokenSlice) -> PResult<Node<Shebang>> {
// Parse the hash and the bang.
hash.parse_next(i)?;
let tok = bang.parse_next(i)?;
// Get the rest of the line.
// Parse everything until the next newline.
let tokens = take_till(0.., |token: Token| token.value.contains('\n')).parse_next(i)?;
let value = tokens.iter().map(|t| t.value.as_str()).collect::<String>();
if tokens.is_empty() {
return Err(ErrMode::Cut(
CompilationError::fatal(tok.as_source_range(), "expected a shebang value after #!").into(),
));
}
// Strip all the whitespace after the shebang.
opt(whitespace).parse_next(i)?;
Ok(Node::new(
Shebang::new(format!("#!{}", value)),
0,
tokens.last().unwrap().end,
tokens.first().unwrap().module_id,
))
}
#[allow(clippy::large_enum_variant)]
pub enum NonCodeOr<T> {
NonCode(Node<NonCodeNode>),
Code(T),
}
/// Parse a KCL array of elements.
fn array(i: &mut TokenSlice) -> PResult<Expr> {
alt((
array_empty.map(Box::new).map(Expr::ArrayExpression),
array_end_start.map(Box::new).map(Expr::ArrayRangeExpression),
array_elem_by_elem.map(Box::new).map(Expr::ArrayExpression),
))
.parse_next(i)
}
/// Match an empty array.
fn array_empty(i: &mut TokenSlice) -> PResult<Node<ArrayExpression>> {
let open = open_bracket(i)?;
let start = open.start;
ignore_whitespace(i);
let end = close_bracket(i)?.end;
Ok(Node::new(
ArrayExpression {
elements: Default::default(),
non_code_meta: Default::default(),
digest: None,
},
start,
end,
open.module_id,
))
}
/// Match something that separates elements of an array.
fn array_separator(i: &mut TokenSlice) -> PResult<()> {
alt((
// Normally you need a comma.
comma_sep,
// But, if the array is ending, no need for a comma.
peek(preceded(opt(whitespace), close_bracket)).void(),
))
.parse_next(i)
}
pub(crate) fn array_elem_by_elem(i: &mut TokenSlice) -> PResult<Node<ArrayExpression>> {
let open = open_bracket(i)?;
let start = open.start;
ignore_whitespace(i);
let elements: Vec<_> = repeat(
0..,
alt((
terminated(expression.map(NonCodeOr::Code), array_separator),
terminated(non_code_node.map(NonCodeOr::NonCode), whitespace),
)),
)
.context(expected("array contents, a list of elements (like [1, 2, 3])"))
.parse_next(i)?;
ignore_trailing_comma(i);
ignore_whitespace(i);
let maybe_end = close_bracket(i).map_err(|e| {
if let Some(mut err) = e.clone().into_inner() {
let start_range = open.as_source_range();
let end_range = i.as_source_range();
err.cause = Some(CompilationError::fatal(
SourceRange::from([start_range.start(), end_range.start(), end_range.module_id().as_usize()]),
"Encountered an unexpected character(s) before finding a closing bracket(`]`) for the array",
));
ErrMode::Cut(err)
} else {
// ErrMode::Incomplete, not sure if it's actually possible to end up with this here
e
}
});
if maybe_end.is_err() {
// if there is a closing bracket at some point, but it wasn't the next token, it's likely that they forgot a comma between some
// of the elements
let maybe_closing_bracket: PResult<((), Token)> = peek(repeat_till(
0..,
none_of(|token: Token| {
// bail out early if we encounter something that is for sure not allowed in an
// array, otherwise we could seek to find a closing bracket until the end of the
// file
RESERVED_WORDS
.keys()
.chain([",,", "{", "}", "["].iter())
.any(|word| *word == token.value)
})
.void(),
one_of(|term: Token| term.value == "]"),
))
.parse_next(i);
let has_closing_bracket = maybe_closing_bracket.is_ok();
if has_closing_bracket {
let start_range = i.as_source_range();
// safe to unwrap here because we checked it was Ok above
let end_range = maybe_closing_bracket.unwrap().1.as_source_range();
let e = ContextError {
context: vec![],
cause: Some(CompilationError::fatal(
SourceRange::from([start_range.start(), end_range.end(), end_range.module_id().as_usize()]),
"Unexpected character encountered. You might be missing a comma in between elements.",
)),
};
return Err(ErrMode::Cut(e));
}
}
let end = maybe_end?.end;
// Sort the array's elements (i.e. expression nodes) from the noncode nodes.
let (elements, non_code_nodes): (Vec<_>, BTreeMap<usize, _>) = elements.into_iter().enumerate().fold(
(Vec::new(), BTreeMap::new()),
|(mut elements, mut non_code_nodes), (i, e)| {
match e {
NonCodeOr::NonCode(x) => {
non_code_nodes.insert(i, vec![x]);
}
NonCodeOr::Code(x) => {
elements.push(x);
}
}
(elements, non_code_nodes)
},
);
let non_code_meta = NonCodeMeta {
non_code_nodes,
start_nodes: Vec::new(),
digest: None,
};
Ok(Node::new(
ArrayExpression {
elements,
non_code_meta,
digest: None,
},
start,
end,
open.module_id,
))
}
fn array_end_start(i: &mut TokenSlice) -> PResult<Node<ArrayRangeExpression>> {
let open = open_bracket(i)?;
let start = open.start;
ignore_whitespace(i);
let start_element = expression.parse_next(i)?;
ignore_whitespace(i);
double_period.parse_next(i)?;
ignore_whitespace(i);
let end_element = expression.parse_next(i)?;
ignore_whitespace(i);
let end = close_bracket(i)?.end;
Ok(Node::new(
ArrayRangeExpression {
start_element,
end_element,
end_inclusive: true,
digest: None,
},
start,
end,
open.module_id,
))
}
fn object_property_same_key_and_val(i: &mut TokenSlice) -> PResult<Node<ObjectProperty>> {
let key = nameable_identifier.context(expected("the property's key (the name or identifier of the property), e.g. in 'height = 4', 'height' is the property key")).parse_next(i)?;
ignore_whitespace(i);
Ok(Node::new_node(
key.start,
key.end,
key.module_id,
ObjectProperty {
value: Expr::Name(Box::new(key.clone().into())),
key,
digest: None,
},
))
}
fn object_property(i: &mut TokenSlice) -> PResult<Node<ObjectProperty>> {
let key = identifier.context(expected("the property's key (the name or identifier of the property), e.g. in 'height = 4', 'height' is the property key")).parse_next(i)?;
ignore_whitespace(i);
// Temporarily accept both `:` and `=` for compatibility.
let sep = alt((colon, equals))
.context(expected(
"`=`, which separates the property's key from the value you're setting it to, e.g. 'height = 4'",
))
.parse_next(i)?;
ignore_whitespace(i);
let expr = match expression
.context(expected(
"the value which you're setting the property to, e.g. in 'height = 4', the value is 4",
))
.parse_next(i)
{
Ok(expr) => expr,
Err(_) => {
return Err(ErrMode::Cut(
CompilationError::fatal(
SourceRange::from(sep),
"This property has a label, but no value. Put some value after the equals sign",
)
.into(),
));
}
};
let result = Node::new_node(
key.start,
expr.end(),
key.module_id,
ObjectProperty {
key,
value: expr,
digest: None,
},
);
if sep.token_type == TokenType::Colon {
ParseContext::warn(
CompilationError::err(
sep.into(),
"Using `:` to initialize objects is deprecated, prefer using `=`.",
)
.with_suggestion("Replace `:` with `=`", " =", None, Tag::Deprecated),
);
}
Ok(result)
}
/// Match something that separates properties of an object.
fn property_separator(i: &mut TokenSlice) -> PResult<()> {
alt((
// Normally you need a comma.
comma_sep,
// But, if the object is ending, no need for a comma.
peek(preceded(opt(whitespace), close_brace)).void(),
))
.parse_next(i)
}
/// Match something that separates the labeled arguments of a fn call.
fn labeled_arg_separator(i: &mut TokenSlice) -> PResult<()> {
alt((
// Normally you need a comma.
comma_sep,
// But, if the argument list is ending, no need for a comma.
peek(preceded(opt(whitespace), close_paren)).void(),
))
.parse_next(i)
}
/// Parse a KCL object value.
pub(crate) fn object(i: &mut TokenSlice) -> PResult<Node<ObjectExpression>> {
let open = open_brace(i)?;
let start = open.start;
ignore_whitespace(i);
let properties: Vec<_> = repeat(
0..,
alt((
terminated(non_code_node.map(NonCodeOr::NonCode), whitespace),
terminated(
alt((object_property, object_property_same_key_and_val)),
property_separator,
)
.map(NonCodeOr::Code),
)),
)
.context(expected(
"a comma-separated list of key-value pairs, e.g. 'height = 4, width = 3'",
))
.parse_next(i)?;
ignore_trailing_comma(i);
ignore_whitespace(i);
let maybe_end = close_brace(i).map_err(|e| {
if let Some(mut err) = e.clone().into_inner() {
let start_range = open.as_source_range();
let end_range = i.as_source_range();
err.cause = Some(CompilationError::fatal(
SourceRange::from([start_range.start(), end_range.start(), end_range.module_id().as_usize()]),
"Encountered an unexpected character(s) before finding a closing brace(`}`) for the object",
));
ErrMode::Cut(err)
} else {
// ErrMode::Incomplete, not sure if it's actually possible to end up with this here
e
}
});
if maybe_end.is_err() {
// if there is a closing brace at some point, but it wasn't the next token, it's likely that they forgot a comma between some
// of the properties
let maybe_closing_brace: PResult<((), Token)> = peek(repeat_till(
0..,
none_of(|token: Token| {
// bail out early if we encounter something that is for sure not allowed in an
// object, otherwise we could seek to find a closing brace until the end of the
// file
RESERVED_WORDS
.keys()
.chain([",,", "[", "]", "{"].iter())
.any(|word| *word == token.value)
})
.void(),
one_of(|c: Token| c.value == "}"),
))
.parse_next(i);
let has_closing_brace = maybe_closing_brace.is_ok();
if has_closing_brace {
let start_range = i.as_source_range();
// okay to unwrap here because we checked it was Ok above
let end_range = maybe_closing_brace.unwrap().1.as_source_range();
let e = ContextError {
context: vec![],
cause: Some(CompilationError::fatal(
SourceRange::from([start_range.start(), end_range.end(), end_range.module_id().as_usize()]),
"Unexpected character encountered. You might be missing a comma in between properties.",
)),
};
return Err(ErrMode::Cut(e));
}
}
let end = maybe_end?.end;
// Sort the object's properties from the noncode nodes.
let (properties, non_code_nodes): (Vec<_>, BTreeMap<usize, _>) = properties.into_iter().enumerate().fold(
(Vec::new(), BTreeMap::new()),
|(mut properties, mut non_code_nodes), (i, e)| {
match e {
NonCodeOr::NonCode(x) => {
non_code_nodes.insert(i, vec![x]);
}
NonCodeOr::Code(x) => {
properties.push(x);
}
}
(properties, non_code_nodes)
},
);
let non_code_meta = NonCodeMeta {
non_code_nodes,
..Default::default()
};
Ok(Node::new(
ObjectExpression {
properties,
non_code_meta,
digest: None,
},
start,
end,
open.module_id,
))
}
/// Parse the % symbol, used to substitute a curried argument from a |> (pipe).
fn pipe_sub(i: &mut TokenSlice) -> PResult<Node<PipeSubstitution>> {
any.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Operator) && token.value == PIPE_SUBSTITUTION_OPERATOR {
Ok(Node::new(
PipeSubstitution { digest: None },
token.start,
token.end,
token.module_id,
))
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!(
"expected a pipe substitution symbol (%) but found {}",
token.value.as_str()
),
))
}
})
.context(expected("the substitution symbol, %"))
.parse_next(i)
}
fn else_if(i: &mut TokenSlice) -> PResult<Node<ElseIf>> {
let else_ = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "else" {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not 'else'", token.value.as_str()),
))
}
})
.context(expected("the 'else' keyword"))
.parse_next(i)?;
ignore_whitespace(i);
let _if = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "if" {
Ok(token.start)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not 'if'", token.value.as_str()),
))
}
})
.context(expected("the 'if' keyword"))
.parse_next(i)?;
ignore_whitespace(i);
let cond = expression(i)?;
ignore_whitespace(i);
let _ = open_brace(i)?;
let then_val = program
.verify(|block| block.ends_with_expr())
.parse_next(i)
.map(Box::new)?;
ignore_whitespace(i);
let end = close_brace(i)?.end;
ignore_whitespace(i);
Ok(Node::new(
ElseIf {
cond,
then_val,
digest: Default::default(),
},
else_.start,
end,
else_.module_id,
))
}
fn if_expr(i: &mut TokenSlice) -> PResult<BoxNode<IfExpression>> {
let if_ = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "if" {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not 'if'", token.value.as_str()),
))
}
})
.context(expected("the 'if' keyword"))
.parse_next(i)?;
let _ = whitespace(i)?;
let cond = expression(i).map(Box::new)?;
let _ = whitespace(i)?;
let _ = open_brace(i)?;
ignore_whitespace(i);
let then_val = program
.verify(|block| block.ends_with_expr())
.parse_next(i)
.map_err(|e| e.cut())
.map(Box::new)?;
ignore_whitespace(i);
let _ = close_brace(i)?;
ignore_whitespace(i);
let else_ifs = repeat(0.., else_if).parse_next(i)?;
ignore_whitespace(i);
let _ = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "else" {
Ok(token.start)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not 'else'", token.value.as_str()),
))
}
})
.context(expected("the 'else' keyword"))
.parse_next(i)?;
ignore_whitespace(i);
let _ = open_brace(i)?;
ignore_whitespace(i);
let final_else = program
.verify(|block| block.ends_with_expr())
.parse_next(i)
.map_err(|e| e.cut())
.map(Box::new)?;
ignore_whitespace(i);
let end = close_brace(i)?.end;
Ok(Node::boxed(
IfExpression {
cond,
then_val,
else_ifs,
final_else,
digest: Default::default(),
},
if_.start,
end,
if_.module_id,
))
}
fn function_expr(i: &mut TokenSlice) -> PResult<Expr> {
let fn_tok = opt(fun).parse_next(i)?;
ignore_whitespace(i);
let (result, has_arrow) = function_decl.parse_next(i)?;
if fn_tok.is_none() {
if has_arrow {
ParseContext::warn(
CompilationError::err(
result.as_source_range().start_as_range(),
"Missing `fn` in function declaration",
)
.with_suggestion("Add `fn`", "fn", None, Tag::None),
);
} else {
let err = CompilationError::fatal(result.as_source_range(), "Anonymous function requires `fn` before `(`");
return Err(ErrMode::Cut(err.into()));
}
}
Ok(Expr::FunctionExpression(Box::new(result)))
}
// Looks like
// (arg0, arg1) {
// const x = arg0 + arg1;
// return x
// }
fn function_decl(i: &mut TokenSlice) -> PResult<(Node<FunctionExpression>, bool)> {
fn return_type(i: &mut TokenSlice) -> PResult<Node<Type>> {
colon(i)?;
ignore_whitespace(i);
argument_type(i)
}
let open = open_paren(i)?;
let start = open.start;
let params = parameters(i)?;
close_paren(i)?;
ignore_whitespace(i);
let arrow = opt(big_arrow).parse_next(i)?;
ignore_whitespace(i);
// Optional return type.
let return_type = opt(return_type).parse_next(i)?;
ignore_whitespace(i);
let brace = open_brace(i)?;
let close: Option<(Vec<Vec<Token>>, Token)> = opt((repeat(0.., whitespace), close_brace)).parse_next(i)?;
let (body, end) = match close {
Some((_, end)) => (
Node::new(Program::default(), brace.end, brace.end, brace.module_id),
end.end,
),
None => (function_body(i)?, close_brace(i)?.end),
};
let result = Node::new(
FunctionExpression {
params,
body,
return_type,
digest: None,
},
start,
end,
open.module_id,
);
let has_arrow =
if let Some(arrow) = arrow {
ParseContext::warn(
CompilationError::err(arrow.as_source_range(), "Unnecessary `=>` in function declaration")
.with_suggestion("Remove `=>`", "", None, Tag::Unnecessary),
);
true
} else {
false
};
Ok((result, has_arrow))
}
/// E.g. `person.name`
fn member_expression_dot(i: &mut TokenSlice) -> PResult<(LiteralIdentifier, usize, bool)> {
period.parse_next(i)?;
let property = nameable_identifier
.map(Box::new)
.map(LiteralIdentifier::Identifier)
.parse_next(i)?;
let end = property.end();
Ok((property, end, false))
}
/// E.g. `people[0]` or `people[i]` or `people['adam']`
fn member_expression_subscript(i: &mut TokenSlice) -> PResult<(LiteralIdentifier, usize, bool)> {
let _ = open_bracket.parse_next(i)?;
let property = alt((
literal.map(LiteralIdentifier::Literal),
nameable_identifier.map(Box::new).map(LiteralIdentifier::Identifier),
))
.parse_next(i)?;
let end = close_bracket.parse_next(i)?.end;
let computed = matches!(property, LiteralIdentifier::Identifier(_));
Ok((property, end, computed))
}
/// Get a property of an object, or an index of an array, or a member of a collection.
