Files
modeling-app/rust/kcl-lib/src/execution/fn_call.rs
2025-06-29 07:03:36 -05:00

964 lines
35 KiB
Rust

use async_recursion::async_recursion;
use indexmap::IndexMap;
use crate::{
CompilationError, NodePath,
errors::{KclError, KclErrorDetails},
execution::{
BodyType, EnvironmentRef, ExecState, ExecutorContext, KclValue, Metadata, StatementKind, TagEngineInfo,
TagIdentifier,
cad_op::{Group, OpArg, OpKclValue, Operation},
kcl_value::FunctionSource,
memory,
types::RuntimeType,
},
parsing::ast::types::{CallExpressionKw, DefaultParamVal, FunctionExpression, Node, Program, Type},
source_range::SourceRange,
std::StdFn,
};
#[derive(Debug, Clone)]
pub struct Args {
/// Positional args.
pub args: Vec<Arg>,
/// Keyword arguments
pub kw_args: KwArgs,
pub source_range: SourceRange,
pub ctx: ExecutorContext,
/// If this call happens inside a pipe (|>) expression, this holds the LHS of that |>.
/// Otherwise it's None.
pub pipe_value: Option<Arg>,
}
impl Args {
pub fn new(args: Vec<Arg>, source_range: SourceRange, ctx: ExecutorContext, pipe_value: Option<Arg>) -> Self {
Self {
args,
kw_args: Default::default(),
source_range,
ctx,
pipe_value,
}
}
/// Collect the given keyword arguments.
pub fn new_kw(kw_args: KwArgs, source_range: SourceRange, ctx: ExecutorContext, pipe_value: Option<Arg>) -> Self {
Self {
args: Default::default(),
kw_args,
source_range,
ctx,
pipe_value,
}
}
/// Get the unlabeled keyword argument. If not set, returns None.
pub(crate) fn unlabeled_kw_arg_unconverted(&self) -> Option<&Arg> {
self.kw_args
.unlabeled
.as_ref()
.map(|(_, a)| a)
.or(self.args.first())
.or(self.pipe_value.as_ref())
}
}
#[derive(Debug, Clone)]
pub struct Arg {
/// The evaluated argument.
pub value: KclValue,
/// The source range of the unevaluated argument.
pub source_range: SourceRange,
}
impl Arg {
pub fn new(value: KclValue, source_range: SourceRange) -> Self {
Self { value, source_range }
}
pub fn synthetic(value: KclValue) -> Self {
Self {
value,
source_range: SourceRange::synthetic(),
}
}
pub fn source_ranges(&self) -> Vec<SourceRange> {
vec![self.source_range]
}
}
#[derive(Debug, Clone, Default)]
pub struct KwArgs {
/// Unlabeled keyword args. Currently only the first arg can be unlabeled.
/// If the argument was a local variable, then the first element of the tuple is its name
/// which may be used to treat this arg as a labelled arg.
pub unlabeled: Option<(Option<String>, Arg)>,
/// Labeled args.
pub labeled: IndexMap<String, Arg>,
pub errors: Vec<Arg>,
}
impl KwArgs {
/// How many arguments are there?
pub fn len(&self) -> usize {
self.labeled.len() + if self.unlabeled.is_some() { 1 } else { 0 }
}
/// Are there no arguments?
