429 lines
10 KiB
Plaintext
429 lines
10 KiB
Plaintext
@no_std
|
||
@settings(defaultLengthUnit = mm, kclVersion = 1.0)
|
||
|
||
import Point2d from "std::types"
|
||
|
||
/// The value of `pi`, Archimedes’ constant (π).
|
||
///
|
||
/// ```
|
||
/// circumference = 70
|
||
///
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> circle(center = [0, 0], radius = (circumference / (2 * PI)): number(mm))
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
export PI = 3.14159265358979323846264338327950288_?
|
||
|
||
/// The value of Euler’s number `e`.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 30,
|
||
/// length = 2 * E ^ 2,
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 10)
|
||
/// ```
|
||
export E = 2.71828182845904523536028747135266250_
|
||
|
||
/// The value of `tau`, the full circle constant (τ). Equal to 2π.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 50,
|
||
/// length = 10 * TAU,
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
export TAU = 6.28318530717958647692528676655900577_
|
||
|
||
/// Compute the cosine of a number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 30,
|
||
/// length = 3 / cos(30deg),
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn cos(@num: number(Angle)): number(Count) {}
|
||
|
||
/// Compute the sine of a number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 50,
|
||
/// length = 15 / sin(135deg),
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn sin(@num: number(Angle)): number(Count) {}
|
||
|
||
/// Compute the tangent of a number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 50,
|
||
/// length = 50 * tan((1/2): number(rad)),
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn tan(@num: number(Angle)): number(Count) {}
|
||
|
||
/// Compute the arccosine of a number.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = acos(0.5),
|
||
/// length = 10,
|
||
/// )
|
||
/// |> line(end = [5, 0])
|
||
/// |> line(endAbsolute = [12, 0])
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn acos(@num: number(Count)): number(rad) {}
|
||
|
||
/// Compute the arcsine of a number.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = asin(0.5),
|
||
/// length = 20,
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn asin(@num: number(Count)): number(rad) {}
|
||
|
||
/// Compute the arctangent of a number.
|
||
///
|
||
/// Consider using `atan2()` instead for the true inverse of tangent.
|
||
///
|
||
/// ```no_run
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = atan(1.25),
|
||
/// length = 20,
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn atan(@num: number(Count)): number(rad) {}
|
||
|
||
/// Compute the four quadrant arctangent of Y and X.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = atan2(y = 1.25, x = 2),
|
||
/// length = 20,
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn atan2(y: number(Length), x: number(Length)): number(rad) {}
|
||
|
||
/// Convert polar/sphere (azimuth, elevation, distance) coordinates to
|
||
/// cartesian (x/y/z grid) coordinates.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = polar(angle = 30, length = 5), tag = $thing)
|
||
/// |> line(end = [0, 5])
|
||
/// |> line(end = [segEndX(thing), 0])
|
||
/// |> line(end = [-20, 10])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
export fn polar(angle: number(rad), length: number(Length)): Point2d {
|
||
x = length * cos(angle)
|
||
y = length * sin(angle)
|
||
return [x, y]
|
||
}
|
||
|
||
/// Compute the remainder after dividing `num` by `div`.
|
||
/// If `num` is negative, the result will be too.
|
||
///
|
||
/// ```
|
||
/// import rem from "std::math"
|
||
///
|
||
/// assert(rem( 7, divisor = 4), isEqualTo = 3, error = "remainder is 3")
|
||
/// assert(rem(-7, divisor = 4), isEqualTo = -3, error = "remainder is -3")
|
||
/// assert(rem( 7, divisor = -4), isEqualTo = 3, error = "remainder is 3")
|
||
/// assert(rem( 6, divisor = 2.5), isEqualTo = 1, error = "remainder is 1")
|
||
/// assert(rem( 6.5, divisor = 2.5), isEqualTo = 1.5, error = "remainder is 1.5")
|
||
/// assert(rem( 6.5, divisor = 2), isEqualTo = 0.5, error = "remainder is 0.5")
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn rem(
|
||
/// The number which will be divided by `divisor`.
|
||
@num: number,
|
||
/// The number which will divide `num`.