/// Can be arbitrarily nested, e.g. `people[i]['adam'].age`.
fn member_expression(i: &mut TokenSlice) -> PResult<Node<MemberExpression>> {
// This is an identifier, followed by a sequence of members (aka properties)
// First, the identifier.
let id = nameable_identifier.context(expected("the identifier of the object whose property you're trying to access, e.g. in 'shape.size.width', 'shape' is the identifier")).parse_next(i)?;
// Now a sequence of members.
let member = alt((member_expression_dot, member_expression_subscript)).context(expected("a member/property, e.g. size.x and size['height'] and size[0] are all different ways to access a member/property of 'size'"));
let mut members: Vec<_> = repeat(1.., member)
.context(expected("a sequence of at least one members/properties"))
.parse_next(i)?;
// Process the first member.
// It's safe to call remove(0), because the vec is created from repeat(1..),
// which is guaranteed to have >=1 elements.
let (property, end, computed) = members.remove(0);
let start = id.start;
let module_id = id.module_id;
let initial_member_expression = Node::new(
MemberExpression {
object: MemberObject::Identifier(Box::new(id)),
computed,
property,
digest: None,
},
start,
end,
module_id,
);
// Each remaining member wraps the current member expression inside another member expression.
Ok(members
.into_iter()
// Take the accumulated member expression from the previous iteration,
// and use it as the `object` of a new, bigger member expression.
.fold(initial_member_expression, |accumulated, (property, end, computed)| {
Node::new(
MemberExpression {
object: MemberObject::MemberExpression(Box::new(accumulated)),
computed,
property,
digest: None,
},
start,
end,
module_id,
)
}))
}
/// Find a noncode node which occurs just after a body item,
/// such that if the noncode item is a comment, it might be an inline comment.
fn noncode_just_after_code(i: &mut TokenSlice) -> PResult<Node<NonCodeNode>> {
let ws = opt(whitespace).parse_next(i)?;
// What is the preceding whitespace like?
let (has_newline, has_empty_line) = if let Some(ref ws) = ws {
(
ws.iter().any(|token| token.value.contains('\n')),
ws.iter().any(|token| count_in('\n', &token.value) >= 2),
)
} else {
(false, false)
};
// Look for a non-code node (e.g. comment)
let nc = non_code_node_no_leading_whitespace
.map(|nc| {
if has_empty_line {
// There's an empty line between the body item and the comment,
// This means the comment is a NewLineBlockComment!
let value = match nc.inner.value {
// Change block comments to inline, as discussed above
NonCodeValue::BlockComment { value, style } => NonCodeValue::NewLineBlockComment { value, style },
// Other variants don't need to change.
x @ NonCodeValue::InlineComment { .. } => x,
x @ NonCodeValue::NewLineBlockComment { .. } => x,
x @ NonCodeValue::NewLine => x,
};
Node::new(
NonCodeNode { value, ..nc.inner },
nc.start.saturating_sub(1),
nc.end,
nc.module_id,
)
} else if has_newline {
// Nothing has to change, a single newline does not need preserving.
nc
} else {
// There's no newline between the body item and comment,
// so if this is a comment, it must be inline with code.
let value = match nc.inner.value {
// Change block comments to inline, as discussed above
NonCodeValue::BlockComment { value, style } => NonCodeValue::InlineComment { value, style },
// Other variants don't need to change.
x @ NonCodeValue::InlineComment { .. } => x,
x @ NonCodeValue::NewLineBlockComment { .. } => x,
x @ NonCodeValue::NewLine => x,
};
Node::new(NonCodeNode { value, ..nc.inner }, nc.start, nc.end, nc.module_id)
}
})
.map(|nc| Node::new(nc.inner, nc.start.saturating_sub(1), nc.end, nc.module_id))
.parse_next(i)?;
Ok(nc)
}
// the large_enum_variant lint below introduces a LOT of code complexity in a
// match!() that's super clean that isn't worth it for the marginal space
// savings. revisit if that's a lie.
#[derive(Debug)]
#[allow(clippy::large_enum_variant)]
enum WithinFunction {
Annotation(Node<Annotation>),
BodyItem((BodyItem, Option<Node<NonCodeNode>>)),
NonCode(Node<NonCodeNode>),
}
impl WithinFunction {
fn is_newline(&self) -> bool {
match self {
WithinFunction::NonCode(nc) => nc.value == NonCodeValue::NewLine,
_ => false,
}
}
}
fn body_items_within_function(i: &mut TokenSlice) -> PResult<WithinFunction> {
// Any of the body item variants, each of which can optionally be followed by a comment.
// If there is a comment, it may be preceded by whitespace.
let item = dispatch! {peek(any);
token if token.visibility_keyword().is_some() => (alt((import_stmt.map(BodyItem::ImportStatement), ty_decl.map(BodyItem::TypeDeclaration), declaration.map(BodyItem::VariableDeclaration))), opt(noncode_just_after_code)).map(WithinFunction::BodyItem),
token if token.value == "type" && matches!(token.token_type, TokenType::Keyword) =>
(ty_decl.map(BodyItem::TypeDeclaration), opt(noncode_just_after_code)).map(WithinFunction::BodyItem),
token if token.declaration_keyword().is_some() =>
(declaration.map(BodyItem::VariableDeclaration), opt(noncode_just_after_code)).map(WithinFunction::BodyItem),
token if token.value == "import" && matches!(token.token_type, TokenType::Keyword) =>
(import_stmt.map(BodyItem::ImportStatement), opt(noncode_just_after_code)).map(WithinFunction::BodyItem),
Token { ref value, .. } if value == "return" =>
(return_stmt.map(BodyItem::ReturnStatement), opt(noncode_just_after_code)).map(WithinFunction::BodyItem),
token if !token.is_code_token() => {
non_code_node.map(WithinFunction::NonCode)
},
token if token.token_type == TokenType::At => {
annotation.map(WithinFunction::Annotation)
},
_ =>
alt((
(
declaration.map(BodyItem::VariableDeclaration),
opt(noncode_just_after_code)
).map(WithinFunction::BodyItem),
(
expression_stmt.map(BodyItem::ExpressionStatement),
opt(noncode_just_after_code)
).map(WithinFunction::BodyItem),
))
}
.context(expected("a function body items (functions are made up of variable declarations, expressions, and return statements, each of those is a possible body item"))
.parse_next(i)?;
Ok(item)
}
/// Parse the body of a user-defined function.
fn function_body(i: &mut TokenSlice) -> PResult<Node<Program>> {
let leading_whitespace_start = alt((
peek(non_code_node).map(|_| None),
// Subtract 1 from `t.start` to match behaviour of the old parser.
// Consider removing the -1 in the future because I think it's inaccurate, but for now,
// I prefer to match the old parser exactly when I can.
opt(whitespace).map(|tok| tok.and_then(|t| t.first().map(|t| (t.start.saturating_sub(1), t.module_id)))),
))
.parse_next(i)?;
let mut things_within_body = Vec::new();
// Parse the first item
things_within_body.push(body_items_within_function.parse_next(i)?);
// This loop is complicated! I'm sorry!
// It's almost identical to the loop in `winnow::combinator::separated1`,
// see <https://docs.rs/winnow/latest/winnow/combinator/fn.separated1.html>,
// where the "main" parser is body_items_within_function and the `sep` (separator) parser is
// ws_with_newline.
//
// Except for one thing.
//
// In this case, one of the body items being matched could be a whitespace with a newline,
// and that could _also_ be the separator.
//
// So, if both the main parser and the `sep` parser within `separated1` try to match the same
// token, the main parser will consume it and then the `sep` parser will fail.
//
// The solution is that this parser should check if the last matched body item was an empty line,
// and if so, then ignore the separator parser for the current iteration.
loop {
let last_match_was_empty_line = things_within_body.last().map(|wf| wf.is_newline()).unwrap_or(false);
use winnow::stream::Stream;
let start = i.checkpoint();
let len = i.eof_offset();
let found_ws = ws_with_newline.parse_next(i);
// The separator whitespace might be important:
// if it has an empty line, it should be considered a noncode token, because the user
// deliberately put an empty line there. We should track this and preserve it.
if let Ok(ref ws_token) = found_ws {
if ws_token.value.contains("\n\n") || ws_token.value.contains("\n\r\n") {
things_within_body.push(WithinFunction::NonCode(Node::new(
NonCodeNode {
value: NonCodeValue::NewLine,
digest: None,
},
ws_token.start,
ws_token.end,
ws_token.module_id,
)));
}
}
match (found_ws, last_match_was_empty_line) {
(Ok(_), _) | (_, true) => {
// Infinite loop check: this loop must always consume tokens from the input.
// That can either happen through the `sep` parser (i.e. ws_with_newline) or through
// the main parser (body_items_within_function).
// LHS of this checks fht
if i.eof_offset() == len && !last_match_was_empty_line {
use winnow::error::ParserError;
return Err(ErrMode::assert(i, "sep parsers must always consume"));
}
match body_items_within_function.parse_next(i) {
Err(ErrMode::Backtrack(_)) => {
i.reset(&start);
break;
}
Err(e) => return Err(e),
Ok(o) => {
things_within_body.push(o);
}
}
}
(Err(ErrMode::Backtrack(_)), _) => {
i.reset(&start);
break;
}
(Err(e), _) => return Err(e),
}
}
let mut body = Vec::new();
let mut inner_attrs = Vec::new();
let mut pending_attrs = Vec::new();
let mut non_code_meta = NonCodeMeta::default();
let mut pending_non_code: Vec<Node<NonCodeNode>> = Vec::new();
let mut end = 0;
let mut start = leading_whitespace_start;
macro_rules! handle_pending_non_code {
($node: ident) => {
if !pending_non_code.is_empty() {
let start = pending_non_code[0].start;
let force_disoc = matches!(
&pending_non_code.last().unwrap().inner.value,
NonCodeValue::NewLine
);
let mut comments = Vec::new();
for nc in pending_non_code {
match nc.inner.value {
NonCodeValue::BlockComment { value, style } if !force_disoc => {
comments.push(style.render_comment(&value));
}
NonCodeValue::NewLineBlockComment { value, style } if !force_disoc => {
if comments.is_empty() && nc.start != 0 {
comments.push(String::new());
comments.push(String::new());
}
comments.push(style.render_comment(&value));
}
NonCodeValue::NewLine if !force_disoc && !comments.is_empty() => {
comments.push(String::new());
comments.push(String::new());
}
_ => {
if body.is_empty() {
non_code_meta.start_nodes.push(nc);
} else {
non_code_meta.insert(body.len() - 1, nc);
}
}
}
}
$node.set_comments(comments, start);
pending_non_code = Vec::new();
}
};
}
for thing_in_body in things_within_body {
match thing_in_body {
WithinFunction::Annotation(mut attr) => {
if start.is_none() {
start = Some((attr.start, attr.module_id))
}
handle_pending_non_code!(attr);
if attr.is_inner() {
inner_attrs.push(attr);
} else {
pending_attrs.push(attr);
}
}
WithinFunction::BodyItem((mut b, maybe_noncode)) => {
if start.is_none() {
start = Some((b.start(), b.module_id()));
}
end = b.end();
if !pending_attrs.is_empty() {
b.set_attrs(pending_attrs);
pending_attrs = Vec::new();
}
handle_pending_non_code!(b);
body.push(b);
if let Some(nc) = maybe_noncode {
end = nc.end;
pending_non_code.push(nc);
}
}
WithinFunction::NonCode(nc) => {
if start.is_none() {
start = Some((nc.start, nc.module_id));
}
end = nc.end;
pending_non_code.push(nc);
}
}
}
let start = start.expect(
"the `things_within_body` vec should have looped at least once, and each loop overwrites `start` if it is None",
);
if !pending_attrs.is_empty() {
for a in pending_attrs {
ParseContext::err(CompilationError::err(
a.as_source_range(),
"Attribute is not attached to any item",
));
}
return Err(ErrMode::Cut(
CompilationError::fatal(
SourceRange::new(start.0, end, start.1),
"Block contains un-attached attributes",
)
.into(),
));
}
for nc in pending_non_code {
if body.is_empty() {
non_code_meta.start_nodes.push(nc);
} else {
non_code_meta.insert(body.len() - 1, nc);
}
}
// Safe to unwrap `body.first()` because `body` is `separated1` therefore guaranteed
// to have len >= 1.
let end_ws = opt(whitespace)
.parse_next(i)?
.and_then(|ws| ws.first().map(|tok| tok.end));
if let Some(end_ws) = end_ws {
end = end.max(end_ws);
}
end += 1;
Ok(Node::new(
Program {
body,
non_code_meta,
inner_attrs,
shebang: None,
digest: None,
},
start.0,
end,
start.1,
))
}
fn import_items(i: &mut TokenSlice) -> PResult<NodeList<ImportItem>> {
separated(1.., import_item, comma_sep)
.parse_next(i)
.map_err(|e| e.cut())
}
fn glob(i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Operator, "*"))
.context(expected("the multiple import operator, *"))
.parse_next(i)
}
fn import_stmt(i: &mut TokenSlice) -> PResult<BoxNode<ImportStatement>> {
let (visibility, visibility_token) = opt(terminated(item_visibility, whitespace))
.parse_next(i)?
.map_or((ItemVisibility::Default, None), |pair| (pair.0, Some(pair.1)));
let import_token = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "import" {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not the 'import' keyword", token.value.as_str()),
))
}
})
.context(expected("the 'import' keyword"))
.parse_next(i)?;
let module_id = import_token.module_id;
let start = visibility_token.unwrap_or(import_token).start;
require_whitespace(i)?;
let (mut selector, path) = alt((
string_literal.map(|s| (ImportSelector::None { alias: None }, Some(s))),
glob.map(|t| {
let s = t.as_source_range();
(
ImportSelector::Glob(Node::new((), s.start(), s.end(), s.module_id())),
None,
)
}),
import_items.map(|items| (ImportSelector::List { items }, None)),
))
.parse_next(i)?;
let path = match path {
Some(path) => path,
None => {
require_whitespace(i)?;
any.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword | TokenType::Word) && token.value == "from" {
Ok(())
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not the 'from' keyword", token.value.as_str()),
))
}
})
.context(expected("the 'from' keyword"))
.parse_next(i)
.map_err(|e| e.cut())?;
require_whitespace(i)?;
string_literal(i)?
}
};
let mut end: usize = path.end;
if let ImportSelector::None {
alias: ref mut selector_alias,
} = selector
{
if let Some(alias) = opt(preceded(
(whitespace, import_as_keyword, whitespace),
identifier.context(expected("an identifier to alias the import")),
))
.parse_next(i)?
