Files
modeling-app/rust/kcl-lib/src/execution/memory.rs
Adam Chalmers cc07400719 KCL: Fix 'cryptic' error when referencing a variable in its own declaration
Previously, `x = cos(x)` would just say "`x` is undefined". Now it says
that `x` cannot be referenced in its own definition, try using a different
variable instead.

To do this, I've added a new `Option<String>` field to the mod-local
executor context, tracking the current variable declaration. This means
cloning some strings, implying a small performance hit. I think it's fine,
for the better diagnostics.

In the future we could refactor this to use a &str
or store variable labels in stack-allocated strings like docs.rs/compact_str
or something.

Closes https://github.com/KittyCAD/modeling-app/issues/6072#issuecomment-2923227477
2025-05-30 17:00:22 -05:00

1400 lines
55 KiB
Rust

//! Representation of KCL memory.
//!
//! Stores `KclValue`s by name using dynamic scoping. Memory does not support addresses or references,
//! so all values must be self-contained. Memory is essentially a map from `String`s to `KclValue`s.
//! `KclValue`s are entirely opaque to this module. Memory is global and there should be only
//! one per execution. It has no explicit support for caching between executions.
//!
//! Memory is mostly immutable (since KCL does not support mutation or reassignment). However, tags
//! may change as code is executed and that mutates memory. Therefore to some extent,
//! ProgramMemory supports mutability and does not rely on KCL's (mostly) immutable nature.
//!
//! ProgramMemory is observably monotonic, i.e., it only grows and even when we pop a stack frame,
//! the frame is retained unless we can prove it is unreferenced. We remove some values which we
//! know cannot be referenced, but we should in the future do better garbage collection (of values
//! and envs).
//!
//! ## Concepts
//!
//! There are three main moving parts for ProgramMemory: environments, epochs, and stacks. I'll
//! cover environments (and the call stack) first as if epochs didn't exist, then describe epochs.
//!
//! An environment is a set of bindings (i.e., a map from names to values). Environments handle
//! both scoping and context switching. A new lexical scope means a new environment. Nesting of scopes
//! means that environments form a tree, which is represented by parent pointers in the environments.
//!
//! Example:
//!
//! ```norun
//! a = 10
//!
//! fn foo() {
//! b = a
//! a = 0
//! }
//! ```
//!
//! The body of `foo` has an environment whose parent is the enclosing scope. Variables in the inner
//! scope can hide those in the outer scope (meaning `a` can be redefined in `foo`). Variables in the
//! outer scope are visible from the inner scope. Note that `b` and the new `a` are not visible
//! outside of `foo`.
//!
//! Nesting of environments is independent of the call stack. E.g., when `foo` is called, we push a
//! new stack frame (which is an environment). The caller's env is on the stack and is not referenced
//! by the new environment (i.e., variables in the caller's env are not visible from the callee).
//!
//! Note, however, that if a function is called from it's enclosing scope, then the outer env will
//! be on the call stack and be the parent of the current env. Calling from a different scope will
//! mean the call stack and parent env do not correspond.
//!
//! We use a new call stack for each module. When interpreting a module we start a new call stack
//! with a new environment (though see below about std). Names imported from one module into another
//! point into the envs from the exporting module's call stack (though once the module has been
//! interpreted, those envs won't be on it's call stack any longer). A call stack is represented by
//! a `Stack` object which references the global `ProgramMemory` object. Environments are stored in
//! the global memory and the call stack is a stack of references. (See below on concurrent access
//! using `Stack`s).
//!
//! When a function declaration is interpreted we create a value in memory (in the env in which it
//! is declared) which contains the function's AST and a reference to the env where it is declared.
//! When the function is called, a new environment is created with the saved reference as its parent
//! and used for interpreting the function body. The return value is saved into this env. When the
//! function returns the callee env is popped to resume execution in the caller's env.
//!
//! Now consider extending the above example:
//!
//! Example:
//!
//! ```norun
//! a = 10
//!
//! fn foo() {
//! b = a
//! a = 0
//! }
//!
//! c = 2
//! ```
//!
//! `c` should not be visible inside foo and if `a` is modified after the declaration of `foo`, then
//! the earlier value should be the one visible in `foo`, even if `foo` is called after (lexically or
//! temporally) the definition of `c`. (Note that although KCL does not permit mutation, objects
//! can change due to the way tags are implemented).
//!
//! To make this work, we have the concept of an epoch. An epoch is a simple, global, monotonic counter
//! which is incremented at any significant moment in execution (we use the term snapshot). When a
//! value is saved in memory we also save the epoch at which it was stored.
//!
//! When we save a reference to an enclosing scope we take a snapshot and save that epoch as part of
//! the reference. When we call a function, we use the epoch when it was defined to look up variables,
//! ignoring any variables which have a creation time later than the saved epoch.
//!
//! Because the callee could create new variables (with a creation time of the current epoch) which
//! the callee should be able to read, we can't simply check the epoch with the callees (and we'd need
//! to maintain a stack of callee epochs for further calls, etc.). Instead a stack frame consists of
//! a reference to an environment and an epoch at which reads should take place. When we call a function
//! this creates a new env using the current epoch, and it's parent env (which is the enclosing scope
//! of the function declaration) includes the epoch at which the function was declared.
//!
//! So far, this handles variables created after a function is declared, but does not handle mutation.
//! Mutation must be handled internally in values, see for example `TagIdentifier`. It is suggested
//! that objects rely on epochs for this. Since epochs are linked to the stack frame, only objects in
//! the current stack frame should be mutated.
//!
//! ### Std
//!
//! The standard library is implicitly imported into every module (unless it explicitly opts out).
//! So that these implicitly imported names can be overridden, we want to import these names into a
//! scope outside the implicitly importing module. Furthermore, for efficiency we'd like to share
//! these imported names between all modules (because std is large and every module imports all
//! those names). This is safe to do because everything in std is fully immutable.
//!
//! To make this work, every env has the std import (prelude) env as its root ancestor. So when an
//! env is marked as a root env, it may still have the prelude env as its parent.
//!
//! ## Implementation
//!
//! All environments are kept by the ProgramMemory, their ordering is not important and does not
//! correspond to anything in the program or execution.
//!