pub fn is_empty(&self) -> bool {
self.labeled.len() == 0 && self.unlabeled.is_none()
}
}
struct FunctionDefinition<'a> {
input_arg: Option<(String, Option<Type>)>,
named_args: IndexMap<String, (Option<DefaultParamVal>, Option<Type>)>,
return_type: Option<Node<Type>>,
deprecated: bool,
include_in_feature_tree: bool,
is_std: bool,
body: FunctionBody<'a>,
}
#[derive(Debug)]
enum FunctionBody<'a> {
Rust(StdFn),
Kcl(&'a Node<Program>, EnvironmentRef),
}
impl<'a> From<&'a FunctionSource> for FunctionDefinition<'a> {
fn from(value: &'a FunctionSource) -> Self {
#[allow(clippy::type_complexity)]
fn args_from_ast(
ast: &FunctionExpression,
) -> (
Option<(String, Option<Type>)>,
IndexMap<String, (Option<DefaultParamVal>, Option<Type>)>,
) {
let mut input_arg = None;
let mut named_args = IndexMap::new();
for p in &ast.params {
if !p.labeled {
input_arg = Some((p.identifier.name.clone(), p.type_.as_ref().map(|t| t.inner.clone())));
continue;
}
named_args.insert(
p.identifier.name.clone(),
(p.default_value.clone(), p.type_.as_ref().map(|t| t.inner.clone())),
);
}
(input_arg, named_args)
}
match value {
FunctionSource::Std { func, ast, props } => {
let (input_arg, named_args) = args_from_ast(ast);
FunctionDefinition {
input_arg,
named_args,
return_type: ast.return_type.clone(),
deprecated: props.deprecated,
include_in_feature_tree: props.include_in_feature_tree,
is_std: true,
body: FunctionBody::Rust(*func),
}
}
FunctionSource::User { ast, memory, .. } => {
let (input_arg, named_args) = args_from_ast(ast);
FunctionDefinition {
input_arg,
named_args,
return_type: ast.return_type.clone(),
deprecated: false,
include_in_feature_tree: true,
// TODO I think this might be wrong for pure Rust std functions
is_std: false,
body: FunctionBody::Kcl(&ast.body, *memory),
}
}
FunctionSource::None => unreachable!(),
}
}
}
impl Node<CallExpressionKw> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let fn_name = &self.callee;
let callsite: SourceRange = self.into();
// Build a hashmap from argument labels to the final evaluated values.
let mut fn_args = IndexMap::with_capacity(self.arguments.len());
let mut errors = Vec::new();
for arg_expr in &self.arguments {
let source_range = SourceRange::from(arg_expr.arg.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(&arg_expr.arg, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let arg = Arg::new(value, source_range);
match &arg_expr.label {
Some(l) => {
fn_args.insert(l.name.clone(), arg);
}
None => {
if let Some(id) = arg_expr.arg.ident_name() {
fn_args.insert(id.to_owned(), arg);
} else {
errors.push(arg);
}
}
}
}
// Evaluate the unlabeled first param, if any exists.
let unlabeled = if let Some(ref arg_expr) = self.unlabeled {
let source_range = SourceRange::from(arg_expr.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(arg_expr, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let label = arg_expr.ident_name().map(str::to_owned);
Some((label, Arg::new(value, source_range)))
} else {
None
};
let args = Args::new_kw(
KwArgs {
unlabeled,
labeled: fn_args,
errors,
},
self.into(),
ctx.clone(),
exec_state.pipe_value().map(|v| Arg::new(v.clone(), callsite)),
);
// Clone the function so that we can use a mutable reference to
// exec_state.
let func = fn_name.get_result(exec_state, ctx).await?.clone();
let Some(fn_src) = func.as_function() else {
return Err(KclError::new_semantic(KclErrorDetails::new(
"cannot call this because it isn't a function".to_string(),
vec![callsite],
)));
};
let return_value = fn_src
.call_kw(Some(fn_name.to_string()), exec_state, ctx, args, callsite)
.await
.map_err(|e| {
// Add the call expression to the source ranges.
//
// TODO: Use the name that the function was defined
// with, not the identifier it was used with.
e.add_unwind_location(Some(fn_name.name.name.clone()), callsite)
})?;
let result = return_value.ok_or_else(move || {
let mut source_ranges: Vec<SourceRange> = vec![callsite];
// We want to send the source range of the original function.
if let KclValue::Function { meta, .. } = func {
source_ranges = meta.iter().map(|m| m.source_range).collect();
};
KclError::new_undefined_value(
KclErrorDetails::new(
format!("Result of user-defined function {fn_name} is undefined"),
source_ranges,
),
None,
)
})?;
Ok(result)
}
}
impl FunctionDefinition<'_> {
pub async fn call_kw(
&self,
fn_name: Option<String>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
mut args: Args,
callsite: SourceRange,
) -> Result<Option<KclValue>, KclError> {
if self.deprecated {
exec_state.warn(CompilationError::err(
callsite,
format!(
"{} is deprecated, see the docs for a recommended replacement",
match &fn_name {
Some(n) => format!("`{n}`"),
None => "This function".to_owned(),
}
),
));
}
type_check_params_kw(fn_name.as_deref(), self, &mut args.kw_args, exec_state)?;
// Don't early return until the stack frame is popped!