{
end = alias.end;
*selector_alias = Some(alias);
}
}
let path_string = match path.inner.value {
LiteralValue::String(s) => s,
_ => unreachable!(),
};
let path = validate_path_string(
path_string,
selector.exposes_imported_name(),
SourceRange::new(path.start, path.end, path.module_id),
)?;
if matches!(path, ImportPath::Foreign { .. }) && selector.imports_items() {
return Err(ErrMode::Cut(
CompilationError::fatal(
SourceRange::new(start, end, module_id),
"individual items can only be imported from KCL files",
)
.into(),
));
}
Ok(Node::boxed(
ImportStatement {
selector,
visibility,
path,
digest: None,
},
start,
end,
module_id,
))
}
/// Validates the path string in an `import` statement.
///
/// `var_name` is `true` if the path will be used as a variable name.
fn validate_path_string(path_string: String, var_name: bool, path_range: SourceRange) -> PResult<ImportPath> {
if path_string.is_empty() {
return Err(ErrMode::Cut(
CompilationError::fatal(path_range, "import path cannot be empty").into(),
));
}
if var_name
&& (path_string.starts_with("_")
|| path_string.contains('-')
|| path_string.chars().filter(|c| *c == '.').count() > 1)
{
return Err(ErrMode::Cut(
CompilationError::fatal(path_range, "import path is not a valid identifier and must be aliased.").into(),
));
}
let path = if path_string.ends_with(".kcl") {
if path_string
.chars()
.any(|c| !c.is_ascii_alphanumeric() && c != '_' && c != '-' && c != '.')
{
return Err(ErrMode::Cut(
CompilationError::fatal(
path_range,
"import path may only contain alphanumeric characters, underscore, hyphen, and period. KCL files in other directories are not yet supported.",
)
.into(),
));
}
ImportPath::Kcl { filename: path_string }
} else if path_string.starts_with("std::") {
ParseContext::warn(CompilationError::err(
path_range,
"explicit imports from the standard library are experimental, likely to be buggy, and likely to change.",
));
let segments: Vec<String> = path_string.split("::").map(str::to_owned).collect();
for s in &segments {
if s.chars().any(|c| !c.is_ascii_alphanumeric() && c != '_') || s.starts_with('_') {
return Err(ErrMode::Cut(
CompilationError::fatal(path_range, "invalid path in import statement.").into(),
));
}
}
// For now we only support importing from singly-nested modules inside std.
if segments.len() != 2 {
return Err(ErrMode::Cut(
CompilationError::fatal(
path_range,
format!("Invalid import path for import from std: {}.", path_string),
)
.into(),
));
}
ImportPath::Std { path: segments }
} else if path_string.contains('.') {
let extn = std::path::Path::new(&path_string).extension().unwrap_or_default();
if !IMPORT_FILE_EXTENSIONS.contains(&extn.to_string_lossy().to_string()) {
ParseContext::warn(CompilationError::err(
path_range,
format!("unsupported import path format. KCL files can be imported from the current project, CAD files with the following formats are supported: {}", IMPORT_FILE_EXTENSIONS.join(", ")),
))
}
ImportPath::Foreign { path: path_string }
} else {
return Err(ErrMode::Cut(
CompilationError::fatal(
path_range,
format!("unsupported import path format. KCL files can be imported from the current project, CAD files with the following formats are supported: {}", IMPORT_FILE_EXTENSIONS.join(", ")),
)
.into(),
));
};
Ok(path)
}
fn import_item(i: &mut TokenSlice) -> PResult<Node<ImportItem>> {
let name = nameable_identifier
.context(expected("an identifier to import"))
.parse_next(i)?;
let start = name.start;
let module_id = name.module_id;
let alias = opt(preceded(
(whitespace, import_as_keyword, whitespace),
identifier.context(expected("an identifier to alias the import")),
))
.parse_next(i)?;
let end = if let Some(ref alias) = alias {
alias.end
} else {
name.end
};
Ok(Node::new(
ImportItem {
name,
alias,
digest: None,
},
start,
end,
module_id,
))
}
fn import_as_keyword(i: &mut TokenSlice) -> PResult<Token> {
any.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword | TokenType::Word) && token.value == "as" {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not the 'as' keyword", token.value.as_str()),
))
}
})
.context(expected("the 'as' keyword"))
.parse_next(i)
}
/// Parse a return statement of a user-defined function, e.g. `return x`.
fn return_stmt(i: &mut TokenSlice) -> PResult<Node<ReturnStatement>> {
let ret = any
.try_map(|token: Token| {
if matches!(token.token_type, TokenType::Keyword) && token.value == "return" {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!("{} is not a return keyword", token.value.as_str()),
))
}
})
.context(expected(
"the 'return' keyword, which ends your function (and becomes this function's value when it's called)",
))
.parse_next(i)?;
require_whitespace(i)?;
let argument = expression(i)?;
Ok(Node::new_node(
ret.start,
argument.end(),
ret.module_id,
ReturnStatement { argument, digest: None },
))
}
/// Parse a KCL expression.
fn expression(i: &mut TokenSlice) -> PResult<Expr> {
alt((
pipe_expression.map(Box::new).map(Expr::PipeExpression),
expression_but_not_pipe,
))
.context(expected("a KCL value"))
.parse_next(i)
}
fn expression_but_not_pipe(i: &mut TokenSlice) -> PResult<Expr> {
let mut expr = alt((
binary_expression.map(Box::new).map(Expr::BinaryExpression),
unary_expression.map(Box::new).map(Expr::UnaryExpression),
expr_allowed_in_pipe_expr,
))
.context(expected("a KCL value"))
.parse_next(i)?;
let ty = opt((colon, opt(whitespace), argument_type)).parse_next(i)?;
if let Some((_, _, ty)) = ty {
ParseContext::warn(CompilationError::err((&ty).into(), "Type ascription is experimental."));
expr = Expr::AscribedExpression(Box::new(Ascription::new(expr, ty)))
}
let label = opt(label).parse_next(i)?;
match label {
Some(label) => Ok(Expr::LabelledExpression(Box::new(LabelledExpression::new(expr, label)))),
None => Ok(expr),
}
}
fn label(i: &mut TokenSlice) -> PResult<Node<Identifier>> {
let result = preceded(
(whitespace, import_as_keyword, whitespace),
identifier.context(expected("an identifier")),
)
.parse_next(i)?;
ParseContext::warn(CompilationError::err(
SourceRange::new(result.start, result.end, result.module_id),
"Using `as` for tagging expressions is experimental, likely to be buggy, and likely to change",
));
Ok(result)
}
fn unnecessarily_bracketed(i: &mut TokenSlice) -> PResult<Expr> {
delimited(
terminated(open_paren, opt(whitespace)),
expression,
preceded(opt(whitespace), close_paren),
)
.parse_next(i)
}
fn expr_allowed_in_pipe_expr(i: &mut TokenSlice) -> PResult<Expr> {
alt((
member_expression.map(Box::new).map(Expr::MemberExpression),
bool_value.map(Expr::Literal),
tag.map(Box::new).map(Expr::TagDeclarator),
literal.map(Expr::Literal),
fn_call.map(Box::new).map(Expr::CallExpression),
fn_call_kw.map(Box::new).map(Expr::CallExpressionKw),
name.map(Box::new).map(Expr::Name),
array,
object.map(Box::new).map(Expr::ObjectExpression),
pipe_sub.map(Box::new).map(Expr::PipeSubstitution),
function_expr,
if_expr.map(Expr::IfExpression),
unnecessarily_bracketed,
))
.context(expected("a KCL expression (but not a pipe expression)"))
.parse_next(i)
}
fn possible_operands(i: &mut TokenSlice) -> PResult<Expr> {
alt((
unary_expression.map(Box::new).map(Expr::UnaryExpression),
bool_value.map(Expr::Literal),
member_expression.map(Box::new).map(Expr::MemberExpression),
literal.map(Expr::Literal),
fn_call.map(Box::new).map(Expr::CallExpression),
name.map(Box::new).map(Expr::Name),
binary_expr_in_parens.map(Box::new).map(Expr::BinaryExpression),
unnecessarily_bracketed,
))
.context(expected(
"a KCL value which can be used as an argument/operand to an operator",
))
.parse_next(i)
}
/// Parse an item visibility specifier, e.g. export.
fn item_visibility(i: &mut TokenSlice) -> PResult<(ItemVisibility, Token)> {
any.verify_map(|token: Token| {
if token.token_type == TokenType::Keyword && token.value == "export" {
Some((ItemVisibility::Export, token))
} else {
None
}
})
.context(expected("item visibility, e.g. 'export'"))
.parse_next(i)
}
fn declaration_keyword(i: &mut TokenSlice) -> PResult<(VariableKind, Token)> {
let res = any
.verify_map(|token: Token| token.declaration_keyword().map(|kw| (kw, token)))
.parse_next(i)?;
Ok(res)
}
/// Parse a variable/constant declaration.
fn declaration(i: &mut TokenSlice) -> PResult<BoxNode<VariableDeclaration>> {
let (visibility, visibility_token) = opt(terminated(item_visibility, whitespace))
.parse_next(i)?
.map_or((ItemVisibility::Default, None), |pair| (pair.0, Some(pair.1)));
let decl_token = opt(declaration_keyword).parse_next(i)?;
if decl_token.is_some() {
// If there was a declaration keyword like `fn`, then it must be followed by some spaces.
// `fnx = ...` is not valid!
require_whitespace(i)?;
}
let id = binding_name
.context(expected(
"an identifier, which becomes name you're binding the value to",
))
.parse_next(i)?;
let (kind, mut start, dec_end) = if let Some((kind, token)) = &decl_token {
(*kind, token.start, token.end)
} else {
(VariableKind::Const, id.start, id.end)
};
if let Some(token) = visibility_token {
start = token.start;
}
ignore_whitespace(i);
let val =
if kind == VariableKind::Fn {
let eq = opt(equals).parse_next(i)?;
ignore_whitespace(i);
let val = function_decl
.map(|t| Box::new(t.0))
.map(Expr::FunctionExpression)
.context(expected("a KCL function expression, like () { return 1 }"))
.parse_next(i);
if let Some(t) = eq {
ParseContext::warn(
CompilationError::err(t.as_source_range(), "Unnecessary `=` in function declaration")
.with_suggestion("Remove `=`", "", None, Tag::Unnecessary),
);
}
val
} else {
equals(i)?;
ignore_whitespace(i);
let val = expression
.try_map(|val| {
// Function bodies can be used if and only if declaring a function.
// Check the 'if' direction:
if matches!(val, Expr::FunctionExpression(_)) {
return Err(CompilationError::fatal(
SourceRange::new(start, dec_end, id.module_id),
format!("Expected a `fn` variable kind, found: `{}`", kind),
));
}
Ok(val)
})
.context(expected("a KCL value, which is being bound to a variable"))
.parse_next(i);
if let Some((_, tok)) = decl_token {
let range_to_remove = SourceRange::new(tok.start, id.start, id.module_id);
ParseContext::warn(
CompilationError::err(
tok.as_source_range(),
format!(
"Using `{}` to declare constants is deprecated; no keyword is required",
tok.value
),
)
.with_suggestion(
format!("Remove `{}`", tok.value),
"",
Some(range_to_remove),
Tag::Deprecated,
),
);
}
val
}
.map_err(|e| e.cut())?;
let end = val.end();
let module_id = id.module_id;
Ok(Node::boxed(
VariableDeclaration {
declaration: Node::new_node(
id.start,
end,
module_id,
VariableDeclarator {
id,
init: val,
digest: None,
},
),
visibility,
kind,
digest: None,
},
start,
end,
module_id,
))
}
fn ty_decl(i: &mut TokenSlice) -> PResult<BoxNode<TypeDeclaration>> {
let (visibility, visibility_token) = opt(terminated(item_visibility, whitespace))
.parse_next(i)?
.map_or((ItemVisibility::Default, None), |pair| (pair.0, Some(pair.1)));
let decl_token = ty(i)?;
let start = visibility_token.map(|t| t.start).unwrap_or_else(|| decl_token.start);
whitespace(i)?;
let name = identifier(i)?;
let mut end = name.end;
let args = if peek((opt(whitespace), open_paren)).parse_next(i).is_ok() {
ignore_whitespace(i);
open_paren(i)?;
ignore_whitespace(i);
let args: Vec<_> = separated(0.., identifier, comma_sep).parse_next(i)?;
ignore_trailing_comma(i);
ignore_whitespace(i);
end = close_paren(i)?.end;
Some(args)
} else {
None
};
let alias = if peek((opt(whitespace), equals)).parse_next(i).is_ok() {
ignore_whitespace(i);
equals(i)?;
ignore_whitespace(i);
let ty = argument_type(i)?;
ParseContext::warn(CompilationError::err(
ty.as_source_range(),
"Type aliases are experimental, likely to change in the future, and likely to not work properly.",
));
Some(ty)
} else {
None
};
let module_id = name.module_id;
let result = Node::boxed(
TypeDeclaration {
name,
args,
alias,
visibility,
digest: None,
},
start,
end,
module_id,
);
ParseContext::warn(CompilationError::err(
result.as_source_range(),
"Type declarations are experimental, likely to change, and may or may not do anything useful.",
));
Ok(result)
}
impl TryFrom<Token> for Node<Identifier> {
type Error = CompilationError;
fn try_from(token: Token) -> Result<Self, Self::Error> {
if token.token_type == TokenType::Word {
Ok(Node::new(
Identifier {
name: token.value,
digest: None,
},
token.start,
token.end,
token.module_id,
))
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!(
"Cannot assign a variable to a reserved keyword: {}",
token.value.as_str()
),
))
}
}
}
/// Parse a KCL identifier (name of a constant/variable/function)
fn identifier(i: &mut TokenSlice) -> PResult<Node<Identifier>> {
any.try_map(Node::<Identifier>::try_from)
.context(expected("an identifier, e.g. 'width' or 'myPart'"))
.parse_next(i)
}
fn nameable_identifier(i: &mut TokenSlice) -> PResult<Node<Identifier>> {
let result = identifier.parse_next(i)?;
if !result.is_nameable() {
let desc = if result.name == "_" {
"Underscores"
} else {
"Names with a leading underscore"
};
ParseContext::err(CompilationError::err(
SourceRange::new(result.start, result.end, result.module_id),
format!("{desc} cannot be referred to, only declared."),
));
}
Ok(result)
}
fn name(i: &mut TokenSlice) -> PResult<Node<Name>> {
let abs_path = opt(double_colon).parse_next(i)?;
let mut idents: NodeList<Identifier> = separated(1.., nameable_identifier, double_colon)
.parse_next(i)
.map_err(|e| e.backtrack())?;
let mut start = idents[0].start;
if let Some(abs_path) = &abs_path {
start = abs_path.start;
}
let abs_path = abs_path.is_some();
let name = idents.pop().unwrap();
let end = name.end;
let module_id = name.module_id;
let result = Node::new(
Name {
name,
path: idents,
abs_path,
digest: None,
},
start,
end,
module_id,
);
if let Some(suggestion) = super::deprecation(&result.to_string(), DeprecationKind::Const) {
ParseContext::warn(
CompilationError::err(
result.as_source_range(),
format!("Using `{result}` is deprecated, prefer using `{suggestion}`."),
)
.with_suggestion(
format!("Replace `{result}` with `{suggestion}`"),
suggestion,
None,
Tag::Deprecated,
),
);
}
Ok(result)
}
impl TryFrom<Token> for Node<TagDeclarator> {
type Error = CompilationError;
fn try_from(token: Token) -> Result<Self, Self::Error> {
match token.token_type {
TokenType::Word => {
Ok(Node::new(
TagDeclarator {
// We subtract 1 from the start because the tag starts with a `$`.
name: token.value,
digest: None,
},
token.start - 1,
token.end,
token.module_id,
))
}
TokenType::Number => Err(CompilationError::fatal(
token.as_source_range(),
format!(
"Tag names must not start with a number. Tag starts with `{}`",
token.value.as_str()
),
)),
// e.g. `line(%, $)` or `line(%, $ , 5)`
TokenType::Brace | TokenType::Whitespace | TokenType::Comma => Err(CompilationError::fatal(
token.as_source_range(),
"Tag names must not be empty".to_string(),
)),
TokenType::Type => Err(CompilationError::fatal(
token.as_source_range(),
format!("Cannot assign a tag to a reserved keyword: {}", token.value.as_str()),
)),
_ => Err(CompilationError::fatal(
token.as_source_range(),
// this is `start with` because if most of these cases are in the middle, it ends
// up hitting a different error path(e.g. including a bang) or being valid(e.g. including a comment) since it will get broken up into
// multiple tokens
format!("Tag names must not start with a {}", token.token_type),
)),
}
}
}
impl Node<TagDeclarator> {
fn into_valid_binding_name(self) -> Result<Self, CompilationError> {
// Make sure they are not assigning a variable to a stdlib function.