//! Pushing and popping stack frames is straightforward. Most get/set/update operations don't touch
//! the call stack other than the current env (updating tags on function return is the exception).
//!
//! ## Invariants
//!
//! There's obviously a bunch of invariants in this design, some are kinda obvious, some are limited
//! in scope and are documented inline, here are some others:
//!
//! - We only ever write into the current env, never into any parent envs (though we can read from
//! both).
//! - We only ever write (or mutate) at the most recent epoch, never at an older one.
//! - The env ref saved with a function decl is always to an historic epoch, never to the current one.
//! - Since KCL does not have submodules and decls are not visible outside of a nested scope, all
//! references to variables in other modules must be in the root scope of a module.
//!
//! ## Concurrency and thread-safety
//!
//! `ProgramMemory` is a global singleton (technically one per program execution, if we handled multiple
//! projects in a single interpreter process we'd need multiple `ProgramMemory`s, but that is currently
//! not possible). `ProgramMemory` could be moved between threads, but there shouldn't be any need
//! to do so. It can safely be referenced and accessed from multiple threads, but there are rules for
//! doing so.
//!
//! `ProgramMemory` is mostly accessed via a `Stack` object, avoid accessing `ProgramMemory` directly
//! where possible. `Stack`s can safely be moved to other threads and can access `ProgramMemory`
//! from a different thread. There can be multiple `Stack`s on different threads or the same thread
//! (either operating sequentially or using async tasks).
//!
//! The key requirement for users is that names from a `Stack` should never be exposed until the
//! `Stack` itself is no longer needed. I.e., when interpreting a module, you would use a new `Stack`
//! for the module and no other module can reference anything in the module until interpretation of
//! it is complete (and the `Stack` object has been dropped).
//!
//! Using most of the `Stack` API is easy - you don't need to worry about thread safety and can treat
//! it just like a self-contained object (though see the docs on `restore_env` and `squash_env` if
//! you use that method). You shouldn't need to use `ProgramMemory` for much, other
//! than creating new `Stack`s which is always safe (doesn't mutate `ProgramMemory`). After interpreting
//! std, you'll need to call `set_std` and for this you must have a unique reference to `ProgramMemory`,
//! but if you don't we'll just panic, not cause a safety issue. `get_from` and `find_all_in_env`
//! take an owner parameter and follow the thread-safety invariants below.
//!
//! The rest of this section describes the implementation and thread-safety invariants, you should
//! only need to understand it if you're modifying this file (or want to call a few, rarely used
//! functions).
//!
//! The memory system is a lock-free, mostly wait-free structure. Safety is guaranteed by a few
//! invariants which are maintained (mostly) internally. There are two areas of mutability which
//! we need to think about: modifying, updating, or deleting items in memory, and adding or deleting
//! environments. Other areas of mutation are maintaining the call stacks which is always trivially
//! thread-local and collecting stats which is trivially atomic.
//!
//! A key invariant for modifying memory items is that each env is either uniquely owned by a single
//! `Stack` (when it is active, i.e., part of a call stack) or is read-only (once interpretation of
//! the scope backed by the env is complete and the env is no longer on any call stack). Being on a
//! call stack means the env is owned by that `Stack`. Since the envs are all kept by the `ProgramMemory`
//! singleton (so that env refs work), we can't rely on Rust ownership to enforce this. Instead, each
//! `Stack` has an id (ordering of which is irrelevant) and each env has an owner id - if this is 0,
//! the env is read-only, if not it is owned by the stack with that id. An env can be read or written
//! by it's owning stack, or if read-only can be read by anyone but never written.
//!
//! We check this dynamically, but the checks are assertions and should never fail. The safety invariant
//! is ensured by construction - memory in a `Stack` should not be referenced from another `Stack`,
//! memory should only be referenced once interpretation related to it is finished. This is actually
//! a stronger requirement than is strictly necessary but it is easy to reason about. To be precise,
//! it is safe to reference a name in an env once it has been popped from a stack and as long as it
//! doesn't again become active.
//!
//! Accessing an env is safe because they are stored on the heap and cannot be moved, even if the
//! env storage is reorganised (which should only be due to reallocation, we can't move envs within
//! storage since their indices must be kept consistent).
//!
//! Adding or removing an env from storage is protected by a 'lock' field in `ProgramMemory`. Modification
//! of the env storage must only happen when holding this lock (use `with_envs`). `with_envs` uses a
//! simple spin lock to wait (the only non-wait-free action) so don't hold the lock for long (currently
//! the only time this might happen is if the env storage re-sizes and thus reallocates). Reading an
//! env does not require any lock - an env can never be moved, access to the env must be either
//! read-only or unique, and (importantly) modifying the environments cannot remove an env unless it
//! is guaranteed there are no references to the env.
//!
//! Edge case: what if an env transitions ownership state at the same time as the env storage is
//! modified? This shouldn't be a technical issue, because the owner field of an env is only used to
//! check safety, it is not ever used for any decision. In any case, modifying the env storage is
//! must be safe if the env is in either state, so even if the transition happens at the same time
//! as the storage modification, it is ok.
use std::{
cell::UnsafeCell,
fmt,
pin::Pin,
sync::{
atomic::{AtomicBool, AtomicUsize, Ordering},
Arc,
},
};
use anyhow::Result;
use env::Environment;
use indexmap::IndexMap;
use schemars::JsonSchema;
use serde::{Deserialize, Serialize};
use crate::{
errors::{KclError, KclErrorDetails},
execution::KclValue,
source_range::SourceRange,
};
/// The distinguished name of the return value of a function.
pub(crate) const RETURN_NAME: &str = "__return";
/// Low-budget namespacing for types and modules.
pub(crate) const TYPE_PREFIX: &str = "__ty_";
pub(crate) const MODULE_PREFIX: &str = "__mod_";
/// KCL memory. There should be only one ProgramMemory for the interpretation of a program (
/// including other modules). Multiple interpretation runs should have fresh instances.
///
/// See module docs.