self.body.prep_mem(exec_state);
let op = if self.include_in_feature_tree {
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
if self.is_std {
Some(Operation::StdLibCall {
name: fn_name.clone().unwrap_or_else(|| "unknown function".to_owned()),
unlabeled_arg: args
.unlabeled_kw_arg_unconverted()
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
labeled_args: op_labeled_args,
node_path: NodePath::placeholder(),
source_range: callsite,
is_error: false,
})
} else {
exec_state.push_op(Operation::GroupBegin {
group: Group::FunctionCall {
name: fn_name.clone(),
function_source_range: self.as_source_range().unwrap(),
unlabeled_arg: args
.kw_args
.unlabeled
.as_ref()
.map(|arg| OpArg::new(OpKclValue::from(&arg.1.value), arg.1.source_range)),
labeled_args: op_labeled_args,
},
node_path: NodePath::placeholder(),
source_range: callsite,
});
None
}
} else {
None
};
let mut result = match &self.body {
FunctionBody::Rust(f) => f(exec_state, args).await.map(Some),
FunctionBody::Kcl(f, _) => {
if let Err(e) = assign_args_to_params_kw(self, args, exec_state) {
exec_state.mut_stack().pop_env();
return Err(e);
}
ctx.exec_block(f, exec_state, BodyType::Block).await.map(|_| {
exec_state
.stack()
.get(memory::RETURN_NAME, f.as_source_range())
.ok()
.cloned()
})
}
};
exec_state.mut_stack().pop_env();
if let Some(mut op) = op {
op.set_std_lib_call_is_error(result.is_err());
// Track call operation. We do this after the call
// since things like patternTransform may call user code
// before running, and we will likely want to use the
// return value. The call takes ownership of the args,
// so we need to build the op before the call.
exec_state.push_op(op);
} else if !self.is_std {
exec_state.push_op(Operation::GroupEnd);
}
if self.is_std {
if let Ok(Some(result)) = &mut result {
update_memory_for_tags_of_geometry(result, exec_state)?;
}
}
coerce_result_type(result, self, exec_state)
}
// Postcondition: result.is_some() if function is not in the standard library.
fn as_source_range(&self) -> Option<SourceRange> {
match &self.body {
FunctionBody::Rust(_) => None,
FunctionBody::Kcl(p, _) => Some(p.as_source_range()),
}
}
}
impl FunctionBody<'_> {
fn prep_mem(&self, exec_state: &mut ExecState) {
match self {
FunctionBody::Rust(_) => exec_state.mut_stack().push_new_root_env(true),
FunctionBody::Kcl(_, memory) => exec_state.mut_stack().push_new_env_for_call(*memory),
}
}
}
impl FunctionSource {
pub async fn call_kw(
&self,
fn_name: Option<String>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
args: Args,
callsite: SourceRange,
) -> Result<Option<KclValue>, KclError> {
let def: FunctionDefinition = self.into();
def.call_kw(fn_name, exec_state, ctx, args, callsite).await
}
}
fn update_memory_for_tags_of_geometry(result: &mut KclValue, exec_state: &mut ExecState) -> Result<(), KclError> {
// If the return result is a sketch or solid, we want to update the
// memory for the tags of the group.
// TODO: This could probably be done in a better way, but as of now this was my only idea
// and it works.
match result {
KclValue::Sketch { value } => {
for (name, tag) in value.tags.iter() {
if exec_state.stack().cur_frame_contains(name) {
exec_state.mut_stack().update(name, |v, _| {
v.as_mut_tag().unwrap().merge_info(tag);
});
} else {
exec_state
.mut_stack()
.add(
name.to_owned(),
KclValue::TagIdentifier(Box::new(tag.clone())),
SourceRange::default(),
)
.unwrap();
}
}
}
KclValue::Solid { value } => {
for v in &value.value {
if let Some(tag) = v.get_tag() {
// Get the past tag and update it.
let tag_id = if let Some(t) = value.sketch.tags.get(&tag.name) {
let mut t = t.clone();
let Some(info) = t.get_cur_info() else {
return Err(KclError::new_internal(KclErrorDetails::new(
format!("Tag {} does not have path info", tag.name),
vec![tag.into()],
)));
};
let mut info = info.clone();
info.surface = Some(v.clone());
info.sketch = value.id;
t.info.push((exec_state.stack().current_epoch(), info));
t
} else {
// It's probably a fillet or a chamfer.
// Initialize it.