if crate::std::name_in_stdlib(&self.name) {
return Err(CompilationError::fatal(
SourceRange::from(&self),
format!("Cannot assign a tag to a reserved keyword: {}", self.name),
));
}
Ok(self)
}
}
/// Parse a Kcl tag that starts with a `$`.
fn tag(i: &mut TokenSlice) -> PResult<Node<TagDeclarator>> {
dollar.parse_next(i)?;
let tag_declarator = any
.try_map(Node::<TagDeclarator>::try_from)
.context(expected("a tag, e.g. '$seg01' or '$line01'"))
.parse_next(i)
.map_err(|e| e.cut())?;
// Now that we've parsed a tag declarator, verify that it's not a stdlib
// name. If it is, stop backtracking.
tag_declarator
.into_valid_binding_name()
.map_err(|e| ErrMode::Cut(ContextError::from(e)))
}
/// Helper function. Matches any number of whitespace tokens and ignores them.
fn ignore_whitespace(i: &mut TokenSlice) {
let _: PResult<()> = repeat(0.., whitespace).parse_next(i);
}
// A helper function to ignore a trailing comma.
fn ignore_trailing_comma(i: &mut TokenSlice) {
let _ = opt(comma).parse_next(i);
}
/// Matches at least 1 whitespace.
fn require_whitespace(i: &mut TokenSlice) -> PResult<()> {
repeat(1.., whitespace).parse_next(i)
}
fn unary_expression(i: &mut TokenSlice) -> PResult<Node<UnaryExpression>> {
const EXPECTED: &str = "expected a unary operator (like '-', the negative-numeric operator),";
let (operator, op_token) = any
.try_map(|token: Token| match token.token_type {
TokenType::Operator if token.value == "-" => Ok((UnaryOperator::Neg, token)),
TokenType::Operator => Err(CompilationError::fatal(
token.as_source_range(),
format!("{EXPECTED} but found {} which is an operator, but not a unary one (unary operators apply to just a single operand, your operator applies to two or more operands)", token.value.as_str(),),
)),
TokenType::Bang => Ok((UnaryOperator::Not, token)),
other => Err(CompilationError::fatal( token.as_source_range(), format!("{EXPECTED} but found {} which is {}", token.value.as_str(), other,) )),
})
.context(expected("a unary expression, e.g. -x or -3"))
.parse_next(i)?;
let argument = operand.parse_next(i)?;
Ok(Node::new_node(
op_token.start,
argument.end(),
op_token.module_id,
UnaryExpression {
operator,
argument,
digest: None,
},
))
}
/// Consume tokens that make up a binary expression, but don't actually return them.
/// Why not?
/// Because this is designed to be used with .take() within the `binary_expression` parser.
fn binary_expression_tokens(i: &mut TokenSlice) -> PResult<Vec<BinaryExpressionToken>> {
let first = operand.parse_next(i).map(BinaryExpressionToken::from)?;
let remaining: Vec<_> = repeat(
1..,
(
preceded(opt(whitespace), binary_operator).map(BinaryExpressionToken::from),
preceded(opt(whitespace), operand).map(BinaryExpressionToken::from),
),
)
.context(expected(
"one or more binary operators (like + or -) and operands for them, e.g. 1 + 2 - 3",
))
.parse_next(i)?;
let mut out = Vec::with_capacity(1 + 2 * remaining.len());
out.push(first);
out.extend(remaining.into_iter().flat_map(|(a, b)| [a, b]));
Ok(out)
}
/// Parse an infix binary expression.
fn binary_expression(i: &mut TokenSlice) -> PResult<Node<BinaryExpression>> {
// Find the slice of tokens which makes up the binary expression
let tokens = binary_expression_tokens.parse_next(i)?;
// Pass the token slice into the specialized math parser, for things like
// precedence and converting infix operations to an AST.
let expr = super::math::parse(tokens).map_err(|e| ErrMode::Backtrack(e.into()))?;
Ok(expr)
}
fn binary_expr_in_parens(i: &mut TokenSlice) -> PResult<Node<BinaryExpression>> {
let span_with_brackets = bracketed_section.take().parse_next(i)?;
let mut span_no_brackets = span_with_brackets.without_ends();
let expr = binary_expression.parse_next(&mut span_no_brackets)?;
Ok(expr)
}
/// Match a starting bracket, then match to the corresponding end bracket.
/// Return the count of how many tokens are in that span
/// (not including the bracket tokens).
fn bracketed_section(i: &mut TokenSlice) -> PResult<usize> {
// Find the start of this bracketed expression.
let _ = open_paren.parse_next(i)?;
let mut opened_braces = 1usize;
let mut tokens_examined = 0;
while opened_braces > 0 {
let tok = any.parse_next(i)?;
tokens_examined += 1;
if matches!(tok.token_type, TokenType::Brace) {
if tok.value == "(" {
opened_braces += 1;
} else if tok.value == ")" {
opened_braces -= 1;
}
}
}
Ok(tokens_examined)
}
/// Parse a KCL expression statement.
fn expression_stmt(i: &mut TokenSlice) -> PResult<Node<ExpressionStatement>> {
let val = expression
.context(expected(
"an expression (i.e. a value, or an algorithm for calculating one), e.g. 'x + y' or '3' or 'width * 2'",
))
.parse_next(i)?;
Ok(Node::new_node(
val.start(),
val.end(),
val.module_id(),
ExpressionStatement {
expression: val,
digest: None,
},
))
}
/// Parse the given brace symbol.
fn some_brace(symbol: &'static str, i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Brace, symbol))
.context(expected(symbol))
.parse_next(i)
}
/// Parse a => operator.
fn big_arrow(i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Operator, "=>"))
.context(expected("the => symbol, used for declaring functions"))
.parse_next(i)
}
/// Parse a |> operator.
fn pipe_operator(i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Operator, PIPE_OPERATOR))
.context(expected(
"the |> operator, used for 'piping' one function's output into another function's input",
))
.parse_next(i)
}
fn ws_with_newline(i: &mut TokenSlice) -> PResult<Token> {
one_of(TokenType::Whitespace)
.verify(|token: &Token| token.value.contains('\n'))
.context(expected("a newline, possibly with whitespace"))
.parse_next(i)
}
/// (
fn open_paren(i: &mut TokenSlice) -> PResult<Token> {
some_brace("(", i)
}
/// )
fn close_paren(i: &mut TokenSlice) -> PResult<Token> {
some_brace(")", i)
}
/// [
fn open_bracket(i: &mut TokenSlice) -> PResult<Token> {
some_brace("[", i)
}
/// ]
fn close_bracket(i: &mut TokenSlice) -> PResult<Token> {
some_brace("]", i)
}
/// {
fn open_brace(i: &mut TokenSlice) -> PResult<Token> {
some_brace("{", i)
}
/// }
fn close_brace(i: &mut TokenSlice) -> PResult<Token> {
some_brace("}", i)
}
fn comma(i: &mut TokenSlice) -> PResult<()> {
TokenType::Comma.parse_from(i)?;
Ok(())
}
fn hash(i: &mut TokenSlice) -> PResult<()> {
TokenType::Hash.parse_from(i)?;
Ok(())
}
fn bang(i: &mut TokenSlice) -> PResult<Token> {
TokenType::Bang.parse_from(i)
}
fn dollar(i: &mut TokenSlice) -> PResult<()> {
TokenType::Dollar.parse_from(i)?;
Ok(())
}
fn period(i: &mut TokenSlice) -> PResult<()> {
TokenType::Period.parse_from(i)?;
Ok(())
}
fn double_period(i: &mut TokenSlice) -> PResult<Token> {
any.try_map(|token: Token| {
if matches!(token.token_type, TokenType::DoublePeriod) {
Ok(token)
} else {
Err(CompilationError::fatal(
token.as_source_range(),
format!(
"expected a '..' (double period) found {} which is {}",
token.value.as_str(),
token.token_type
),
))
}
})
.context(expected("the .. operator, used for array ranges like [0..10]"))
.parse_next(i)
}
fn colon(i: &mut TokenSlice) -> PResult<Token> {
TokenType::Colon.parse_from(i)
}
fn semi_colon(i: &mut TokenSlice) -> PResult<Token> {
TokenType::SemiColon.parse_from(i)
}
fn plus(i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Operator, "+")).parse_next(i)
}
fn double_colon(i: &mut TokenSlice) -> PResult<Token> {
TokenType::DoubleColon.parse_from(i)
}
fn equals(i: &mut TokenSlice) -> PResult<Token> {
one_of((TokenType::Operator, "="))
.context(expected("the equals operator, ="))
.parse_next(i)
}
fn question_mark(i: &mut TokenSlice) -> PResult<()> {
TokenType::QuestionMark.parse_from(i)?;
Ok(())
}
fn at_sign(i: &mut TokenSlice) -> PResult<Token> {
TokenType::At.parse_from(i)
}
fn fun(i: &mut TokenSlice) -> PResult<Token> {
keyword(i, "fn")
}
fn ty(i: &mut TokenSlice) -> PResult<Token> {
keyword(i, "type")
}
fn keyword(i: &mut TokenSlice, expected: &str) -> PResult<Token> {
any.try_map(|token: Token| match token.token_type {
TokenType::Keyword if token.value == expected => Ok(token),
_ => Err(CompilationError::fatal(
token.as_source_range(),
format!("expected '{expected}', found {}", token.value.as_str(),),
)),
})
.parse_next(i)
}
/// Parse a comma, optionally followed by some whitespace.
fn comma_sep(i: &mut TokenSlice) -> PResult<()> {
(opt(whitespace), comma, opt(whitespace))
.context(expected("a comma, optionally followed by whitespace"))
.parse_next(i)?;
Ok(())
}
/// Parse a `|`, optionally followed by some whitespace.
fn pipe_sep(i: &mut TokenSlice) -> PResult<()> {
(opt(whitespace), one_of((TokenType::Operator, "|")), opt(whitespace)).parse_next(i)?;
Ok(())
}
/// Arguments are passed into a function.
fn arguments(i: &mut TokenSlice) -> PResult<Vec<Expr>> {
separated(0.., expression, comma_sep)
.context(expected("function arguments"))
.parse_next(i)
}
fn labeled_argument(i: &mut TokenSlice) -> PResult<LabeledArg> {
separated_pair(
terminated(nameable_identifier, opt(whitespace)),
terminated(one_of((TokenType::Operator, "=")), opt(whitespace)),
expression,
)
.map(|(label, arg)| LabeledArg { label, arg })
.parse_next(i)
}
/// A type of a function argument.
/// This can be:
/// - a primitive type, e.g. 'number' or 'string' or 'bool'
/// - an array type, e.g. 'number[]' or 'string[]' or 'bool[]'
/// - an object type, e.g. '{x: number, y: number}' or '{name: string, age: number}'
fn argument_type(i: &mut TokenSlice) -> PResult<Node<Type>> {
let type_ = alt((
// Object types
// TODO it is buggy to treat object fields like parameters since the parameters parser assumes a terminating `)`.
(open_brace, parameters, close_brace).try_map(|(open, params, close)| {
for p in &params {
if p.type_.is_none() {
return Err(CompilationError::fatal(
p.identifier.as_source_range(),
"Missing type for field in record type",
));
}
}
Ok(Node::new(
Type::Object { properties: params },
open.start,
close.end,
open.module_id,
))
}),
// Array types
array_type,
// Primitive or union types
separated(1.., primitive_type, pipe_sep).map(|mut tys: Vec<_>| {
if tys.len() == 1 {
tys.pop().unwrap().map(Type::Primitive)
} else {
let start = tys[0].start;
let module_id = tys[0].module_id;
let end = tys.last().unwrap().end;
Node::new(Type::Union { tys }, start, end, module_id)
}
}),
))
.parse_next(i)?;
Ok(type_)
}
fn primitive_type(i: &mut TokenSlice) -> PResult<Node<PrimitiveType>> {
let ident = identifier(i)?;
let suffix = opt(delimited(open_paren, uom_for_type, close_paren)).parse_next(i)?;
let mut result = Node::new(PrimitiveType::Boolean, ident.start, ident.end, ident.module_id);
result.inner = PrimitiveType::primitive_from_str(&ident.name, suffix).unwrap_or(PrimitiveType::Named(ident));
if suffix.is_some() {
ParseContext::warn(CompilationError::err(
result.as_source_range(),
"Unit of Measure types are experimental and currently do nothing.",
));
}
Ok(result)
}
fn array_type(i: &mut TokenSlice) -> PResult<Node<Type>> {
fn opt_whitespace(i: &mut TokenSlice) -> PResult<()> {
ignore_whitespace(i);
Ok(())
}
open_bracket(i)?;
let ty = primitive_type(i)?;
let len = opt((
semi_colon,
opt_whitespace,
any.try_map(|token: Token| match token.token_type {
TokenType::Number => {
let value = token.uint_value().ok_or_else(|| {
CompilationError::fatal(
token.as_source_range(),
format!("Expected unsigned integer literal, found: {}", token.value),
)
})?;
Ok(value as usize)
}
_ => Err(CompilationError::fatal(token.as_source_range(), "invalid array length")),
}),
opt(plus),
))
.parse_next(i)?;
close_bracket(i)?;
let len = if let Some((tok, _, n, plus)) = len {
if plus.is_some() {
if n != 1 {
return Err(ErrMode::Cut(ContextError::from(CompilationError::fatal(
tok.as_source_range(),
"Non-empty arrays are specified using `1+`, for a fixed-size array use just an integer",
))));
} else {
ArrayLen::NonEmpty
}
} else {
ArrayLen::Known(n)
}
} else {
ArrayLen::None
};
Ok(ty.map(|ty| Type::Array { ty, len }))
}
fn uom_for_type(i: &mut TokenSlice) -> PResult<NumericSuffix> {
any.try_map(|t: Token| t.value.parse()).parse_next(i)
}
fn comment(i: &mut TokenSlice) -> PResult<Node<String>> {
any.verify_map(|token: Token| {
let value = match token.token_type {
TokenType::LineComment => token.value,
TokenType::BlockComment => token.value,
_ => return None,
};
Some(Node::new(value, token.start, token.end, token.module_id))
})
.context(expected("Comment"))
.parse_next(i)
}
fn comments(i: &mut TokenSlice) -> PResult<Node<Vec<String>>> {
let comments: Vec<Node<String>> = repeat(1.., (comment, opt(whitespace)).map(|(c, _)| c)).parse_next(i)?;
let start = comments[0].start;
let module_id = comments[0].module_id;
let end = comments.last().unwrap().end;
let inner = comments.into_iter().map(|n| n.inner).collect();
Ok(Node::new(inner, start, end, module_id))
}
struct ParamDescription {
labeled: bool,
arg_name: Token,
type_: std::option::Option<Node<Type>>,
default_value: Option<DefaultParamVal>,
attr: Option<Node<Annotation>>,
comments: Option<Node<Vec<String>>>,
}
fn parameter(i: &mut TokenSlice) -> PResult<ParamDescription> {
let (_, comments, _, attr, _, found_at_sign, arg_name, question_mark, _, type_, _ws, default_literal) = (
opt(whitespace),
opt(comments),
opt(whitespace),
opt(outer_annotation),
opt(whitespace),
opt(at_sign),
any.verify(|token: &Token| !matches!(token.token_type, TokenType::Brace) || token.value != ")"),
opt(question_mark),
opt(whitespace),
opt((colon, opt(whitespace), argument_type).map(|tup| tup.2)),
opt(whitespace),
opt((equals, opt(whitespace), literal).map(|(_, _, literal)| literal)),
)
.parse_next(i)?;
Ok(ParamDescription {
labeled: found_at_sign.is_none(),
arg_name,
type_,
default_value: match (question_mark.is_some(), default_literal) {
(true, Some(lit)) => Some(DefaultParamVal::Literal(*lit)),
(true, None) => Some(DefaultParamVal::none()),
(false, None) => None,
(false, Some(lit)) => {
let msg = "You're trying to set a default value for an argument, but only optional arguments can have default values, and this argument is mandatory. Try putting a ? after the argument name, to make the argument optional.";
let e = CompilationError::fatal((&lit).into(), msg);
return Err(ErrMode::Backtrack(ContextError::from(e)));
}
},
attr,
comments,
})
}
/// Parameters are declared in a function signature, and used within a function.