#[derive(Debug)]
pub(crate) struct ProgramMemory {
// Environments are boxed so they will never be moved if the `Vec` reallocates. We use `Pin`
// to help guarantee that.
environments: UnsafeCell<Vec<Pin<Box<Environment>>>>,
/// Memory for the std prelude.
std: Option<EnvironmentRef>,
/// Statistics about the memory, should not be used for anything other than meta-info.
pub(crate) stats: MemoryStats,
next_stack_id: AtomicUsize,
epoch: AtomicUsize,
write_lock: AtomicBool,
}
unsafe impl Sync for ProgramMemory {}
#[derive(Debug, Clone)]
pub(crate) struct Stack {
pub(crate) memory: Arc<ProgramMemory>,
id: usize,
/// Invariant: current_env.1.is_none()
current_env: EnvironmentRef,
/// Invariant: forall er in call_stack: er.1.is_none()
call_stack: Vec<EnvironmentRef>,
}
// Intended for debugging. Do not rely on this output in any way!
impl fmt::Display for ProgramMemory {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let envs: Vec<String> = self
.envs()
.iter()
.enumerate()
.map(|(i, env)| format!("{i}: {env}"))
.collect();
write!(
f,
"ProgramMemory (next stack: {})\nenvs:\n{}",
self.next_stack_id.load(Ordering::Relaxed),
envs.join("\n")
)
}
}
// Intended for debugging. Do not rely on this output in any way!
impl fmt::Display for Stack {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let stack: Vec<String> = self
.call_stack
.iter()
.chain(Some(&self.current_env))
.map(|e| format!("EnvRef({}, {})", e.0, e.1))
.collect();
write!(f, "Stack {}\nstack frames:\n{}", self.id, stack.join("\n"))
}
}
impl ProgramMemory {
#[allow(clippy::new_without_default)]
pub fn new() -> Arc<Self> {
Arc::new(Self {
// Massively over-allocate here to try and avoid reallocating later.
environments: UnsafeCell::new(Vec::with_capacity(512)),
std: None,
stats: MemoryStats::default(),
next_stack_id: AtomicUsize::new(1),
epoch: AtomicUsize::new(1),
write_lock: AtomicBool::new(false),
})
}
/// Clone this ProgramMemory.
///
/// This is deliberately not a `Clone` impl or called just `clone` since it requires the write
/// lock on the memory and so as to be totally unambiguous with cloning an `Arc` of the memory
/// (which you should usually prefer).
///
/// This is a long-running operation and holds the write lock, which is bad. Callers must ensure
/// that no other task will need to use `self` while this runs.
fn deep_clone(&self) -> Self {
self.with_envs(|envs| Self {
environments: UnsafeCell::new(envs.clone()),
std: self.std,
stats: MemoryStats::default(),
next_stack_id: AtomicUsize::new(self.next_stack_id.load(Ordering::Relaxed)),
epoch: AtomicUsize::new(self.epoch.load(Ordering::Relaxed)),
write_lock: AtomicBool::new(false),
})
}
/// Create a new stack object referencing this `ProgramMemory`.
pub fn new_stack(self: Arc<Self>) -> Stack {
let id = self.next_stack_id.fetch_add(1, Ordering::Relaxed);
assert!(id > 0);
Stack {
id,
memory: self,
current_env: EnvironmentRef::dummy(),
call_stack: Vec::new(),
}
}
/// Set the env var used for the standard library prelude.
///
/// Precondition: `self` must be uniquely owned.
pub fn set_std(self: &mut Arc<Self>, std: EnvironmentRef) {
Arc::get_mut(self).unwrap().std = Some(std);
}
/// Whether this memory still needs to be initialised with its standard library prelude.
pub fn requires_std(&self) -> bool {
self.std.is_none()
}
/// Get a value from a specific environment of the memory at a specific point in time.
pub fn get_from(
&self,
var: &str,
mut env_ref: EnvironmentRef,
source_range: SourceRange,
owner: usize,
) -> Result<&KclValue, KclError> {
loop {
let env = self.get_env(env_ref.index());
env_ref = match env.get(var, env_ref.1, owner) {
Ok(item) => return Ok(item),
Err(Some(parent)) => parent,
Err(None) => break,
};
}
let name = var.trim_start_matches(TYPE_PREFIX).trim_start_matches(MODULE_PREFIX);
Err(KclError::UndefinedValue {
undefined_name: Some(name.to_owned()),
details: KclErrorDetails::new(format!("`{name}` is not defined"), vec![source_range]),
})
}
/// Iterate over all key/value pairs in the specified environment which satisfy the provided
/// predicate.
fn find_all_in_env<'a>(
&'a self,
env: EnvironmentRef,
pred: impl Fn(&KclValue) -> bool + 'a,
owner: usize,
) -> impl Iterator<Item = (&'a String, &'a KclValue)> {
assert!(!env.skip_env());
self.get_env(env.index()).find_all_by(pred, owner)
}
fn envs(&self) -> &[Pin<Box<Environment>>] {
unsafe { self.environments.get().as_ref().unwrap() }
}
#[track_caller]
fn get_env(&self, index: usize) -> &Environment {
unsafe { &self.environments.get().as_ref().unwrap()[index] }
}
/// Mutable access to the environments. Prefer using higher-level methods if possible.
///
/// Uses a spin lock to wait for write access, so `f` must not be even slightly long-running.
fn with_envs<T>(&self, f: impl FnOnce(&mut Vec<Pin<Box<Environment>>>) -> T) -> T {
// Spin lock
while self.write_lock.swap(true, Ordering::AcqRel) {
// Atomics wrap on overflow, so no chance of panicking here.
self.stats.lock_waits.fetch_add(1, Ordering::Relaxed);
std::hint::spin_loop();
}
let envs = unsafe { self.environments.get().as_mut().unwrap() };
let result = f(envs);
let locked = self.write_lock.fetch_not(Ordering::AcqRel);
assert!(locked);
result
}
/// Create a new environment, add it to the list of envs, and return it's ref.
fn new_env(&self, parent: Option<EnvironmentRef>, is_root_env: bool, owner: usize) -> EnvironmentRef {
assert!(owner > 0);
self.stats.env_count.fetch_add(1, Ordering::Relaxed);
let new_env = Environment::new(parent, is_root_env, owner);
self.with_envs(|envs| {
let result = EnvironmentRef(envs.len(), usize::MAX);
// Note this might reallocate, which would hold the `with_envs` spin lock for way too long
// so somehow we should make sure we don't do that (though honestly the chance of that
// happening while another thread is waiting for the lock is pretty small).
envs.push(Box::pin(new_env));
result
})
}
/// Handle tidying up an env when it has been popped from the call stack.