TagIdentifier {
value: tag.name.clone(),
info: vec![(
exec_state.stack().current_epoch(),
TagEngineInfo {
id: v.get_id(),
surface: Some(v.clone()),
path: None,
sketch: value.id,
},
)],
meta: vec![Metadata {
source_range: tag.clone().into(),
}],
}
};
// update the sketch tags.
value.sketch.merge_tags(Some(&tag_id).into_iter());
if exec_state.stack().cur_frame_contains(&tag.name) {
exec_state.mut_stack().update(&tag.name, |v, _| {
v.as_mut_tag().unwrap().merge_info(&tag_id);
});
} else {
exec_state
.mut_stack()
.add(
tag.name.clone(),
KclValue::TagIdentifier(Box::new(tag_id)),
SourceRange::default(),
)
.unwrap();
}
}
}
// Find the stale sketch in memory and update it.
if !value.sketch.tags.is_empty() {
let sketches_to_update: Vec<_> = exec_state
.stack()
.find_keys_in_current_env(|v| match v {
KclValue::Sketch { value: sk } => sk.original_id == value.sketch.original_id,
_ => false,
})
.cloned()
.collect();
for k in sketches_to_update {
exec_state.mut_stack().update(&k, |v, _| {
let sketch = v.as_mut_sketch().unwrap();
sketch.merge_tags(value.sketch.tags.values());
});
}
}
}
KclValue::Tuple { value, .. } | KclValue::HomArray { value, .. } => {
for v in value {
update_memory_for_tags_of_geometry(v, exec_state)?;
}
}
_ => {}
}
Ok(())
}
fn type_err_str(expected: &Type, found: &KclValue, source_range: &SourceRange, exec_state: &mut ExecState) -> String {
fn strip_backticks(s: &str) -> &str {
let mut result = s;
if s.starts_with('`') {
result = &result[1..]
}
if s.ends_with('`') {
result = &result[..result.len() - 1]
}
result
}
let expected_human = expected.human_friendly_type();
let expected_ty = expected.to_string();
let expected_str =
if expected_human == expected_ty || expected_human == format!("a value with type `{expected_ty}`") {
format!("a value with type `{expected_ty}`")
} else {
format!("{expected_human} (`{expected_ty}`)")
};
let found_human = found.human_friendly_type();
let found_ty = found.principal_type_string();
let found_str = if found_human == found_ty || found_human == format!("a {}", strip_backticks(&found_ty)) {
format!("a value with type {found_ty}")
} else {
format!("{found_human} (with type {found_ty})")
};
let mut result = format!("{expected_str}, but found {found_str}.");
if found.is_unknown_number() {
exec_state.clear_units_warnings(source_range);
result.push_str("\nThe found value is a number but has incomplete units information. You can probably fix this error by specifying the units using type ascription, e.g., `len: number(mm)` or `(a * b): number(deg)`.");
}
result
}
fn type_check_params_kw(
fn_name: Option<&str>,
fn_def: &FunctionDefinition<'_>,
args: &mut KwArgs,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
// If it's possible the input arg was meant to be labelled and we probably don't want to use
// it as the input arg, then treat it as labelled.
if let Some((Some(label), _)) = &args.unlabeled {
if (fn_def.input_arg.is_none() || exec_state.pipe_value().is_some())
&& fn_def.named_args.iter().any(|p| p.0 == label)
&& !args.labeled.contains_key(label)
{
let (label, arg) = args.unlabeled.take().unwrap();
args.labeled.insert(label.unwrap(), arg);
}
}
for (label, arg) in &mut args.labeled {
match fn_def.named_args.get(label) {
Some((def, ty)) => {
// For optional args, passing None should be the same as not passing an arg.
if !(def.is_some() && matches!(arg.value, KclValue::KclNone { .. })) {
if let Some(ty) = ty {
let rty = RuntimeType::from_parsed(ty.clone(), exec_state, arg.source_range)
.map_err(|e| KclError::new_semantic(e.into()))?;
arg.value = arg
.value
.coerce(
&rty,
true,
exec_state,
)
.map_err(|e| {
let mut message = format!(
"{label} requires {}",
type_err_str(ty, &arg.value, &arg.source_range, exec_state),
);
if let Some(ty) = e.explicit_coercion {
// TODO if we have access to the AST for the argument we could choose which example to suggest.