fn parameters(i: &mut TokenSlice) -> PResult<Vec<Parameter>> {
// Get all tokens until the next ), because that ends the parameter list.
let candidates: Vec<_> = separated(0.., parameter, comma_sep)
.context(expected("function parameters"))
.parse_next(i)?;
opt(comma_sep).parse_next(i)?;
// Make sure all those tokens are valid parameters.
let params: Vec<Parameter> = candidates
.into_iter()
.map(
|ParamDescription {
labeled,
arg_name,
type_,
default_value,
attr,
comments,
}| {
let mut identifier = Node::<Identifier>::try_from(arg_name)?;
if let Some(comments) = comments {
identifier.comment_start = comments.start;
identifier.pre_comments = comments.inner;
}
if let Some(attr) = attr {
identifier.outer_attrs.push(attr);
}
Ok(Parameter {
identifier,
type_,
default_value,
labeled,
digest: None,
})
},
)
.collect::<Result<_, _>>()
.map_err(|e: CompilationError| ErrMode::Backtrack(ContextError::from(e)))?;
// Make sure the only unlabeled parameter is the first one.
if let Some(param) = params.iter().skip(1).find(|param| !param.labeled) {
let source_range = SourceRange::from(param);
return Err(ErrMode::Cut(ContextError::from(CompilationError::fatal(
source_range,
"Only the first parameter can be declared unlabeled",
))));
}
// Make sure optional parameters are last.
if let Err(e) = optional_after_required(&params) {
return Err(ErrMode::Cut(ContextError::from(e)));
}
Ok(params)
}
fn optional_after_required(params: &[Parameter]) -> Result<(), CompilationError> {
let mut found_optional = false;
for p in params {
if p.optional() {
found_optional = true;
}
if !p.optional() && found_optional {
let e = CompilationError::fatal(
(&p.identifier).into(),
"mandatory parameters must be declared before optional parameters",
);
return Err(e);
}
}
Ok(())
}
/// Introduce a new name, which binds some value.
fn binding_name(i: &mut TokenSlice) -> PResult<Node<Identifier>> {
identifier
.context(expected("an identifier, which will be the name of some value"))
.parse_next(i)
}
/// Either a positional or keyword function call.
fn fn_call_pos_or_kw(i: &mut TokenSlice) -> PResult<Expr> {
alt((
fn_call.map(Box::new).map(Expr::CallExpression),
fn_call_kw.map(Box::new).map(Expr::CallExpressionKw),
))
.parse_next(i)
}
fn labelled_fn_call(i: &mut TokenSlice) -> PResult<Expr> {
let expr = fn_call_pos_or_kw.parse_next(i)?;
let label = opt(label).parse_next(i)?;
match label {
Some(label) => Ok(Expr::LabelledExpression(Box::new(LabelledExpression::new(expr, label)))),
None => Ok(expr),
}
}
fn fn_call(i: &mut TokenSlice) -> PResult<Node<CallExpression>> {
let fn_name = name(i)?;
opt(whitespace).parse_next(i)?;
let _ = terminated(open_paren, opt(whitespace)).parse_next(i)?;
let args = arguments(i)?;
let end = preceded(opt(whitespace), close_paren).parse_next(i)?.end;
let result = Node::new_node(
fn_name.start,
end,
fn_name.module_id,
CallExpression {
callee: fn_name,
arguments: args,
digest: None,
},
);
let callee_str = result.callee.name.name.to_string();
if let Some(suggestion) = super::deprecation(&callee_str, DeprecationKind::Function) {
ParseContext::warn(
CompilationError::err(
result.as_source_range(),
format!("Calling `{}` is deprecated, prefer using `{}`.", callee_str, suggestion),
)
.with_suggestion(
format!("Replace `{}` with `{}`", callee_str, suggestion),
suggestion,
None,
Tag::Deprecated,
),
);
}
Ok(result)
}
fn fn_call_kw(i: &mut TokenSlice) -> PResult<Node<CallExpressionKw>> {
let fn_name = name(i)?;
opt(whitespace).parse_next(i)?;
let _ = open_paren.parse_next(i)?;
ignore_whitespace(i);
#[allow(clippy::large_enum_variant)]
enum ArgPlace {
NonCode(Node<NonCodeNode>),
LabeledArg(LabeledArg),
UnlabeledArg(Expr),
}
let initial_unlabeled_arg = opt((expression, comma, opt(whitespace)).map(|(arg, _, _)| arg)).parse_next(i)?;
let args: Vec<_> = repeat(
0..,
alt((
terminated(non_code_node.map(ArgPlace::NonCode), whitespace),
terminated(labeled_argument, labeled_arg_separator).map(ArgPlace::LabeledArg),
expression.map(ArgPlace::UnlabeledArg),
)),
)
.parse_next(i)?;
let (args, non_code_nodes): (Vec<_>, BTreeMap<usize, _>) = args.into_iter().enumerate().try_fold(
(Vec::new(), BTreeMap::new()),
|(mut args, mut non_code_nodes), (index, e)| {
match e {
ArgPlace::NonCode(x) => {
non_code_nodes.insert(index, vec![x]);
}
ArgPlace::LabeledArg(x) => {
args.push(x);
}
ArgPlace::UnlabeledArg(arg) => {
let followed_by_equals = peek((opt(whitespace), equals)).parse_next(i).is_ok();
let err = if followed_by_equals {
ErrMode::Cut(
CompilationError::fatal(
SourceRange::from(arg),
"This argument has a label, but no value. Put some value after the equals sign",
)
.into(),
)
} else {
ErrMode::Cut(
CompilationError::fatal(
SourceRange::from(arg),
"This argument needs a label, but it doesn't have one",
)
.into(),
)
};
return Err(err);
}
}
Ok((args, non_code_nodes))
},
)?;
ignore_whitespace(i);
opt(comma_sep).parse_next(i)?;
let end = close_paren.parse_next(i)?.end;
// Validate there aren't any duplicate labels.
let mut counted_labels = IndexMap::with_capacity(args.len());
for arg in &args {
*counted_labels.entry(&arg.label.inner.name).or_insert(0) += 1;
}
if let Some((duplicated, n)) = counted_labels.iter().find(|(_label, n)| n > &&1) {
let msg = format!(
"You've used the parameter labelled '{duplicated}' {n} times in a single function call. You can only set each parameter once! Remove all but one use."
);
ParseContext::err(CompilationError::err(
SourceRange::new(fn_name.start, end, fn_name.module_id),
msg,
));
}
let non_code_meta = NonCodeMeta {
non_code_nodes,
..Default::default()
};
let result = Node::new_node(
fn_name.start,
end,
fn_name.module_id,
CallExpressionKw {
callee: fn_name,
unlabeled: initial_unlabeled_arg,
arguments: args,
digest: None,
non_code_meta,
},
);
let callee_str = result.callee.name.name.to_string();
if let Some(suggestion) = super::deprecation(&callee_str, DeprecationKind::Function) {
ParseContext::warn(
CompilationError::err(
result.as_source_range(),
format!("Calling `{}` is deprecated, prefer using `{}`.", callee_str, suggestion),
)
.with_suggestion(
format!("Replace `{}` with `{}`", callee_str, suggestion),
suggestion,
None,
Tag::Deprecated,
),
);
}
Ok(result)
}
#[cfg(test)]
mod tests {
use itertools::Itertools;
use pretty_assertions::assert_eq;
use super::*;
use crate::{
parsing::ast::types::{BodyItem, Expr, VariableKind},
KclError, ModuleId,
};
fn assert_reserved(word: &str) {
// Try to use it as a variable name.
let code = format!(r#"{} = 0"#, word);
let result = crate::parsing::top_level_parse(code.as_str());
let err = &result.unwrap_errs().next().unwrap();
// Which token causes the error may change. In "return = 0", for
// example, "return" is the problem.
assert!(
err.message.starts_with("Unexpected token: ")
|| err.message.starts_with("= is not")
|| err
.message
.starts_with("Cannot assign a variable to a reserved keyword: "),
"Error message is: `{}`",
err.message,
);
}
#[test]
fn reserved_words() {
// Since these are stored in a set, we sort to make the tests
// deterministic.
for word in crate::parsing::token::RESERVED_WORDS.keys().sorted() {
assert_reserved(word);
}
assert_reserved("import");
}
#[test]
fn parse_args() {
for (i, (test, expected_len)) in [("someVar", 1), ("5, 3", 2), (r#""a""#, 1)].into_iter().enumerate() {
let tokens = crate::parsing::token::lex(test, ModuleId::default()).unwrap();
let actual = match arguments.parse(tokens.as_slice()) {
Ok(x) => x,
Err(e) => panic!("Failed test {i}, could not parse function arguments from \"{test}\": {e:?}"),
};
assert_eq!(actual.len(), expected_len, "failed test {i}");
}
}
#[test]
fn parse_names() {
for (test, expected_len) in [("someVar", 0), ("::foo", 0), ("foo::bar::baz", 2)] {
let tokens = crate::parsing::token::lex(test, ModuleId::default()).unwrap();
match name.parse(tokens.as_slice()) {
Ok(n) => assert_eq!(n.path.len(), expected_len, "Could not parse name from `{test}`: {n:?}"),
Err(e) => panic!("Could not parse name from `{test}`: {e:?}"),
}
}
}
#[test]
fn weird_program_unclosed_paren() {
let tokens = crate::parsing::token::lex("fn firstPrime(", ModuleId::default()).unwrap();
let tokens = tokens.as_slice();
let last = tokens.last().unwrap().as_source_range();
let err: CompilationError = program.parse(tokens).unwrap_err().into();
assert_eq!(err.source_range, last);
// TODO: Better comment. This should explain the compiler expected ) because the user had started declaring the function's parameters.
// Part of https://github.com/KittyCAD/modeling-app/issues/784
assert_eq!(err.message, "Unexpected end of file. The compiler expected )");
}
#[test]
fn weird_program_just_a_pipe() {
let tokens = crate::parsing::token::lex("|", ModuleId::default()).unwrap();
let err: CompilationError = program.parse(tokens.as_slice()).unwrap_err().into();
assert_eq!(err.source_range, SourceRange::new(0, 1, ModuleId::default()));
assert_eq!(err.message, "Unexpected token: |");
}
#[test]
fn parse_binary_expressions() {
for (i, test_program) in ["1 + 2 + 3"].into_iter().enumerate() {
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let _actual = match binary_expression.parse_next(&mut tokens.as_slice()) {
Ok(x) => x,
Err(e) => panic!("Failed test {i}, could not parse binary expressions from \"{test_program}\": {e:?}"),
};
}
}
#[test]
fn test_vardec_no_keyword() {
let tokens = crate::parsing::token::lex("x = 4", ModuleId::default()).unwrap();
let vardec = declaration(&mut tokens.as_slice()).unwrap();
assert_eq!(vardec.inner.kind, VariableKind::Const);
let vardec = &vardec.declaration;
assert_eq!(vardec.id.name, "x");
let Expr::Literal(init_val) = &vardec.init else {
panic!("weird init value")
};
assert_eq!(init_val.raw, "4");
}
#[test]
fn test_negative_operands() {
let tokens = crate::parsing::token::lex("-leg2", ModuleId::default()).unwrap();
let _s = operand.parse_next(&mut tokens.as_slice()).unwrap();
}
#[test]
fn test_comments_in_function1() {
let test_program = r#"() {
// comment 0
a = 1
// comment 1
b = 2
/// comment 2
return 1
}"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let expr = function_decl.map(|t| t.0).parse_next(&mut tokens.as_slice()).unwrap();
assert_eq!(expr.params, vec![]);
let comment_start = expr.body.body[0].get_comments();
let comment0 = expr.body.body[1].get_comments();
let comment1 = expr.body.body[2].get_comments();
assert_eq!(comment_start, vec!["// comment 0".to_owned()]);
assert_eq!(comment0, vec!["// comment 1".to_owned()]);
assert_eq!(comment1, vec!["/// comment 2".to_owned()]);
}
#[test]
fn test_comments_in_function2() {
let test_program = r#"() {
yo = { a = { b = { c = '123' } } } /* block
comment */
}"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let expr = function_decl.map(|t| t.0).parse_next(&mut tokens.as_slice()).unwrap();
let comment0 = &expr.body.non_code_meta.non_code_nodes.get(&0).unwrap()[0];
assert_eq!(comment0.value(), "block\ncomment");
}
#[test]
fn test_comment_at_start_of_program() {
let test_program = r#"
/* comment at start */
mySk1 = startSketchOn(XY)
|> startProfileAt([0, 0], %)"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let program = program.parse(tokens.as_slice()).unwrap();
let mut starting_comments = program.inner.non_code_meta.start_nodes;
assert_eq!(starting_comments.len(), 2);
let start0 = starting_comments.remove(0);
let start1 = starting_comments.remove(0);
assert_eq!(
start0.value,
NonCodeValue::BlockComment {
value: "comment at start".to_owned(),
style: CommentStyle::Block
}
);
assert_eq!(start1.value, NonCodeValue::NewLine);
}
#[test]
fn test_comment_in_pipe() {
let tokens = crate::parsing::token::lex(r#"x = y() |> /*hi*/ z(%)"#, ModuleId::default()).unwrap();
let mut body = program.parse(tokens.as_slice()).unwrap().inner.body;
let BodyItem::VariableDeclaration(item) = body.remove(0) else {
panic!("expected vardec");
};
let val = item.inner.declaration.inner.init;
let Expr::PipeExpression(pipe) = val else {
panic!("expected pipe");
};
let mut noncode = pipe.inner.non_code_meta;
assert_eq!(noncode.non_code_nodes.len(), 1);
let comment = noncode.non_code_nodes.remove(&0).unwrap().pop().unwrap();
assert_eq!(
comment.value,
NonCodeValue::BlockComment {
value: "hi".to_owned(),
style: CommentStyle::Block
}
);
}
#[test]
fn test_whitespace_in_function() {
let test_program = r#"() {
return sg
return sg
}"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let _expr = function_decl.parse_next(&mut tokens.as_slice()).unwrap();
}
#[test]
fn test_empty_lines_in_function() {
let test_program = "() {
return 2
}";
let module_id = ModuleId::from_usize(1);
let tokens = crate::parsing::token::lex(test_program, module_id).unwrap();
let expr = function_decl.map(|t| t.0).parse_next(&mut tokens.as_slice()).unwrap();
assert_eq!(
expr.body.non_code_meta.start_nodes,
vec![Node::new(
NonCodeNode {
value: NonCodeValue::NewLine,
digest: None
},
4,
22,
module_id,
)]
);
}
#[test]
fn inline_comment_pipe_expression() {
let test_input = r#"a(XY)
|> b(%)
|> c(%) // inline-comment
|> d(%)"#;
let tokens = crate::parsing::token::lex(test_input, ModuleId::default()).unwrap();
let Node {
inner: PipeExpression {
body, non_code_meta, ..
},
..
} = pipe_expression.parse_next(&mut tokens.as_slice()).unwrap();
assert_eq!(non_code_meta.non_code_nodes.len(), 1);
assert_eq!(
non_code_meta.non_code_nodes.get(&2).unwrap()[0].value,
NonCodeValue::InlineComment {
value: "inline-comment".to_owned(),
style: CommentStyle::Line
}
);
assert_eq!(body.len(), 4);
}
#[test]
fn many_comments() {
let test_program = r#"// this is a comment
yo = { a = { b = { c = '123' } } } /* block
comment */
key = 'c'
// this is also a comment
return things
"#;
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(test_program, module_id).unwrap();
let Program {
body, non_code_meta, ..