///
/// If the env must be preserved, it is. If not, then it will be removed or compacted.
fn pop_env(&self, old: EnvironmentRef, owner: usize) {
// If the env can't be referenced delete all it's bindings.
self.get_env(old.index()).compact(owner);
if self.get_env(old.index()).is_empty() {
self.with_envs(|envs| {
if old.index() == envs.len() - 1 {
// We can pop the env from the vec.
self.stats.env_gcs.fetch_add(1, Ordering::Relaxed);
envs.pop();
} else {
// The env is empty, but we can't pop it. Just leave it around (it can't be
// referenced).
self.stats.skipped_env_gcs.fetch_add(1, Ordering::Relaxed);
envs[old.index()].read_only();
}
});
} else {
// Env is non-empty, so preserve it.
self.stats.preserved_envs.fetch_add(1, Ordering::Relaxed);
self.get_env(old.index()).read_only();
}
}
fn take_env(&self, old: EnvironmentRef) -> Pin<Box<Environment>> {
self.with_envs(|envs| {
if old.index() == envs.len() - 1 {
// We can pop the env from the vec.
self.stats.env_gcs.fetch_add(1, Ordering::Relaxed);
envs.pop().unwrap()
} else {
// We can't pop because the env is not at the end of the vec and we must maintain
// the indices. Replace the env with an empty one. It can no longer be referenced
// so we don't care about it.
self.stats.skipped_env_gcs.fetch_add(1, Ordering::Relaxed);
std::mem::replace(&mut envs[old.index()], Box::pin(Environment::new(None, false, 0)))
}
})
}
/// Get a value from memory without checking for ownership of the env.
///
/// This is not safe to use in general and should only be used if you have unique access to
/// the `self` which is generally only true during testing.
#[cfg(test)]
pub fn get_from_unchecked(&self, var: &str, mut env_ref: EnvironmentRef) -> Result<&KclValue, KclError> {
loop {
let env = self.get_env(env_ref.index());
env_ref = match env.get_unchecked(var, env_ref.1) {
Ok(item) => return Ok(item),
Err(Some(parent)) => parent,
Err(None) => break,
};
}
Err(KclError::UndefinedValue {
undefined_name: Some(var.to_owned()),
details: KclErrorDetails::new(format!("`{}` is not defined", var), vec![]),
})
}
}
impl Stack {
/// Clone this `Stack` and the underlying `ProgramMemory`.
///
/// This is a long-running operation and holds the write lock, which is bad. Callers must ensure
/// that no other task will need to use the `ProgramMemory` while this runs.
pub fn deep_clone(&self) -> Stack {
let mem = self.memory.deep_clone();
let mut stack = self.clone();
stack.memory = Arc::new(mem);
stack
}
#[cfg(test)]
/// If you're using ProgramMemory directly for testing it must be initialized first.
pub fn new_for_tests() -> Stack {
let mut stack = ProgramMemory::new().new_stack();
stack.push_new_root_env(false);
stack.memory.set_std(stack.current_env);
stack
}
/// Get the current (globally most recent) epoch.
pub fn current_epoch(&self) -> usize {
self.memory.epoch.load(Ordering::Relaxed)
}
/// Push a new (standard KCL) stack frame on to the call stack.
///
/// `parent` is the environment where the function being called is declared (not the caller's
/// environment, which is probably `self.current_env`).
pub fn push_new_env_for_call(&mut self, parent: EnvironmentRef) {
let env_ref = self.memory.new_env(Some(parent), false, self.id);
self.call_stack.push(self.current_env);
self.current_env = env_ref;
}
/// Push a stack frame for an inline scope.
///
/// This should be used for blocks but is currently only used for mock execution.
pub fn push_new_env_for_scope(&mut self) {
// We want to use the current env as the parent.
// We need to snapshot in case there is a function decl in the new scope.
let snapshot = self.snapshot();
self.push_new_env_for_call(snapshot);
}
/// Push a new stack frame on to the call stack for callees which should not read or write
/// from memory.
///
/// This is suitable for calling standard library functions or other functions written in Rust
/// which will use 'Rust memory' rather than KCL's memory and cannot reach into the wider
/// environment.
///
/// Trying to read or write from this environment will panic with an index out of bounds.
pub fn push_new_env_for_rust_call(&mut self) {
self.call_stack.push(self.current_env);
// Rust functions shouldn't try to set or access anything in their environment, so don't
// waste time and space on a new env. Using usize::MAX means we'll get an overflow if we
// try to access anything rather than a silent error.
self.current_env = EnvironmentRef(usize::MAX, 0);
}
/// Push a new stack frame on to the call stack with no connection to a parent environment.
///
/// Suitable for executing a separate module.
/// Precondition: include_prelude -> !self.memory.requires_std()
pub fn push_new_root_env(&mut self, include_prelude: bool) {
let parent = include_prelude.then(|| self.memory.std.unwrap());
let env_ref = self.memory.new_env(parent, true, self.id);
self.call_stack.push(self.current_env);
self.current_env = env_ref;
}
/// Push a previously used environment on to the call stack.
///
/// SAFETY: the env must not be being used by another `Stack` since we'll move the env from
/// read-only to owned.
pub fn restore_env(&mut self, env: EnvironmentRef) {
self.call_stack.push(self.current_env);
self.memory.get_env(env.index()).restore_owner(self.id);
self.current_env = env;
}
/// Pop a frame from the call stack and return a reference to the popped environment. The popped
/// environment is preserved if it may be referenced (so the returned reference will remain valid).
///
/// The popped environment may be retained completely (if it may be referenced by a function decl
/// or import) or retained but its contents deleted or completely discarded.
pub fn pop_env(&mut self) -> EnvironmentRef {
let old = self.current_env;
self.current_env = self.call_stack.pop().unwrap();
if !old.skip_env() {
self.memory.pop_env(old, self.id);
}
old
}
/// Pop a frame from the call stack and return a reference to the popped environment. The popped
/// environment is always preserved.
pub fn pop_and_preserve_env(&mut self) -> EnvironmentRef {
let old = self.current_env;
self.current_env = self.call_stack.pop().unwrap();
if !old.skip_env() {
self.memory.get_env(old.index()).read_only();
}
old
}
/// Merges the specified environment with the current environment, rewriting any environment refs
/// taking snapshots into account. Deletes (if possible) or clears the squashed environment.