message = format!("{message}\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`");
}
KclError::new_semantic(KclErrorDetails::new(
message,
vec![arg.source_range],
))
})?;
}
}
}
None => {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"`{label}` is not an argument of {}",
fn_name
.map(|n| format!("`{n}`"))
.unwrap_or_else(|| "this function".to_owned()),
),
));
}
}
}
if !args.errors.is_empty() {
let actuals = args.labeled.keys();
let formals: Vec<_> = fn_def
.named_args
.keys()
.filter_map(|name| {
if actuals.clone().any(|a| a == name) {
return None;
}
Some(format!("`{name}`"))
})
.collect();
let suggestion = if formals.is_empty() {
String::new()
} else {
format!("; suggested labels: {}", formals.join(", "))
};
let mut errors = args.errors.iter().map(|e| {
CompilationError::err(
e.source_range,
format!("This argument needs a label, but it doesn't have one{suggestion}"),
)
});
let first = errors.next().unwrap();
errors.for_each(|e| exec_state.err(e));
return Err(KclError::new_semantic(first.into()));
}
if let Some(arg) = &mut args.unlabeled {
if let Some((_, Some(ty))) = &fn_def.input_arg {
let rty = RuntimeType::from_parsed(ty.clone(), exec_state, arg.1.source_range)
.map_err(|e| KclError::new_semantic(e.into()))?;
arg.1.value = arg.1.value.coerce(&rty, true, exec_state).map_err(|_| {
KclError::new_semantic(KclErrorDetails::new(
format!(
"The input argument of {} requires {}",
fn_name
.map(|n| format!("`{n}`"))
.unwrap_or_else(|| "this function".to_owned()),
type_err_str(ty, &arg.1.value, &arg.1.source_range, exec_state),
),
vec![arg.1.source_range],
))
})?;
}
} else if let Some((name, _)) = &fn_def.input_arg {
if let Some(arg) = args.labeled.get(name) {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"{} expects an unlabeled first argument (`@{name}`), but it is labelled in the call",
fn_name
.map(|n| format!("The function `{n}`"))
.unwrap_or_else(|| "This function".to_owned()),
),
));
}
}
Ok(())
}
fn assign_args_to_params_kw(
fn_def: &FunctionDefinition<'_>,
args: Args,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
// Add the arguments to the memory. A new call frame should have already
// been created.
let source_ranges = fn_def.as_source_range().into_iter().collect();
for (name, (default, _)) in fn_def.named_args.iter() {
let arg = args.kw_args.labeled.get(name);
match arg {
Some(arg) => {
exec_state.mut_stack().add(
name.clone(),
arg.value.clone(),
arg.source_ranges().pop().unwrap_or(SourceRange::synthetic()),
)?;
}
None => match default {
Some(default_val) => {
let value = KclValue::from_default_param(default_val.clone(), exec_state);
exec_state
.mut_stack()
.add(name.clone(), value, default_val.source_range())?;
}
None => {
return Err(KclError::new_semantic(KclErrorDetails::new(
format!("This function requires a parameter {name}, but you haven't passed it one."),
source_ranges,
)));
}
},
}
}
if let Some((param_name, _)) = &fn_def.input_arg {
let unlabelled = args.unlabeled_kw_arg_unconverted();
let Some(unlabeled) = unlabelled else {
return Err(if args.kw_args.labeled.contains_key(param_name) {
KclError::new_semantic(KclErrorDetails::new(
format!(
"The function does declare a parameter named '{param_name}', but this parameter doesn't use a label. Try removing the `{param_name}:`"
),
source_ranges,
))
} else {
KclError::new_semantic(KclErrorDetails::new(
"This function expects an unlabeled first parameter, but you haven't passed it one.".to_owned(),
source_ranges,
))
});
};
exec_state.mut_stack().add(
param_name.clone(),
unlabeled.value.clone(),
unlabeled.source_ranges().pop().unwrap_or(SourceRange::synthetic()),
)?;
}
Ok(())
}
fn coerce_result_type(
result: Result<Option<KclValue>, KclError>,
fn_def: &FunctionDefinition<'_>,
exec_state: &mut ExecState,
) -> Result<Option<KclValue>, KclError> {
if let Ok(Some(val)) = result {
if let Some(ret_ty) = &fn_def.return_type {
let ty = RuntimeType::from_parsed(ret_ty.inner.clone(), exec_state, ret_ty.as_source_range())
.map_err(|e| KclError::new_semantic(e.into()))?;
let val = val.coerce(&ty, true, exec_state).map_err(|_| {
KclError::new_semantic(KclErrorDetails::new(
format!(
"This function requires its result to be {}",
type_err_str(ret_ty, &val, &(&val).into(), exec_state)
),
ret_ty.as_source_ranges(),
))
})?;
Ok(Some(val))
} else {
Ok(Some(val))
}
} else {
result
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use super::*;
use crate::{
execution::{ContextType, memory::Stack, parse_execute, types::NumericType},
parsing::ast::types::{DefaultParamVal, Identifier, Parameter},
};
#[tokio::test(flavor = "multi_thread")]
async fn test_assign_args_to_params() {
// Set up a little framework for this test.