} = function_body.parse(tokens.as_slice()).unwrap().inner;
assert_eq!(body[0].get_comments(), vec!["// this is a comment".to_owned()],);
assert_eq!(
Some(&vec![
Node::new(
NonCodeNode {
value: NonCodeValue::InlineComment {
value: "block\n comment".to_owned(),
style: CommentStyle::Block
},
digest: None,
},
57,
79,
module_id,
),
Node::new(
NonCodeNode {
value: NonCodeValue::NewLine,
digest: None,
},
79,
83,
module_id,
)
]),
non_code_meta.non_code_nodes.get(&0),
);
assert_eq!(body[2].get_comments(), vec!["// this is also a comment".to_owned()],);
}
#[test]
fn inline_block_comments() {
let test_program = r#"yo = 3 /* block
comment */
return 1"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let actual = program.parse(tokens.as_slice()).unwrap();
assert_eq!(actual.non_code_meta.non_code_nodes.len(), 1);
assert_eq!(
actual.non_code_meta.non_code_nodes.get(&0).unwrap()[0].value,
NonCodeValue::InlineComment {
value: "block\n comment".to_owned(),
style: CommentStyle::Block
}
);
}
#[test]
fn test_bracketed_binary_expression() {
let input = "(2 - 3)";
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
let actual = match binary_expr_in_parens.parse(tokens.as_slice()) {
Ok(x) => x,
Err(e) => panic!("{e:?}"),
};
assert_eq!(actual.operator, BinaryOperator::Sub);
}
#[test]
fn test_arg() {
for input in [
"( sigmaAllow * width )",
"6 / ( sigmaAllow * width )",
"sqrt(distance * p * FOS * 6 / ( sigmaAllow * width ))",
] {
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
let _actual = match expression.parse(tokens.as_slice()) {
Ok(x) => x,
Err(e) => panic!("{e:?}"),
};
}
}
#[test]
fn test_arithmetic() {
let input = "1 * (2 - 3)";
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
// The RHS should be a binary expression.
let actual = binary_expression.parse(tokens.as_slice()).unwrap();
assert_eq!(actual.operator, BinaryOperator::Mul);
let BinaryPart::BinaryExpression(rhs) = actual.inner.right else {
panic!("Expected RHS to be another binary expression");
};
assert_eq!(rhs.operator, BinaryOperator::Sub);
match &rhs.right {
BinaryPart::Literal(lit) => {
assert!(lit.start == 9 && lit.end == 10);
assert!(
lit.value
== LiteralValue::Number {
value: 3.0,
suffix: NumericSuffix::None
}
&& &lit.raw == "3"
&& lit.digest.is_none()
);
}
_ => panic!(),
}
}
#[test]
fn assign_brackets() {
for (i, test_input) in [
"thickness_squared = (1 + 1)",
"thickness_squared = ( 1 + 1)",
"thickness_squared = (1 + 1 )",
"thickness_squared = ( 1 + 1 )",
]
.into_iter()
.enumerate()
{
let tokens = crate::parsing::token::lex(test_input, ModuleId::default()).unwrap();
let actual = match declaration.parse(tokens.as_slice()) {
Err(e) => panic!("Could not parse test {i}: {e:#?}"),
Ok(a) => a,
};
let Expr::BinaryExpression(_expr) = &actual.declaration.inner.init else {
panic!(
"Expected test {i} to be a binary expression but it wasn't, it was {:?}",
actual.declaration
);
};
// TODO: check both sides are 1... probably not necessary but should do.
}
}
#[test]
fn test_function_call() {
for (i, test_input) in ["x = f(1)", "x = f( 1 )"].into_iter().enumerate() {
let tokens = crate::parsing::token::lex(test_input, ModuleId::default()).unwrap();
let _actual = match declaration.parse(tokens.as_slice()) {
Err(e) => panic!("Could not parse test {i}: {e:#?}"),
Ok(a) => a,
};
}
}
#[test]
fn test_nested_arithmetic() {
let input = "1 * ((2 - 3) / 4)";
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
// The RHS should be a binary expression.
let outer = binary_expression.parse(tokens.as_slice()).unwrap();
assert_eq!(outer.operator, BinaryOperator::Mul);
let BinaryPart::BinaryExpression(middle) = outer.inner.right else {
panic!("Expected RHS to be another binary expression");
};
assert_eq!(middle.operator, BinaryOperator::Div);
let BinaryPart::BinaryExpression(inner) = middle.inner.left else {
panic!("expected nested binary expression");
};
assert_eq!(inner.operator, BinaryOperator::Sub);
}
#[test]
fn binary_expression_ignores_whitespace() {
let tests = ["1 - 2", "1- 2", "1 -2", "1-2"];
for test in tests {
let tokens = crate::parsing::token::lex(test, ModuleId::default()).unwrap();
let actual = binary_expression.parse(tokens.as_slice()).unwrap();
assert_eq!(actual.operator, BinaryOperator::Sub);
let BinaryPart::Literal(left) = actual.inner.left else {
panic!("should be expression");
};
assert_eq!(
left.value,
LiteralValue::Number {
value: 1.0,
suffix: NumericSuffix::None
}
);
let BinaryPart::Literal(right) = actual.inner.right else {
panic!("should be expression");
};
assert_eq!(
right.value,
LiteralValue::Number {
value: 2.0,
suffix: NumericSuffix::None
}
);
}
}
#[test]
fn some_pipe_expr() {
let test_program = r#"x()
|> y(%) /* this is
a comment
spanning a few lines */
|> z(%)"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let actual = pipe_expression.parse(tokens.as_slice()).unwrap();
let n = actual.non_code_meta.non_code_nodes.len();
assert_eq!(n, 1, "expected one comment in pipe expression but found {n}");
let nc = &actual.non_code_meta.non_code_nodes.get(&1).unwrap()[0];
assert!(nc.value().starts_with("this"));
assert!(nc.value().ends_with("lines"));
}
#[test]
fn comments_in_pipe_expr() {
for (i, test_program) in [
r#"y() |> /*hi*/ z(%)"#,
"1 |>/*hi*/ f(%)",
r#"y() |> /*hi*/ z(%)"#,
"1 /*hi*/ |> f(%)",
"1
// Hi
|> f(%)",
"1
/* Hi
there
*/
|> f(%)",
]
.into_iter()
.enumerate()
{
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let actual = pipe_expression.parse(tokens.as_slice());
assert!(actual.is_ok(), "could not parse test {i}, '{test_program}'");
let actual = actual.unwrap();
let n = actual.non_code_meta.non_code_nodes.len();
assert_eq!(n, 1, "expected one comment in pipe expression but found {n}",)
}
}
#[test]
fn comments() {
let module_id = ModuleId::from_usize(1);
for (i, (test_program, expected)) in [
(
"//hi",
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "hi".to_owned(),
style: CommentStyle::Line,
},
digest: None,
},
0,
4,
module_id,
),
),
(
"/*hello*/",
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
9,
module_id,
),
),
(
"/* hello */",
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
11,
module_id,
),
),
(
"/* \nhello */",
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
12,
module_id,
),
),
(
"
/* hello */",
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
29,
module_id,
),
),
(
// Empty line with trailing whitespace
"
/* hello */",
Node::new(
NonCodeNode {
value: NonCodeValue::NewLineBlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
32,
module_id,
),
),
(
// Empty line, no trailing whitespace
"
/* hello */",
Node::new(
NonCodeNode {
value: NonCodeValue::NewLineBlockComment {
value: "hello".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
30,
module_id,
),
),
(
r#"/* block
comment */"#,
Node::new(
NonCodeNode {
value: NonCodeValue::BlockComment {
value: "block\n comment".to_owned(),
style: CommentStyle::Block,
},
digest: None,
},
0,
39,
module_id,
),
),
]
.into_iter()
.enumerate()
{
let tokens = crate::parsing::token::lex(test_program, module_id).unwrap();
let actual = non_code_node.parse(tokens.as_slice());
assert!(actual.is_ok(), "could not parse test {i}: {actual:#?}");
let actual = actual.unwrap();
assert_eq!(actual, expected, "failed test {i}");
}
}
#[test]
fn recognize_invalid_params() {
let test_fn = "(let) => { return 1 }";
let module_id = ModuleId::from_usize(2);
let tokens = crate::parsing::token::lex(test_fn, module_id).unwrap();
let err = function_decl.parse(tokens.as_slice()).unwrap_err().into_inner();
let cause = err.cause.unwrap();
// This is the token `let`
assert_eq!(cause.source_range, SourceRange::new(1, 4, ModuleId::from_usize(2)));
assert_eq!(cause.message, "Cannot assign a variable to a reserved keyword: let");
}
#[test]
fn comment_in_string() {
let string_literal = r#""
// a comment
""#;
let tokens = crate::parsing::token::lex(string_literal, ModuleId::default()).unwrap();
let parsed_literal = literal.parse(tokens.as_slice()).unwrap();
assert_eq!(
parsed_literal.value,
"
// a comment
"
.into()
);
}
#[test]
fn pipes_on_pipes_minimal() {
let test_program = r#"startSketchOn(XY)
|> startProfileAt([0, 0], %)
|> line(endAbsolute = [0, -0]) // MoveRelative
"#;
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let tokens = &mut tokens.as_slice();
let _actual = pipe_expression.parse_next(tokens).unwrap();
assert_eq!(tokens.first().unwrap().token_type, TokenType::Whitespace);
}
#[test]
fn test_pipes_on_pipes() {
let test_program = include_str!("../../e2e/executor/inputs/pipes_on_pipes.kcl");
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
let _ = run_parser(tokens.as_slice()).unwrap();
}
#[test]
fn test_cube() {
let test_program = include_str!("../../e2e/executor/inputs/cube.kcl");
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
match program.parse(tokens.as_slice()) {
Ok(_) => {}
Err(e) => {
panic!("{e:#?}");
}
}
}
#[test]
fn parse_numeric() {
let test_program = "fn foo(x: number(Length)) {}";
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
run_parser(tokens.as_slice()).unwrap();
let test_program = "42_mm";
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
assert_eq!(tokens.iter().count(), 1);
run_parser(tokens.as_slice()).unwrap();
let test_program = "42_Length";
let tokens = crate::parsing::token::lex(test_program, ModuleId::default()).unwrap();
assert_eq!(tokens.iter().count(), 2);
assert_eq!(run_parser(tokens.as_slice()).unwrap_errs().count(), 1);
}
#[test]
fn test_parameter_list() {
let tests = [
("", vec![]),
("a", vec!["a"]),
("a, b", vec!["a", "b"]),
("a,b", vec!["a", "b"]),
];
for (i, (input, expected)) in tests.into_iter().enumerate() {
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
let actual = parameters.parse(tokens.as_slice());
assert!(actual.is_ok(), "could not parse test {i}");
let actual_ids: Vec<_> = actual.unwrap().into_iter().map(|p| p.identifier.inner.name).collect();
assert_eq!(actual_ids, expected);
}
}
#[test]
fn test_user_function() {
let input = "() {
return 2
}";
let tokens = crate::parsing::token::lex(input, ModuleId::default()).unwrap();
let actual = function_decl.parse(tokens.as_slice());
assert!(actual.is_ok(), "could not parse test function");
}
#[test]
fn test_declaration() {
let tests = ["myVar = 5", "myVar=5", "myVar =5", "myVar= 5"];
for test in tests {
// Run the original parser
let tokens = crate::parsing::token::lex(test, ModuleId::default()).unwrap();
let mut expected_body = crate::parsing::parse_tokens(tokens.clone()).unwrap().inner.body;
assert_eq!(expected_body.len(), 1);
let BodyItem::VariableDeclaration(expected) = expected_body.pop().unwrap() else {
panic!("Expected variable declaration");
};
// Run the second parser, check it matches the first parser.
let actual = declaration.parse(tokens.as_slice()).unwrap();
assert_eq!(expected, actual);
// Inspect its output in more detail.
assert_eq!(actual.inner.kind, VariableKind::Const);
assert_eq!(actual.start, 0);
let decl = &actual.declaration;
assert_eq!(decl.id.name, "myVar");
let Expr::Literal(value) = &decl.inner.init else {
panic!("value should be a literal")
};
assert_eq!(value.end, test.len());
assert_eq!(value.raw, "5");
}
}
#[test]
fn test_math_parse() {
let module_id = ModuleId::default();
let actual = crate::parsing::parse_str(r#"5 + "a""#, module_id).unwrap().inner.body;
let expr = Node::boxed(
BinaryExpression {
operator: BinaryOperator::Add,
left: BinaryPart::Literal(Box::new(Node::new(
Literal {
value: LiteralValue::Number {
value: 5.0,
suffix: NumericSuffix::None,
},
raw: "5".to_owned(),
digest: None,
},
0,
1,
module_id,
))),
right: BinaryPart::Literal(Box::new(Node::new(
Literal {
value: "a".into(),
raw: r#""a""#.to_owned(),
digest: None,
},
4,
7,
module_id,
))),
digest: None,
},
0,
7,
module_id,
);
let expected = vec![BodyItem::ExpressionStatement(Node::new(
ExpressionStatement {
expression: Expr::BinaryExpression(expr),
digest: None,
},
0,
7,
module_id,
))];
assert_eq!(expected, actual);
}
#[test]
fn test_abstract_syntax_tree() {
let code = "5 +6";
let module_id = ModuleId::default();
let result = crate::parsing::parse_str(code, module_id).unwrap();
let expected_result = Node::new(
Program {
body: vec![BodyItem::ExpressionStatement(Node::new(
ExpressionStatement {
expression: Expr::BinaryExpression(Node::boxed(
BinaryExpression {
left: BinaryPart::Literal(Box::new(Node::new(
Literal {
value: LiteralValue::Number {
value: 5.0,
suffix: NumericSuffix::None,
},
raw: "5".to_string(),
digest: None,
},
0,
1,
module_id,
))),
operator: BinaryOperator::Add,
right: BinaryPart::Literal(Box::new(Node::new(
Literal {
value: LiteralValue::Number {
value: 6.0,
suffix: NumericSuffix::None,
},
raw: "6".to_string(),
digest: None,
},
3,
4,
module_id,
))),
digest: None,
},
0,
4,
module_id,
)),
digest: None,
},
0,
4,
module_id,
))],
shebang: None,
non_code_meta: NonCodeMeta::default(),
inner_attrs: Vec::new(),
digest: None,
},
0,
4,
module_id,
);
assert_eq!(result, expected_result);
}
#[test]
fn test_empty_file() {
let some_program_string = r#""#;
let result = crate::parsing::top_level_parse(some_program_string);
assert!(result.is_ok());
}
#[track_caller]
fn assert_no_err(p: &str) -> (Node<Program>, Vec<CompilationError>) {
let result = crate::parsing::top_level_parse(p);
let result = result.0.unwrap();
assert!(result.1.iter().all(|e| !e.severity.is_err()), "found: {:#?}", result.1);
(result.0.unwrap(), result.1)
}
#[track_caller]
fn assert_no_fatal(p: &str) -> (Node<Program>, Vec<CompilationError>) {
let result = crate::parsing::top_level_parse(p);
let result = result.0.unwrap();
assert!(
result.1.iter().all(|e| e.severity != Severity::Fatal),
"found: {:#?}",
result.1
);
(result.0.unwrap(), result.1)
}
#[track_caller]
fn assert_err(p: &str, msg: &str, src_expected: [usize; 2]) {
let result = crate::parsing::top_level_parse(p);
let err = result.unwrap_errs().next().unwrap();
assert!(
err.message.starts_with(msg),
"Found `{}`, expected `{msg}`",
err.message
);
let src_actual = [err.source_range.start(), err.source_range.end()];
assert_eq!(
src_expected,
src_actual,
"expected error would highlight `{}` but it actually highlighted `{}`",
&p[src_expected[0]..src_expected[1]],
&p[src_actual[0]..src_actual[1]],
);
}
#[track_caller]
fn assert_err_contains(p: &str, expected: &str) {
let result = crate::parsing::top_level_parse(p);
let err = &result.unwrap_errs().next().unwrap().message;
assert!(err.contains(expected), "actual='{err}'");
}
#[test]
fn test_parse_half_pipe_small() {
assert_err_contains(
"secondExtrude = startSketchOn('XY')
|> startProfileAt([0,0], %)
|",
"Unexpected token: |",
);
}
#[test]
fn test_parse_member_expression_double_nested_braces() {
let code = r#"prop = yo["one"][two]"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_period_number_first() {
let code = r#"obj = { a: 1, b: 2 }
height = 1 - obj.a"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_allowed_type_in_expression() {
let code = r#"obj = { thing: 1 }
startSketchOn(obj.sketch)"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_brace_number_first() {
let code = r#"obj = { a: 1, b: 2 }
height = 1 - obj["a"]"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_brace_number_second() {
let code = r#"obj = { a: 1, b: 2 }
height = obj["a"] - 1"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_in_array_number_first() {
let code = r#"obj = { a: 1, b: 2 }
height = [1 - obj["a"], 0]"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_in_array_number_second() {
let code = r#"obj = { a: 1, b: 2 }
height = [obj["a"] - 1, 0]"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_member_expression_binary_expression_in_array_number_second_missing_space() {
let code = r#"obj = { a: 1, b: 2 }
height = [obj["a"] -1, 0]"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_anon_fn() {
crate::parsing::top_level_parse("foo(42, fn(x) { return x + 1 })").unwrap();
}
#[test]
fn test_annotation_fn() {
crate::parsing::top_level_parse(
r#"fn foo() {
@annotated
return 1
}"#,
)
.unwrap();
}
#[test]
fn test_annotation_settings() {
crate::parsing::top_level_parse("@settings(units = mm)").unwrap();
}
#[test]
fn test_anon_fn_no_fn() {
assert_err_contains("foo(42, (x) { return x + 1 })", "Anonymous function requires `fn`");
}
#[test]
fn test_parse_half_pipe() {
let code = "height = 10
firstExtrude = startSketchOn('XY')
|> startProfileAt([0,0], %)
|> line([0, 8], %)
|> line([20, 0], %)
|> line([0, -8], %)
|> close()
|> extrude(length=2)
secondExtrude = startSketchOn('XY')
|> startProfileAt([0,0], %)
|";
assert_err_contains(code, "Unexpected token: |");
}
#[test]
fn test_parse_greater_bang() {
assert_err(">!", "Unexpected token: >", [0, 1]);
}
#[test]
fn test_parse_unlabeled_param_not_allowed() {
assert_err(
"fn f(@x, @y) { return 1 }",
"Only the first parameter can be declared unlabeled",
[9, 11],
);
assert_err(
"fn f(x, @y) { return 1 }",
"Only the first parameter can be declared unlabeled",
[8, 10],
);
}
#[test]
fn test_parse_z_percent_parens() {
assert_err("z%)", "Unexpected token: %", [1, 2]);
}
#[test]
fn test_parse_parens_unicode() {
let result = crate::parsing::top_level_parse("");
let KclError::Lexical(details) = result.0.unwrap_err() else {
panic!();
};
// TODO: Better errors when program cannot tokenize.