///
/// Precondition: the caller must have unique access to the env pointed to by `old` and there must be
/// no extant references to it. If violated there may be dangling references to the old env once
/// it is removed from storage.
pub fn squash_env(&mut self, old: EnvironmentRef) {
assert!(!old.skip_env());
if self.current_env.skip_env() {
return;
}
let mut old_env = self.memory.take_env(old);
if old_env.is_empty() {
return;
}
// Make a new scope so we override variables properly.
self.push_new_env_for_scope();
// Move the variables in the popped env into the current env.
let env = self.memory.get_env(self.current_env.index());
for (k, (e, v)) in old_env.as_mut().take_bindings() {
env.insert(k, e, v.map_env_ref(old.0, self.current_env.0), self.id);
}
}
/// Snapshot the current state of the memory.
pub fn snapshot(&mut self) -> EnvironmentRef {
self.memory.stats.epoch_count.fetch_add(1, Ordering::Relaxed);
let env = self.memory.get_env(self.current_env.index());
env.mark_as_refed();
let prev_epoch = self.memory.epoch.fetch_add(1, Ordering::Relaxed);
EnvironmentRef(self.current_env.0, prev_epoch)
}
/// Add a value to the program memory (in the current scope). The value must not already exist.
pub fn add(&mut self, key: String, value: KclValue, source_range: SourceRange) -> Result<(), KclError> {
let env = self.memory.get_env(self.current_env.index());
if env.contains_key(&key) {
return Err(KclError::ValueAlreadyDefined(KclErrorDetails::new(
format!("Cannot redefine `{}`", key),
vec![source_range],
)));
}
self.memory.stats.mutation_count.fetch_add(1, Ordering::Relaxed);
env.insert(key, self.memory.epoch.load(Ordering::Relaxed), value, self.id);
Ok(())
}
/// Update a variable in memory. `key` must exist in memory. If it doesn't, this function will panic
/// in debug builds and do nothing in release builds.
pub fn update(&mut self, key: &str, f: impl Fn(&mut KclValue, usize)) {
self.memory.stats.mutation_count.fetch_add(1, Ordering::Relaxed);
self.memory.get_env(self.current_env.index()).update(
key,
f,
self.memory.epoch.load(Ordering::Relaxed),
self.id,
);
}
/// Get a value from the program memory.
/// Return Err if not found.
pub fn get(&self, var: &str, source_range: SourceRange) -> Result<&KclValue, KclError> {
self.memory.get_from(var, self.current_env, source_range, self.id)
}
/// Whether the current frame of the stack contains a variable with the given name.
pub fn cur_frame_contains(&self, var: &str) -> bool {
let env = self.memory.get_env(self.current_env.index());
env.contains_key(var)
}
/// Get a key from the first KCL (i.e., non-Rust) stack frame on the call stack.
pub fn get_from_call_stack(&self, key: &str, source_range: SourceRange) -> Result<(usize, &KclValue), KclError> {
if !self.current_env.skip_env() {
return Ok((self.current_env.1, self.get(key, source_range)?));
}
for env in self.call_stack.iter().rev() {
if !env.skip_env() {
return Ok((env.1, self.memory.get_from(key, *env, source_range, self.id)?));
}
}
unreachable!("It can't be Rust frames all the way down");
}
/// Iterate over all keys in the current environment which satisfy the provided predicate.
pub fn find_keys_in_current_env<'a>(
&'a self,
pred: impl Fn(&KclValue) -> bool + 'a,
) -> impl Iterator<Item = &'a String> {
self.memory
.find_all_in_env(self.current_env, pred, self.id)
.map(|(k, _)| k)
}
/// Iterate over all key/value pairs in the specified environment which satisfy the provided
/// predicate. `env` must either be read-only or owned by `self`.
pub fn find_all_in_env(&self, env: EnvironmentRef) -> impl Iterator<Item = (&String, &KclValue)> {
self.memory.find_all_in_env(env, |_| true, self.id)
}
/// Walk all values accessible from any environment in the call stack.
///
/// This may include duplicate values or different versions of a value known by the same key,
/// since an environment may be accessible via multiple paths.
pub fn walk_call_stack(&self) -> impl Iterator<Item = &KclValue> {
let mut cur_env = self.current_env;
let mut stack_index = self.call_stack.len();
while cur_env.skip_env() {
stack_index -= 1;
cur_env = self.call_stack[stack_index];
}
let mut result = CallStackIterator {
cur_env,
cur_values: None,
stack_index,
stack: self,
};
result.init_iter();
result
}
}
// See walk_call_stack.
struct CallStackIterator<'a> {
stack: &'a Stack,
cur_env: EnvironmentRef,
cur_values: Option<Box<dyn Iterator<Item = &'a KclValue> + 'a>>,
stack_index: usize,
}
impl CallStackIterator<'_> {
fn init_iter(&mut self) {
self.cur_values = Some(self.stack.memory.get_env(self.cur_env.index()).values(self.cur_env.1));
}
}
impl<'a> Iterator for CallStackIterator<'a> {
type Item = &'a KclValue;
fn next(&mut self) -> Option<Self::Item> {
self.cur_values.as_ref()?;
// Loop over each frame in the call stack.