|
||
divisor: number,
|
||
): number {}
|
||
|
||
/// Compute the square root of a number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 50,
|
||
/// length = sqrt(2500),
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn sqrt(@input: number): number {}
|
||
|
||
/// Compute the absolute value of a number.
|
||
///
|
||
/// ```
|
||
/// myAngle = -120
|
||
///
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = [8, 0])
|
||
/// |> angledLine(
|
||
/// angle = abs(myAngle),
|
||
/// length = 5,
|
||
/// )
|
||
/// |> line(end = [-5, 0])
|
||
/// |> angledLine(
|
||
/// angle = myAngle,
|
||
/// length = 5,
|
||
/// )
|
||
/// |> close()
|
||
///
|
||
/// baseExtrusion = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn abs(@input: number): number {}
|
||
|
||
/// Round a number to the nearest integer.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(endAbsolute = [12, 10])
|
||
/// |> line(end = [round(7.02986), 0])
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn round(@input: number): number {}
|
||
|
||
/// Compute the largest integer less than or equal to a number.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(endAbsolute = [12, 10])
|
||
/// |> line(end = [floor(7.02986), 0])
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn floor(@input: number): number {}
|
||
|
||
/// Compute the smallest integer greater than or equal to a number.
|
||
///
|
||
/// ```
|
||
/// sketch001 = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(endAbsolute = [12, 10])
|
||
/// |> line(end = [ceil(7.02986), 0])
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// extrude001 = extrude(sketch001, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn ceil(@input: number): number {}
|
||
|
||
/// Compute the minimum of the given arguments.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 70,
|
||
/// length = min([15, 31, 4, 13, 22])
|
||
/// )
|
||
/// |> line(end = [20, 0])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn min(
|
||
/// An array of numbers to compute the minimum of.
|
||
@input: [number; 1+],
|
||
): number {}
|
||
|
||
/// Compute the maximum of the given arguments.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 70,
|
||
/// length = max([15, 31, 4, 13, 22])
|
||
/// )
|
||
/// |> line(end = [20, 0])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn max(
|
||
/// An array of numbers to compute the maximum of.
|
||
@input: [number; 1+],
|
||
): number {}
|
||
|
||
/// Compute the number to a power.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> angledLine(
|
||
/// angle = 50,
|
||
/// length = pow(5, exp = 2),
|
||
/// )
|
||
/// |> yLine(endAbsolute = 0)
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn pow(
|
||
/// The number to raise.
|
||
@input: number,
|
||
/// The power to raise to.
|
||
exp: number(Count),
|
||
): number {}
|
||
|
||
/// Compute the logarithm of the number with respect to an arbitrary base.
|
||
///
|
||
/// The result might not be correctly rounded owing to implementation
|
||
/// details; `log2` can produce more accurate results for base 2,
|
||
/// and `log10` can produce more accurate results for base 10.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = [log(100, base = 5), 0])
|
||
/// |> line(end = [5, 8])
|
||
/// |> line(end = [-10, 0])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn log(
|
||
/// The number to compute the logarithm of.
|
||
@input: number,
|
||
/// The base of the logarithm.
|
||
base: number(Count),
|
||
): number {}
|
||
|
||
/// Compute the base 2 logarithm of the number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = [log2(100), 0])
|
||
/// |> line(end = [5, 8])
|
||
/// |> line(end = [-10, 0])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn log2(@input: number): number {}
|
||
|
||
/// Compute the base 10 logarithm of the number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = [log10(100), 0])
|
||
/// |> line(end = [5, 8])
|
||
/// |> line(end = [-10, 0])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn log10(@input: number): number {}
|
||
|
||
/// Compute the natural logarithm of the number.
|
||
///
|
||
/// ```
|
||
/// exampleSketch = startSketchOn(XZ)
|
||
/// |> startProfile(at = [0, 0])
|
||
/// |> line(end = [ln(100), 15])
|
||
/// |> line(end = [5, -6])
|
||
/// |> line(end = [-10, -10])
|
||
/// |> close()
|
||
///
|
||
/// example = extrude(exampleSketch, length = 5)
|
||
/// ```
|
||
@(impl = std_rust)
|
||
export fn ln(@input: number): number {}
|