// https://github.com/KittyCAD/modeling-app/issues/696
assert_eq!(details.message, "found unknown token 'ޜ'");
assert_eq!(details.source_ranges[0].start(), 1);
assert_eq!(details.source_ranges[0].end(), 2);
}
#[test]
fn test_parse_negative_in_array_binary_expression() {
let code = r#"leg1 = 5
thickness = 0.56
bracket = [-leg2 + thickness, 0]
"#;
crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn test_parse_nested_open_brackets() {
let _ = crate::parsing::top_level_parse(
r#"
z(-[["#,
)
.unwrap_errs();
}
#[test]
fn test_parse_weird_new_line_function() {
assert_err(
r#"z
(--#"#,
"Unexpected token: (",
[2, 3],
);
}
#[test]
fn test_parse_weird_lots_of_fancy_brackets() {
assert_err(
r#"zz({{{{{{{{)iegAng{{{{{{{##"#,
"Encountered an unexpected character(s) before finding a closing brace(`}`) for the object",
[3, 4],
);
}
#[test]
fn test_parse_weird_close_before_open() {
assert_err_contains(
r#"fn)n
e
["#,
"expected whitespace, found ')' which is brace",
);
}
#[test]
fn test_parse_weird_close_before_nada() {
assert_err_contains(r#"fn)n-"#, "expected whitespace, found ')' which is brace");
}
#[test]
fn test_parse_weird_lots_of_slashes() {
assert_err_contains(
r#"J///////////o//+///////////P++++*++++++P///////˟
++4"#,
"Unexpected token: +",
);
}
#[test]
fn test_optional_param_order() {
for (i, (params, expect_ok)) in [
(
vec![Parameter {
identifier: Node::no_src(Identifier {
name: "a".to_owned(),
digest: None,
}),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
}],
true,
),
(
vec![Parameter {
identifier: Node::no_src(Identifier {
name: "a".to_owned(),
digest: None,
}),
type_: None,
default_value: None,
labeled: true,
digest: None,
}],
true,
),
(
vec![
Parameter {
identifier: Node::no_src(Identifier {
name: "a".to_owned(),
digest: None,
}),
type_: None,
default_value: None,
labeled: true,
digest: None,
},
Parameter {
identifier: Node::no_src(Identifier {
name: "b".to_owned(),
digest: None,
}),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
},
],
true,
),
(
vec![
Parameter {
identifier: Node::no_src(Identifier {
name: "a".to_owned(),
digest: None,
}),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
},
Parameter {
identifier: Node::no_src(Identifier {
name: "b".to_owned(),
digest: None,
}),
type_: None,
default_value: None,
labeled: true,
digest: None,
},
],
false,
),
]
.into_iter()
.enumerate()
{
let actual = optional_after_required(&params);
assert_eq!(actual.is_ok(), expect_ok, "failed test {i}");
}
}
#[test]
fn test_error_keyword_in_variable() {
assert_err(
r#"const let = "thing""#,
"Cannot assign a variable to a reserved keyword: let",
[6, 9],
);
}
#[test]
fn test_error_keyword_in_fn_name() {
assert_err(
r#"fn let = () {}"#,
"Cannot assign a variable to a reserved keyword: let",
[3, 6],
);
}
#[test]
fn test_error_keyword_in_fn_args() {
assert_err(
r#"fn thing = (let) => {
return 1
}"#,
"Cannot assign a variable to a reserved keyword: let",
[12, 15],
)
}
#[test]
fn bad_imports() {
assert_err(
r#"import cube from "../cube.kcl""#,
"import path may only contain alphanumeric characters, underscore, hyphen, and period. KCL files in other directories are not yet supported.",
[17, 30],
);
assert_err(
r#"import * as foo from "dsfs""#,
"as is not the 'from' keyword",
[9, 11],
);
assert_err(
r#"import a from "dsfs" as b"#,
"unsupported import path format",
[14, 20],
);
assert_err(
r#"import * from "dsfs" as b"#,
"unsupported import path format",
[14, 20],
);
assert_err(r#"import a from b"#, "invalid string literal", [14, 15]);
assert_err(r#"import * "dsfs""#, "\"dsfs\" is not the 'from' keyword", [9, 15]);
assert_err(r#"import from "dsfs""#, "\"dsfs\" is not the 'from' keyword", [12, 18]);
assert_err(r#"import "dsfs.kcl" as *"#, "Unexpected token: as", [18, 20]);
assert_err(r#"import "dsfs""#, "unsupported import path format", [7, 13]);
assert_err(
r#"import "foo.bar.kcl""#,
"import path is not a valid identifier and must be aliased.",
[7, 20],
);
assert_err(
r#"import "_foo.kcl""#,
"import path is not a valid identifier and must be aliased.",
[7, 17],
);
assert_err(
r#"import "foo-bar.kcl""#,
"import path is not a valid identifier and must be aliased.",
[7, 20],
);
}
#[test]
fn std_fn_decl() {
let code = r#"/// Compute the cosine of a number (in radians).
///
/// ```
/// exampleSketch = startSketchOn("XZ")
/// |> startProfileAt([0, 0], %)
/// |> angledLine(
/// angle = 30,
/// length = 3 / cos(toRadians(30)),
/// )
/// |> yLine(endAbsolute = 0)
/// |> close(%)
///
/// example = extrude(exampleSketch, length = 5)
/// ```
@(impl = std_rust)
export fn cos(num: number(rad)): number(_) {}"#;
let _ast = crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn warn_import() {
let some_program_string = r#"import "foo.bad""#;
let (_, errs) = assert_no_err(some_program_string);
assert_eq!(errs.len(), 1, "{errs:#?}");
}
#[test]
fn fn_decl_uom_ty() {
let some_program_string = r#"fn foo(x: number(mm)): number(_) { return 1 }"#;
let (_, errs) = assert_no_fatal(some_program_string);
assert_eq!(errs.len(), 2);
}
#[test]
fn error_underscore() {
let (_, errs) = assert_no_fatal("_foo(_blah, _)");
assert_eq!(errs.len(), 3, "found: {:#?}", errs);
}
#[test]
fn error_type_ascription() {
let (_, errs) = assert_no_fatal("a + b: number");
assert_eq!(errs.len(), 1, "found: {:#?}", errs);
}
#[test]
fn zero_param_function() {
let code = r#"
fn firstPrimeNumber = () => {
return 2
}
firstPrimeNumber()
"#;
let _ast = crate::parsing::top_level_parse(code).unwrap();
}
#[test]
fn array() {
let program = r#"[1, 2, 3]"#;
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(program, module_id).unwrap();
let _arr = array_elem_by_elem(&mut tokens.as_slice()).unwrap();
}
#[test]
fn array_linesep_trailing_comma() {
let program = r#"[
1,
2,
3,
]"#;
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(program, module_id).unwrap();
let _arr = array_elem_by_elem(&mut tokens.as_slice()).unwrap();
}
#[allow(unused)]
#[test]
fn array_linesep_no_trailing_comma() {
let program = r#"[
1,
2,
3
]"#;
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(program, module_id).unwrap();
let _arr = array_elem_by_elem(&mut tokens.as_slice()).unwrap();
}
#[test]
fn basic_if_else() {
let some_program_string = "if true {
3
} else {
4
}";
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(some_program_string, module_id).unwrap();
let _res = if_expr(&mut tokens.as_slice()).unwrap();
}
#[test]
fn basic_else_if() {
let some_program_string = "else if true {
4
}";
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(some_program_string, module_id).unwrap();
let _res = else_if(&mut tokens.as_slice()).unwrap();
}
#[test]
fn basic_if_else_if() {
let some_program_string = "if true {
3
} else if true {
4
} else {
5
}";
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(some_program_string, module_id).unwrap();
let _res = if_expr(&mut tokens.as_slice()).unwrap();
}
#[test]
fn test_keyword_ok_in_fn_args_return() {
let some_program_string = r#"fn thing(param) {
return true
}
thing(false)
"#;
crate::parsing::top_level_parse(some_program_string).unwrap();
}
#[test]
fn test_error_define_function_as_var() {
for name in ["var", "let", "const"] {
let some_program_string = format!(
r#"{} thing = (param) => {{
return true
}}
thing(false)
"#,
name
);
assert_err(
&some_program_string,
"Expected a `fn` variable kind, found: `const`",
[0, name.len()],
);
}
}
#[test]
fn test_error_define_var_as_function() {
// TODO: https://github.com/KittyCAD/modeling-app/issues/784
// Improve this error message.
// It should say that the compiler is expecting a function expression on the RHS.
assert_err(r#"fn thing = "thing""#, "Unexpected token: \"thing\"", [11, 18]);
}
#[test]
fn random_words_fail() {
let test_program = r#"part001 = startSketchOn('-XZ')
|> startProfileAt([8.53, 11.8], %)
asdasd asdasd
|> line([11.12, -14.82], %)
|> line([-13.27, -6.98], %)
|> line([-5.09, 12.33], %)
asdasd
"#;
let _ = crate::parsing::top_level_parse(test_program).unwrap_errs();
}
#[test]
fn test_member_expression_sketch() {
let some_program_string = r#"fn cube = (pos, scale) => {
sg = startSketchOn('XY')
|> startProfileAt(pos, %)
|> line([0, scale], %)
|> line([scale, 0], %)
|> line([0, -scale], %)
return sg
}
b1 = cube([0,0], 10)
b2 = cube([3,3], 4)
pt1 = b1[0]
pt2 = b2[0]
"#;
crate::parsing::top_level_parse(some_program_string).unwrap();
}
#[test]
fn test_math_with_stdlib() {
let some_program_string = r#"d2r = pi() / 2
let other_thing = 2 * cos(3)"#;
crate::parsing::top_level_parse(some_program_string).unwrap();
}
#[test]
fn test_negative_arguments() {
let some_program_string = r#"fn box = (p, h, l, w) => {
myBox = startSketchOn('XY')
|> startProfileAt(p, %)
|> line([0, l], %)
|> line([w, 0], %)
|> line([0, -l], %)
|> close()
|> extrude(length=h)
return myBox
}
let myBox = box([0,0], -3, -16, -10)
"#;
crate::parsing::top_level_parse(some_program_string).unwrap();
}
#[test]
fn kw_fn() {
for input in ["val = foo(x, y = z)", "val = foo(y = z)"] {
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(input, module_id).unwrap();
super::program.parse(tokens.as_slice()).unwrap();
}
}
#[test]
fn test_parse_tag_named_std_lib() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line([5, 5], %, $xLine)
"#;
assert_err(
some_program_string,
"Cannot assign a tag to a reserved keyword: xLine",
[76, 82],
);
}
#[test]
fn test_parse_empty_tag_brace() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $)
"#;
assert_err(some_program_string, "Tag names must not be empty", [69, 70]);
}
#[test]
fn test_parse_empty_tag_whitespace() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $ ,01)
"#;
assert_err(some_program_string, "Tag names must not be empty", [69, 70]);
}
#[test]
fn test_parse_empty_tag_comma() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $,)
"#;
assert_err(some_program_string, "Tag names must not be empty", [69, 70]);
}
#[test]
fn test_parse_tag_starting_with_digit() {
let some_program_string = r#"
startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $01)"#;
assert_err(
some_program_string,
"Tag names must not start with a number. Tag starts with `01`",
[74, 76],
);
}
#[test]
fn test_parse_tag_including_digit() {
let some_program_string = r#"
startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $var01)"#;
assert_no_err(some_program_string);
}
#[test]
fn test_parse_tag_starting_with_bang() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $!var,01)
"#;
assert_err(some_program_string, "Tag names must not start with a bang", [69, 70]);
}
#[test]
fn test_parse_tag_starting_with_dollar() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $$,01)
"#;
assert_err(some_program_string, "Tag names must not start with a dollar", [69, 70]);
}
#[test]
fn test_parse_tag_starting_with_fn() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $fn,01)
"#;
assert_err(some_program_string, "Tag names must not start with a keyword", [69, 71]);
}
#[test]
fn test_parse_tag_starting_with_a_comment() {
let some_program_string = r#"startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line(%, $//
,01)
"#;
assert_err(
some_program_string,
"Tag names must not start with a lineComment",
[69, 71],
);
}
#[test]
fn test_parse_tag_with_reserved_in_middle_works() {
let some_program_string = r#"
startSketchOn('XY')
|> startProfileAt([0, 0], %)
|> line([5, 5], %, $sketching)
"#;
assert_no_err(some_program_string);
}
#[test]
fn test_parse_array_missing_closing_bracket() {
let some_program_string = r#"
sketch001 = startSketchOn('XZ') |> startProfileAt([90.45, 119.09, %)"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing bracket(`]`) for the array",
[51, 67],
);
}
#[test]
fn test_parse_array_missing_comma() {
let some_program_string = r#"
sketch001 = startSketchOn('XZ') |> startProfileAt([90.45 119.09], %)"#;
assert_err(
some_program_string,
"Unexpected character encountered. You might be missing a comma in between elements.",
[52, 65],
);
}
#[test]
fn test_parse_array_reserved_word_early_exit() {
// since there is an early exit if encountering a reserved word, the error should be about
// that and not the missing comma
let some_program_string = r#"
sketch001 = startSketchOn('XZ') |> startProfileAt([90.45 $struct], %)"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing bracket(`]`) for the array",
[51, 52],
);
}
#[test]
fn test_parse_array_random_brace() {
let some_program_string = r#"
sketch001 = startSketchOn('XZ') |> startProfileAt([}], %)"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing bracket(`]`) for the array",
[51, 52],
);
}
#[test]
fn test_parse_object_missing_closing_brace() {
let some_program_string = r#"{
foo = bar,"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing brace(`}`) for the object",
[0, 23],
);
}
#[test]
fn test_parse_object_reserved_word_early_exit() {
// since there is an early exit if encountering a reserved word, the error should be about
// that and not the missing comma
let some_program_string = r#"{bar = foo struct = man}"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing brace(`}`) for the object",
[0, 1],
);
}
#[test]
fn test_parse_object_missing_comma() {
let some_program_string = r#"{
foo = bar,
bar = foo
bat = man
}"#;
assert_err(
some_program_string,
"Unexpected character encountered. You might be missing a comma in between properties.",
[37, 78],
);
}
#[test]
fn test_parse_object_missing_comma_one_line() {
let some_program_string = r#"{bar = foo bat = man}"#;
assert_err(
some_program_string,
"Unexpected character encountered. You might be missing a comma in between properties.",
[1, 21],
);
}
#[test]
fn test_parse_object_random_bracket() {
let some_program_string = r#"{]}"#;
assert_err(
some_program_string,
"Encountered an unexpected character(s) before finding a closing brace(`}`) for the object",
[0, 1],
);
}
#[test]
fn test_parse_object_shorthand_missing_comma() {
let some_program_string = r#"
bar = 1
{
foo = bar,
bar
bat = man
}"#;
assert_err(
some_program_string,
"Unexpected character encountered. You might be missing a comma in between properties.",
[54, 89],
);
}
#[test]
fn warn_object_expr() {
let some_program_string = "{ foo: bar }";
let (_, errs) = assert_no_err(some_program_string);
assert_eq!(errs.len(), 1);
assert_eq!(errs[0].apply_suggestion(some_program_string).unwrap(), "{ foo = bar }")
}
#[test]
fn warn_fn_decl() {
let some_program_string = r#"fn foo = () => {
return 0
}"#;
let (_, errs) = assert_no_err(some_program_string);
assert_eq!(errs.len(), 2);
let replaced = errs[0].apply_suggestion(some_program_string).unwrap();
let replaced = errs[1].apply_suggestion(&replaced).unwrap();
// Note the whitespace here is bad, but we're just testing the suggestion spans really. In
// real life we might reformat after applying suggestions.