'outer: loop {
// Loop over each environment in the tree of scopes of which the current stack frame is a leaf.
loop {
// `unwrap` is OK since we check for None at the start of the function, and if we update
// cur_values then it must be to Some(..).
let next = self.cur_values.as_mut().unwrap().next();
if next.is_some() {
return next;
}
if let Some(env_ref) = self.stack.memory.get_env(self.cur_env.index()).parent() {
self.cur_env = env_ref;
self.init_iter();
} else {
break;
}
}
if self.stack_index > 0 {
// Loop to skip any non-KCL stack frames.
loop {
self.stack_index -= 1;
let env_ref = self.stack.call_stack[self.stack_index];
if !env_ref.skip_env() {
self.cur_env = env_ref;
self.init_iter();
break;
} else if self.stack_index == 0 {
break 'outer;
}
}
} else {
break;
}
}
self.cur_values = None;
None
}
}
#[cfg(test)]
impl PartialEq for Stack {
fn eq(&self, other: &Self) -> bool {
let vars: Vec<_> = self.find_keys_in_current_env(|_| true).collect();
let vars_other: Vec<_> = other.find_keys_in_current_env(|_| true).collect();
if vars != vars_other {
return false;
}
vars.iter()
.all(|k| self.get(k, SourceRange::default()).unwrap() == other.get(k, SourceRange::default()).unwrap())
}
}
/// An index pointing to an environment at a point in time.
///
/// The first field indexes an environment, the second field is an epoch. An epoch of 0 is indicates
/// a dummy, error, or placeholder env ref, an epoch of `usize::MAX` represents the current most
/// recent epoch.
#[derive(Debug, Clone, Copy, Deserialize, Serialize, PartialEq, Hash, Eq, ts_rs::TS, JsonSchema)]
pub struct EnvironmentRef(usize, usize);
impl EnvironmentRef {
pub fn dummy() -> Self {
Self(usize::MAX, 0)
}
fn is_regular(&self) -> bool {
self.0 < usize::MAX && self.1 > 0
}
fn index(&self) -> usize {
self.0
}
fn skip_env(&self) -> bool {
self.0 == usize::MAX
}
pub fn replace_env(&mut self, old: usize, new: usize) {
if self.0 == old {
self.0 = new;
}
}
}
// TODO keep per-stack stats to avoid so many atomic updates
#[derive(Debug, Default)]
pub(crate) struct MemoryStats {
// Total number of environments created.
env_count: AtomicUsize,
// Total number of epochs.
epoch_count: AtomicUsize,
// Total number of values inserted or updated.
mutation_count: AtomicUsize,
// The number of envs we delete when popped from the call stack.
env_gcs: AtomicUsize,
// The number of empty envs we can't delete when popped from the call stack.
skipped_env_gcs: AtomicUsize,
// The number of envs we can't delete when popped from the call stack because they may be referenced.
preserved_envs: AtomicUsize,
// The number of iterations waiting for a spin lock.
lock_waits: AtomicUsize,
}
// Use a sub-module to protect access to `Environment::bindings` and prevent unexpected mutatation
// of stored values.
mod env {
use std::marker::PhantomPinned;
use super::*;
#[derive(Debug)]
pub(super) struct Environment {
bindings: UnsafeCell<IndexMap<String, (usize, KclValue)>>,
// An outer scope, if one exists.
parent: Option<EnvironmentRef>,
might_be_refed: AtomicBool,
// The id of the `Stack` if this `Environment` is on a call stack. If this is >0 then it may
// only be read or written by that `Stack`; if 0 then the env is read-only.
owner: AtomicUsize,
// Ensure Environment: !Unpin
_unpin: PhantomPinned,
}
impl Clone for Environment {
fn clone(&self) -> Self {
assert!(self.owner.load(Ordering::Acquire) == 0);
Self {
bindings: UnsafeCell::new(self.get_bindings().clone()),
parent: self.parent,
might_be_refed: AtomicBool::new(self.might_be_refed.load(Ordering::Acquire)),
owner: AtomicUsize::new(0),
_unpin: PhantomPinned,
}
}
}
impl fmt::Display for Environment {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let parent = self
.parent
.map(|e| format!("EnvRef({}, {})", e.0, e.1))
.unwrap_or("_".to_owned());
let data: Vec<String> = self
.get_bindings()
.iter()
.map(|(k, v)| format!("{k}: {}@{}", v.1.human_friendly_type(), v.0))
.collect();
write!(
f,
"Env {{\n parent: {parent},\n owner: {},\n ref'ed?: {},\n bindings:\n {}\n}}",
self.owner.load(Ordering::Relaxed),
self.might_be_refed.load(Ordering::Relaxed),
data.join("\n "),
)
}
}
impl Environment {
/// Create a new environment, parent points to it's surrounding lexical scope or the std
/// env if it's a root scope.
pub(super) fn new(parent: Option<EnvironmentRef>, might_be_refed: bool, owner: usize) -> Self {
assert!(parent.map(|p| p.is_regular()).unwrap_or(true));
Self {
bindings: UnsafeCell::new(IndexMap::new()),
parent,
might_be_refed: AtomicBool::new(might_be_refed),
owner: AtomicUsize::new(owner),
_unpin: PhantomPinned,
}
}
/// Mark this env as read-only (see module docs).
pub(super) fn read_only(&self) {
self.owner.store(0, Ordering::Release);
}
/// Mark this env as owned (see module docs).
pub(super) fn restore_owner(&self, owner: usize) {
self.owner.store(owner, Ordering::Release);
}
/// Mark this environment as possibly having external references.
pub(super) fn mark_as_refed(&self) {
self.might_be_refed.store(true, Ordering::Release);
}
// SAFETY: either the owner of the env is on the Rust stack or the env is read-only.
fn get_bindings(&self) -> &IndexMap<String, (usize, KclValue)> {
unsafe { self.bindings.get().as_ref().unwrap() }
}
// SAFETY do not call this function while a previous mutable reference is live
#[allow(clippy::mut_from_ref)]
fn get_mut_bindings(&self, owner: usize) -> &mut IndexMap<String, (usize, KclValue)> {
assert!(owner > 0 && self.owner.load(Ordering::Acquire) == owner);
unsafe { self.bindings.get().as_mut().unwrap() }
}
// True if the env is empty and has no external references.
pub(super) fn is_empty(&self) -> bool {
self.get_bindings().is_empty() && !self.might_be_refed.load(Ordering::Acquire)
}
/// Possibly compress this environment by deleting the memory.
///
/// This method will return without changing anything if the environment may be referenced
/// (this is a pretty conservative approximation, but if you keep an EnvironmentRef around
/// in a new way it might be incorrect).