fn mem(number: usize) -> KclValue {
KclValue::Number {
value: number as f64,
ty: NumericType::count(),
meta: Default::default(),
}
}
fn ident(s: &'static str) -> Node<Identifier> {
Node::no_src(Identifier {
name: s.to_owned(),
digest: None,
})
}
fn opt_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
}
}
fn req_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: None,
labeled: true,
digest: None,
}
}
fn additional_program_memory(items: &[(String, KclValue)]) -> Stack {
let mut program_memory = Stack::new_for_tests();
for (name, item) in items {
program_memory
.add(name.clone(), item.clone(), SourceRange::default())
.unwrap();
}
program_memory
}
// Declare the test cases.
for (test_name, params, args, expected) in [
("empty", Vec::new(), Vec::new(), Ok(additional_program_memory(&[]))),
(
"all params required, and all given, should be OK",
vec![req_param("x")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[("x".to_owned(), mem(1))])),
),
(
"all params required, none given, should error",
vec![req_param("x")],
vec![],
Err(KclError::new_semantic(KclErrorDetails::new(
"This function requires a parameter x, but you haven't passed it one.".to_owned(),
vec![SourceRange::default()],
))),
),
(
"all params optional, none given, should be OK",
vec![opt_param("x")],
vec![],
Ok(additional_program_memory(&[("x".to_owned(), KclValue::none())])),
),
(
"mixed params, too few given",
vec![req_param("x"), opt_param("y")],
vec![],
Err(KclError::new_semantic(KclErrorDetails::new(
"This function requires a parameter x, but you haven't passed it one.".to_owned(),
vec![SourceRange::default()],
))),
),
(
"mixed params, minimum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), KclValue::none()),
])),
),
(
"mixed params, maximum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1)), ("y", mem(2))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), mem(2)),
])),
),
] {
// Run each test.
let func_expr = Node::no_src(FunctionExpression {
params,
body: Program::empty(),
return_type: None,
digest: None,
});
let func_src = FunctionSource::User {
ast: Box::new(func_expr),
settings: Default::default(),
memory: EnvironmentRef::dummy(),
};
let labeled = args
.iter()
.map(|(name, value)| {
let arg = Arg::new(value.clone(), SourceRange::default());
((*name).to_owned(), arg)
})
.collect::<IndexMap<_, _>>();
let exec_ctxt = ExecutorContext {
engine: Arc::new(Box::new(
crate::engine::conn_mock::EngineConnection::new().await.unwrap(),
)),
fs: Arc::new(crate::fs::FileManager::new()),
settings: Default::default(),
context_type: ContextType::Mock,
};
let mut exec_state = ExecState::new(&exec_ctxt);
exec_state.mod_local.stack = Stack::new_for_tests();
let args = Args::new_kw(
KwArgs {
unlabeled: None,
labeled,
errors: Vec::new(),
},
SourceRange::default(),
exec_ctxt,
None,
);
let actual = assign_args_to_params_kw(&(&func_src).into(), args, &mut exec_state)
.map(|_| exec_state.mod_local.stack);
assert_eq!(
actual, expected,
"failed test '{test_name}':\ngot {actual:?}\nbut expected\n{expected:?}"
);
}
}
#[tokio::test(flavor = "multi_thread")]
async fn type_check_user_args() {
let program = r#"fn makeMessage(prefix: string, suffix: string) {
return prefix + suffix
}
msg1 = makeMessage(prefix = "world", suffix = " hello")
msg2 = makeMessage(prefix = 1, suffix = 3)"#;
let err = parse_execute(program).await.unwrap_err();
assert_eq!(
err.message(),
"prefix requires a value with type `string`, but found a value with type `number`.\nThe found value is a number but has incomplete units information. You can probably fix this error by specifying the units using type ascription, e.g., `len: number(mm)` or `(a * b): number(deg)`."
)
}
}