assert_eq!(
replaced,
r#"fn foo () {
return 0
}"#
);
let some_program_string = r#"myMap = map([0..5], (n) => {
return n * 2
})"#;
let (_, errs) = assert_no_err(some_program_string);
assert_eq!(errs.len(), 2);
let replaced = errs[0].apply_suggestion(some_program_string).unwrap();
let replaced = errs[1].apply_suggestion(&replaced).unwrap();
assert_eq!(
replaced,
r#"myMap = map([0..5], fn(n) {
return n * 2
})"#
);
}
#[test]
fn warn_const() {
let some_program_string = r#"const foo = 0
let bar = 1
var baz = 2
"#;
let (_, errs) = assert_no_err(some_program_string);
assert_eq!(errs.len(), 3);
let replaced = errs[2].apply_suggestion(some_program_string).unwrap();
let replaced = errs[1].apply_suggestion(&replaced).unwrap();
let replaced = errs[0].apply_suggestion(&replaced).unwrap();
assert_eq!(
replaced,
r#"foo = 0
bar = 1
baz = 2
"#
);
}
#[test]
fn test_unary_not_on_keyword_bool() {
let some_program_string = r#"!true"#;
let module_id = ModuleId::default();
let tokens = crate::parsing::token::lex(some_program_string, module_id).unwrap(); // Updated import path
let actual = match unary_expression.parse(tokens.as_slice()) {
// Use tokens.as_slice() for parsing
Ok(x) => x,
Err(e) => panic!("{e:?}"),
};
assert_eq!(actual.operator, UnaryOperator::Not);
crate::parsing::top_level_parse(some_program_string).unwrap(); // Updated import path
}
#[test]
fn test_sensible_error_when_missing_equals_in_kwarg() {
for (i, program) in ["f(x=1,y)", "f(x=1,y,z)", "f(x=1,y,z=1)", "f(x=1, y, z=1)"]
.into_iter()
.enumerate()
{
let tokens = crate::parsing::token::lex(program, ModuleId::default()).unwrap();
let err = fn_call_kw.parse(tokens.as_slice()).unwrap_err();
let cause = err.inner().cause.as_ref().unwrap();
assert_eq!(
cause.message, "This argument needs a label, but it doesn't have one",
"failed test {i}: {program}"
);
assert_eq!(
cause.source_range.start(),
program.find("y").unwrap(),
"failed test {i}: {program}"
);
}
}
#[test]
fn test_sensible_error_when_missing_rhs_of_kw_arg() {
for (i, program) in ["f(x, y=)"].into_iter().enumerate() {
let tokens = crate::parsing::token::lex(program, ModuleId::default()).unwrap();
let err = fn_call_kw.parse(tokens.as_slice()).unwrap_err();
let cause = err.inner().cause.as_ref().unwrap();
assert_eq!(
cause.message, "This argument has a label, but no value. Put some value after the equals sign",
"failed test {i}: {program}"
);
assert_eq!(
cause.source_range.start(),
program.find("y").unwrap(),
"failed test {i}: {program}"
);
}
}
#[test]
fn test_sensible_error_when_missing_rhs_of_obj_property() {
for (i, program) in ["{x = 1, y =}"].into_iter().enumerate() {
let tokens = crate::parsing::token::lex(program, ModuleId::default()).unwrap();
let err = object.parse(tokens.as_slice()).unwrap_err();
let cause = err.inner().cause.as_ref().unwrap();
assert_eq!(
cause.message, "This property has a label, but no value. Put some value after the equals sign",
"failed test {i}: {program}"
);
assert_eq!(
cause.source_range.start(),
program.rfind('=').unwrap(),
"failed test {i}: {program}"
);
}
}
#[test]
fn test_sensible_error_duplicated_args() {
let program = r#"f(arg = 1, normal = 44, arg = 2)"#;
let (_, mut errs) = assert_no_fatal(program);
assert_eq!(errs.len(), 1);
let err = errs.pop().unwrap();
assert_eq!(
err.message,
"You've used the parameter labelled 'arg' 2 times in a single function call. You can only set each parameter once! Remove all but one use.",
);
}
}
#[cfg(test)]
mod snapshot_math_tests {
use super::*;
// This macro generates a test function with the given function name.
// The macro takes a KCL program, ensures it tokenizes and parses, then compares
// its parsed AST to a snapshot (kept in this repo in a file under snapshots/ dir)
macro_rules! snapshot_test {
($func_name:ident, $test_kcl_program:expr) => {
#[test]
fn $func_name() {
let module_id = crate::ModuleId::default();
let tokens = crate::parsing::token::lex($test_kcl_program, module_id).unwrap();
ParseContext::init();
let actual = match binary_expression.parse(tokens.as_slice()) {
Ok(x) => x,
Err(_e) => panic!("could not parse test"),
};
insta::assert_json_snapshot!(actual);
let _ = ParseContext::take();
}
};
}
snapshot_test!(a, "1 + 2");
snapshot_test!(b, "1+2");
snapshot_test!(c, "1 -2");
snapshot_test!(d, "1 + 2 * 3");
snapshot_test!(e, "1 * ( 2 + 3 )");
snapshot_test!(f, "1 * ( 2 + 3 ) / 4");
snapshot_test!(g, "1 + ( 2 + 3 ) / 4");
snapshot_test!(h, "1 * (( 2 + 3 ) / 4 + 5 )");
snapshot_test!(i, "1 * ((( 2 + 3 )))");
snapshot_test!(j, "distance * p * FOS * 6 / (sigmaAllow * width)");
snapshot_test!(k, "2 + (((3)))");
}
#[cfg(test)]
mod snapshot_tests {
use super::*;
// This macro generates a test function with the given function name.
// The macro takes a KCL program, ensures it tokenizes and parses, then compares
// its parsed AST to a snapshot (kept in this repo in a file under snapshots/ dir)
macro_rules! snapshot_test {
($func_name:ident, $test_kcl_program:expr) => {
#[test]
fn $func_name() {
let module_id = crate::ModuleId::default();
println!("{}", $test_kcl_program);
let tokens = crate::parsing::token::lex($test_kcl_program, module_id).unwrap();
print_tokens(tokens.as_slice());
ParseContext::init();
let actual = match program.parse(tokens.as_slice()) {
Ok(x) => x,
Err(e) => panic!("could not parse test: {e:?}"),
};
let mut settings = insta::Settings::clone_current();
settings.set_sort_maps(true);
settings.bind(|| {
insta::assert_json_snapshot!(actual);
});
let _ = ParseContext::take();
}
};
}
snapshot_test!(
a,
r#"boxSketch = startSketchOn(XY)
|> startProfileAt([0, 0], %)
|> line([0, 10], %)
|> tangentialArc([-5, 5], %)
|> line([5, -15], %)
|> extrude(length=10)
"#
);
snapshot_test!(b, "myVar = min(5 , -legLen(5, 4))"); // Space before comma
snapshot_test!(c, "myVar = min(-legLen(5, 4), 5)");
snapshot_test!(d, "myVar = 5 + 6 |> myFunc(45, %)");
snapshot_test!(e, "let x = 1 * (3 - 4)");
snapshot_test!(f, r#"x = 1 // this is an inline comment"#);
snapshot_test!(
g,
r#"fn x = () => {
return sg
return sg
}"#
);
snapshot_test!(d2, r#"x = -leg2 + thickness"#);
snapshot_test!(
h,
r#"obj = { a: 1, b: 2 }
height = 1 - obj.a"#
);
snapshot_test!(
i,
r#"obj = { a: 1, b: 2 }
height = 1 - obj["a"]"#
);
snapshot_test!(
j,
r#"obj = { a: 1, b: 2 }
height = obj["a"] - 1"#
);
snapshot_test!(
k,
r#"obj = { a: 1, b: 2 }
height = [1 - obj["a"], 0]"#
);
snapshot_test!(
l,
r#"obj = { a: 1, b: 2 }
height = [obj["a"] - 1, 0]"#
);
snapshot_test!(
m,
r#"obj = { a: 1, b: 2 }
height = [obj["a"] -1, 0]"#
);
snapshot_test!(n, "height = 1 - obj.a");
snapshot_test!(o, "six = 1 + 2 + 3");
snapshot_test!(p, "five = 3 * 1 + 2");
snapshot_test!(q, r#"height = [ obj["a"], 0 ]"#);
snapshot_test!(
r,
r#"obj = { a: 1, b: 2 }
height = obj["a"]"#
);
snapshot_test!(s, r#"prop = yo["one"][two]"#);
snapshot_test!(t, r#"pt1 = b1[x]"#);
snapshot_test!(u, "prop = yo.one.two.three.four");
snapshot_test!(v, r#"pt1 = b1[0]"#);
snapshot_test!(w, r#"pt1 = b1['zero']"#);
snapshot_test!(x, r#"pt1 = b1.zero"#);
snapshot_test!(y, r#"sg = startSketchOn(XY) |> startProfileAt(pos, %)"#);
snapshot_test!(
z,
"sg = startSketchOn(XY)
|> startProfileAt(pos) |> line([0, -scale], %)"
);
snapshot_test!(aa, r#"sg = -scale"#);
snapshot_test!(ab, "line(endAbsolute = [0, -1])");
snapshot_test!(ac, "myArray = [0..10]");
snapshot_test!(
ad,
r#"
fn firstPrimeNumber = () => {
return 2
}
firstPrimeNumber()"#
);
snapshot_test!(
ae,
r#"fn thing = (param) => {
return true
}
thing(false)"#
);
snapshot_test!(
af,
r#"mySketch = startSketchOn(XY)
|> startProfileAt([0,0], %)
|> line(endAbsolute = [0, 1], tag = $myPath)
|> line(endAbsolute = [1, 1])
|> line(endAbsolute = [1, 0], tag = $rightPath)
|> close()"#
);
snapshot_test!(
ag,
"mySketch = startSketchOn(XY) |> startProfileAt([0,0], %) |> line(endAbsolute = [1, 1]) |> close()"
);
snapshot_test!(ah, "myBox = startSketchOn(XY) |> startProfileAt(p, %)");
snapshot_test!(ai, r#"myBox = f(1) |> g(2, %)"#);
snapshot_test!(
aj,
r#"myBox = startSketchOn(XY) |> startProfileAt(p, %) |> line(end = [0, l])"#
);
snapshot_test!(ak, "line(endAbsolute = [0, 1])");
snapshot_test!(ap, "mySketch = startSketchOn(XY) |> startProfileAt([0,0], %)");
snapshot_test!(aq, "log(5, \"hello\", aIdentifier)");
snapshot_test!(ar, r#"5 + "a""#);
snapshot_test!(at, "line([0, l], %)");
snapshot_test!(au, include_str!("../../e2e/executor/inputs/cylinder.kcl"));
snapshot_test!(av, "fn f = (angle?) => { return default(angle, 360) }");
snapshot_test!(
aw,
"let numbers = [
1,
// A,
// B,
3,
]"
);
snapshot_test!(
ax,
"let numbers = [
1,
2,
// A,
// B,
]"
);
snapshot_test!(
ay,
"let props = {
a: 1,
// b: 2,
c: 3,
}"
);
snapshot_test!(
az,
"let props = {
a: 1,
// b: 2,
c: 3
}"
);
snapshot_test!(
bb,
r#"
my14 = 4 ^ 2 - 3 ^ 2 * 2
"#
);
snapshot_test!(
bc,
r#"x = if true {
3
} else {
4
}"#
);
snapshot_test!(
bd,
r#"x = if true {
3
} else if func(radius) {
4
} else {
5
}"#
);
snapshot_test!(be, "let x = 3 == 3");
snapshot_test!(bf, "let x = 3 != 3");
snapshot_test!(bg, r#"x = 4"#);
snapshot_test!(bh, "obj = {center : [10, 10], radius: 5}");
snapshot_test!(
bi,
r#"x = 3
obj = { x, y: 4}"#
);
snapshot_test!(bj, "true");
snapshot_test!(bk, "truee");
snapshot_test!(bl, "x = !true");
snapshot_test!(bm, "x = true & false");
snapshot_test!(bn, "x = true | false");
snapshot_test!(kw_function_unnamed_first, r#"val = foo(x, y = z)"#);
snapshot_test!(kw_function_all_named, r#"val = foo(x = a, y = b)"#);
snapshot_test!(kw_function_decl_all_labeled, r#"fn foo(x, y) { return 1 }"#);
snapshot_test!(kw_function_decl_first_unlabeled, r#"fn foo(@x, y) { return 1 }"#);
snapshot_test!(kw_function_decl_with_default_no_type, r#"fn foo(x? = 2) { return 1 }"#);
snapshot_test!(
kw_function_decl_with_default_and_type,
r#"fn foo(x?: number = 2) { return 1 }"#
);
snapshot_test!(kw_function_call_in_pipe, r#"val = 1 |> f(arg = x)"#);
snapshot_test!(
kw_function_call_multiline,
r#"val = f(
arg = x,
foo = x,
bar = x,
)"#
);
snapshot_test!(
kw_function_call_multiline_with_comments,
r#"val = f(
arg = x,
// foo = x,
bar = x,
)"#
);
}
#[allow(unused)]
#[cfg(test)]
pub(crate) fn print_tokens(tokens: TokenSlice) {
for (i, tok) in tokens.iter().enumerate() {
println!("{i:.2}: ({:?}):) '{}'", tok.token_type, tok.value.replace("\n", "\\n"));
}
}