///
/// See module docs for more details.
pub(super) fn compact(&self, owner: usize) {
// Don't compress if there might be a closure or import referencing us.
if self.might_be_refed.load(Ordering::Acquire) {
return;
}
*self.get_mut_bindings(owner) = IndexMap::new();
}
pub(super) fn get(&self, key: &str, epoch: usize, owner: usize) -> Result<&KclValue, Option<EnvironmentRef>> {
let env_owner = self.owner.load(Ordering::Acquire);
assert!(env_owner == 0 || env_owner == owner);
self.get_unchecked(key, epoch)
}
/// Get a value from memory without checking the env's ownership invariant. Prefer to use `get`.
pub(super) fn get_unchecked(&self, key: &str, epoch: usize) -> Result<&KclValue, Option<EnvironmentRef>> {
self.get_bindings()
.get(key)
.and_then(|(e, v)| if *e <= epoch { Some(v) } else { None })
.ok_or(self.parent)
}
pub(super) fn update(&self, key: &str, f: impl Fn(&mut KclValue, usize), epoch: usize, owner: usize) {
let Some((_, value)) = self.get_mut_bindings(owner).get_mut(key) else {
debug_assert!(false, "Missing memory entry for {key}");
return;
};
f(value, epoch);
}
pub(super) fn parent(&self) -> Option<EnvironmentRef> {
self.parent
}
/// Iterate over all values in the environment at the specified epoch.
pub(super) fn values<'a>(&'a self, epoch: usize) -> Box<dyn Iterator<Item = &'a KclValue> + 'a> {
Box::new(
self.get_bindings()
.values()
.filter_map(move |(e, v)| (*e <= epoch).then_some(v)),
)
}
/// Pure insert, panics if `key` is already in this environment.
///
/// Precondition: !self.contains_key(key)
pub(super) fn insert(&self, key: String, epoch: usize, value: KclValue, owner: usize) {
debug_assert!(!self.get_bindings().contains_key(&key));
self.get_mut_bindings(owner).insert(key, (epoch, value));
}
/// Is the key currently contained in this environment.
pub(super) fn contains_key(&self, key: &str) -> bool {
self.get_bindings().contains_key(key)
}
/// Iterate over all key/value pairs currently in this environment where the value satisfies
/// the providied predicate (`f`).
pub(super) fn find_all_by<'a>(
&'a self,
f: impl Fn(&KclValue) -> bool + 'a,
owner: usize,
) -> impl Iterator<Item = (&'a String, &'a KclValue)> {
let env_owner = self.owner.load(Ordering::Acquire);
assert!(env_owner == 0 || env_owner == owner);
self.get_bindings()
.iter()
.filter_map(move |(k, (_, v))| f(v).then_some((k, v)))
}
/// Take all bindings from the environment.
pub(super) fn take_bindings(self: Pin<&mut Self>) -> impl Iterator<Item = (String, (usize, KclValue))> {
// SAFETY: caller must have unique access since self is mut. We're not moving or invalidating `self`.
let bindings = std::mem::take(unsafe { self.bindings.get().as_mut().unwrap() });
bindings.into_iter()
}
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::execution::{kcl_value::FunctionSource, types::NumericType};
fn sr() -> SourceRange {
SourceRange::default()
}
fn val(value: i64) -> KclValue {
KclValue::Number {
value: value as f64,
ty: NumericType::count(),
meta: Vec::new(),
}
}
#[track_caller]
fn assert_get(mem: &Stack, key: &str, n: i64) {
match mem.get(key, sr()).unwrap() {
KclValue::Number { value, .. } => assert_eq!(*value as i64, n),
_ => unreachable!(),
}
}
#[track_caller]
fn assert_get_from(mem: &Stack, key: &str, n: i64, snapshot: EnvironmentRef) {
match mem.memory.get_from_unchecked(key, snapshot).unwrap() {
KclValue::Number { value, .. } => assert_eq!(*value as i64, n),
_ => unreachable!(),
}
}
#[test]
fn mem_smoke() {
// Follows test_pattern_transform_function_cannot_access_future_definitions
let mem = &mut Stack::new_for_tests();
let transform = mem.snapshot();
mem.add("transform".to_owned(), val(1), sr()).unwrap();
let layer = mem.snapshot();
mem.add("layer".to_owned(), val(1), sr()).unwrap();
mem.add("x".to_owned(), val(1), sr()).unwrap();
mem.push_new_env_for_call(layer);
mem.pop_env();
mem.push_new_env_for_call(transform);
mem.get("x", sr()).unwrap_err();
mem.pop_env();
}
#[test]
fn simple_snapshot() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
assert_get(mem, "a", 1);
mem.add("a".to_owned(), val(2), sr()).unwrap_err();
assert_get(mem, "a", 1);
mem.get("b", sr()).unwrap_err();
let sn = mem.snapshot();
mem.add("a".to_owned(), val(2), sr()).unwrap_err();
assert_get(mem, "a", 1);
mem.add("b".to_owned(), val(3), sr()).unwrap();
assert_get(mem, "b", 3);
mem.memory.get_from_unchecked("b", sn).unwrap_err();
}
#[test]
fn multiple_snapshot() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
let sn1 = mem.snapshot();
mem.add("b".to_owned(), val(3), sr()).unwrap();
let sn2 = mem.snapshot();
mem.add("a".to_owned(), val(4), sr()).unwrap_err();
mem.add("b".to_owned(), val(5), sr()).unwrap_err();
mem.add("c".to_owned(), val(6), sr()).unwrap();
assert_get(mem, "a", 1);
assert_get(mem, "b", 3);
assert_get(mem, "c", 6);
assert_get_from(mem, "a", 1, sn1);
mem.memory.get_from_unchecked("b", sn1).unwrap_err();
mem.memory.get_from_unchecked("c", sn1).unwrap_err();
assert_get_from(mem, "a", 1, sn2);
assert_get_from(mem, "b", 3, sn2);
mem.memory.get_from_unchecked("c", sn2).unwrap_err();
}
#[test]
fn simple_call_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_env_for_call(mem.current_env);
assert_get(mem, "b", 3);
mem.add("b".to_owned(), val(4), sr()).unwrap();
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
// Preserve the callee stack frame
mem.snapshot();
let callee = mem.pop_env();
assert_get(mem, "b", 3);
mem.get("c", sr()).unwrap_err();
// callee stack frame is preserved
assert_get_from(mem, "b", 4, callee);
assert_get_from(mem, "c", 5, callee);
}
#[test]
fn multiple_call_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_env_for_call(mem.current_env);
assert_get(mem, "b", 3);
mem.add("b".to_owned(), val(4), sr()).unwrap();
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
mem.pop_env();
mem.push_new_env_for_call(mem.current_env);
assert_get(mem, "b", 3);
mem.add("b".to_owned(), val(6), sr()).unwrap();
mem.add("d".to_owned(), val(7), sr()).unwrap();
assert_get(mem, "b", 6);
assert_get(mem, "d", 7);
mem.get("c", sr()).unwrap_err();
mem.pop_env();
}
#[test]
fn root_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_root_env(false);
mem.get("b", sr()).unwrap_err();
mem.add("b".to_owned(), val(4), sr()).unwrap();
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
let callee = mem.pop_env();
assert_get(mem, "b", 3);
mem.get("c", sr()).unwrap_err();
// callee stack frame is preserved
assert_get_from(mem, "b", 4, callee);
assert_get_from(mem, "c", 5, callee);
}
#[test]
fn rust_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
let sn = mem.snapshot();
mem.push_new_env_for_rust_call();
mem.push_new_env_for_call(sn);
assert_get(mem, "b", 3);
mem.add("b".to_owned(), val(4), sr()).unwrap();
assert_get(mem, "b", 4);
mem.pop_env();
mem.pop_env();
assert_get(mem, "b", 3);
}
#[test]
fn deep_call_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_env_for_call(mem.current_env);
assert_get(mem, "b", 3);
mem.add("b".to_owned(), val(4), sr()).unwrap();
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
mem.push_new_env_for_call(mem.current_env);
assert_get(mem, "b", 4);
mem.add("b".to_owned(), val(6), sr()).unwrap();
mem.add("d".to_owned(), val(7), sr()).unwrap();
assert_get(mem, "b", 6);
assert_get(mem, "c", 5);
assert_get(mem, "d", 7);
mem.pop_env();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
mem.get("d", sr()).unwrap_err();
mem.pop_env();
assert_get(mem, "b", 3);
mem.get("c", sr()).unwrap_err();
mem.get("d", sr()).unwrap_err();
}
#[test]
fn snap_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
let sn = mem.snapshot();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_env_for_call(sn);
mem.get("b", sr()).unwrap_err();
mem.add("b".to_owned(), val(4), sr()).unwrap();
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
mem.pop_env();
// old snapshot still untouched
mem.memory.get_from_unchecked("b", sn).unwrap_err();
}
#[test]
fn snap_env2() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
let sn1 = mem.snapshot();
mem.add("b".to_owned(), val(3), sr()).unwrap();
mem.push_new_env_for_call(mem.current_env);
let sn2 = mem.snapshot();
mem.add("b".to_owned(), val(4), sr()).unwrap();
let sn3 = mem.snapshot();
assert_get_from(mem, "b", 3, sn2);
mem.add("c".to_owned(), val(5), sr()).unwrap();
assert_get(mem, "b", 4);
assert_get(mem, "c", 5);
mem.pop_env();
// old snapshots still untouched
mem.memory.get_from_unchecked("b", sn1).unwrap_err();
assert_get_from(mem, "b", 3, sn2);
mem.memory.get_from_unchecked("c", sn2).unwrap_err();
assert_get_from(mem, "b", 4, sn3);
mem.memory.get_from_unchecked("c", sn3).unwrap_err();
}
#[test]
fn squash_env() {
let mem = &mut Stack::new_for_tests();
mem.add("a".to_owned(), val(1), sr()).unwrap();
mem.add("b".to_owned(), val(3), sr()).unwrap();
let sn1 = mem.snapshot();
mem.push_new_env_for_call(sn1);
mem.add("b".to_owned(), val(2), sr()).unwrap();
let sn2 = mem.snapshot();
mem.add(
"f".to_owned(),
KclValue::Function {
value: FunctionSource::User {
ast: crate::parsing::ast::types::FunctionExpression::dummy(),
settings: crate::MetaSettings::default(),
memory: sn2,
},
meta: Vec::new(),
},
sr(),
)
.unwrap();
let old = mem.pop_and_preserve_env();
mem.squash_env(old);
assert_get(mem, "a", 1);
assert_get(mem, "b", 2);
match mem.get("f", SourceRange::default()).unwrap() {
KclValue::Function {
value: FunctionSource::User { memory, .. },
..
} if memory.0 == mem.current_env.0 => {}
v => panic!("{v:#?}, expected {sn1:?}"),
}
assert_eq!(mem.memory.envs().len(), 2);
}
#[test]
fn two_stacks() {
let stack1 = &mut Stack::new_for_tests();
let stack2 = &mut stack1.memory.clone().new_stack();
stack2.push_new_root_env(false);
stack1.add("a".to_owned(), val(1), sr()).unwrap();
stack1.push_new_env_for_call(stack1.current_env);
stack2.add("a".to_owned(), val(2), sr()).unwrap();
stack2.push_new_env_for_call(stack2.current_env);
stack2.add("a".to_owned(), val(4), sr()).unwrap();
stack2.push_new_env_for_call(stack2.current_env);
stack1.add("a".to_owned(), val(3), sr()).unwrap();
stack1.push_new_env_for_call(stack1.current_env);
stack1.add("a".to_owned(), val(5), sr()).unwrap();
stack1.push_new_env_for_call(stack1.current_env);
stack2.add("a".to_owned(), val(6), sr()).unwrap();
stack2.push_new_env_for_call(stack2.current_env);
stack1.add("a".to_owned(), val(7), sr()).unwrap();
stack2.add("a".to_owned(), val(8), sr()).unwrap();
assert_get(stack1, "a", 7);
assert_get(stack2, "a", 8);
stack1.pop_env();
assert_get(stack1, "a", 5);
assert_get(stack2, "a", 8);
stack2.pop_env();
assert_get(stack1, "a", 5);
assert_get(stack2, "a", 6);
stack2.pop_env();
assert_get(stack2, "a", 4);
stack2.pop_env();
assert_get(stack2, "a", 2);
stack1.pop_env();
assert_get(stack1, "a", 3);
stack1.pop_env();
assert_get(stack1, "a", 1);
}
}