Files
modeling-app/rust/kcl-lib/src/execution/exec_ast.rs
Nick Cameron ce566fb6e5 Accept idents as KW args (#6644)
Support kw arg/local variable shorthand

Signed-off-by: Nick Cameron <nrc@ncameron.org>
2025-05-15 07:42:48 +12:00

2771 lines
110 KiB
Rust

use std::collections::HashMap;
use async_recursion::async_recursion;
use indexmap::IndexMap;
#[cfg(feature = "artifact-graph")]
use crate::execution::cad_op::{Group, OpArg, OpKclValue, Operation};
use crate::{
errors::{KclError, KclErrorDetails},
execution::{
annotations,
kcl_value::{FunctionSource, TypeDef},
memory,
state::ModuleState,
types::{NumericType, PrimitiveType, RuntimeType},
BodyType, EnvironmentRef, ExecState, ExecutorContext, KclValue, Metadata, PlaneType, TagEngineInfo,
TagIdentifier,
},
fmt,
modules::{ModuleId, ModulePath, ModuleRepr},
parsing::ast::types::{
Annotation, ArrayExpression, ArrayRangeExpression, AscribedExpression, BinaryExpression, BinaryOperator,
BinaryPart, BodyItem, CallExpressionKw, Expr, FunctionExpression, IfExpression, ImportPath, ImportSelector,
ItemVisibility, LiteralIdentifier, LiteralValue, MemberExpression, MemberObject, Name, Node, NodeRef,
ObjectExpression, PipeExpression, Program, TagDeclarator, Type, UnaryExpression, UnaryOperator,
},
source_range::SourceRange,
std::{
args::{Arg, Args, KwArgs, TyF64},
FunctionKind,
},
CompilationError,
};
enum StatementKind<'a> {
Declaration { name: &'a str },
Expression,
}
impl<'a> StatementKind<'a> {
fn expect_name(&self) -> &'a str {
match self {
StatementKind::Declaration { name } => name,
StatementKind::Expression => unreachable!(),
}
}
}
impl ExecutorContext {
/// Returns true if importing the prelude should be skipped.
async fn handle_annotations(
&self,
annotations: impl Iterator<Item = &Node<Annotation>>,
body_type: BodyType,
exec_state: &mut ExecState,
) -> Result<bool, KclError> {
let mut no_prelude = false;
for annotation in annotations {
if annotation.name() == Some(annotations::SETTINGS) {
if matches!(body_type, BodyType::Root) {
if exec_state.mod_local.settings.update_from_annotation(annotation)? {
exec_state.mod_local.explicit_length_units = true;
}
} else {
exec_state.err(CompilationError::err(
annotation.as_source_range(),
"Settings can only be modified at the top level scope of a file",
));
}
} else if annotation.name() == Some(annotations::NO_PRELUDE) {
if matches!(body_type, BodyType::Root) {
no_prelude = true;
} else {
exec_state.err(CompilationError::err(
annotation.as_source_range(),
"The standard library can only be skipped at the top level scope of a file",
));
}
} else {
exec_state.warn(CompilationError::err(
annotation.as_source_range(),
"Unknown annotation",
));
}
}
Ok(no_prelude)
}
pub(super) async fn exec_module_body(
&self,
program: &Node<Program>,
exec_state: &mut ExecState,
preserve_mem: bool,
module_id: ModuleId,
path: &ModulePath,
) -> Result<(Option<KclValue>, EnvironmentRef, Vec<String>), KclError> {
crate::log::log(format!("enter module {path} {}", exec_state.stack()));
let mut local_state = ModuleState::new(path.std_path(), exec_state.stack().memory.clone(), Some(module_id));
if !preserve_mem {
std::mem::swap(&mut exec_state.mod_local, &mut local_state);
}
let no_prelude = self
.handle_annotations(program.inner_attrs.iter(), crate::execution::BodyType::Root, exec_state)
.await?;
if !preserve_mem {
exec_state.mut_stack().push_new_root_env(!no_prelude);
}
let result = self
.exec_block(program, exec_state, crate::execution::BodyType::Root)
.await;
let env_ref = if preserve_mem {
exec_state.mut_stack().pop_and_preserve_env()
} else {
exec_state.mut_stack().pop_env()
};
if !preserve_mem {
std::mem::swap(&mut exec_state.mod_local, &mut local_state);
}
crate::log::log(format!("leave {path}"));
result.map(|result| (result, env_ref, local_state.module_exports))
}
/// Execute an AST's program.
#[async_recursion]
pub(super) async fn exec_block<'a>(
&'a self,
program: NodeRef<'a, Program>,
exec_state: &mut ExecState,
body_type: BodyType,
) -> Result<Option<KclValue>, KclError> {
let mut last_expr = None;
// Iterate over the body of the program.
for statement in &program.body {
match statement {
BodyItem::ImportStatement(import_stmt) => {
if !matches!(body_type, BodyType::Root) {
return Err(KclError::Semantic(KclErrorDetails {
message: "Imports are only supported at the top-level of a file.".to_owned(),
source_ranges: vec![import_stmt.into()],
}));
}
let source_range = SourceRange::from(import_stmt);
let attrs = &import_stmt.outer_attrs;
let module_id = self
.open_module(&import_stmt.path, attrs, exec_state, source_range)
.await?;
match &import_stmt.selector {
ImportSelector::List { items } => {
let (env_ref, module_exports) =
self.exec_module_for_items(module_id, exec_state, source_range).await?;
for import_item in items {
// Extract the item from the module.
let mem = &exec_state.stack().memory;
let mut value = mem
.get_from(&import_item.name.name, env_ref, import_item.into(), 0)
.cloned();
let ty_name = format!("{}{}", memory::TYPE_PREFIX, import_item.name.name);
let mut ty = mem.get_from(&ty_name, env_ref, import_item.into(), 0).cloned();
if value.is_err() && ty.is_err() {
return Err(KclError::UndefinedValue(KclErrorDetails {
message: format!("{} is not defined in module", import_item.name.name),
source_ranges: vec![SourceRange::from(&import_item.name)],
}));
}
// Check that the item is allowed to be imported (in at least one namespace).
if value.is_ok() && !module_exports.contains(&import_item.name.name) {
value = Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Cannot import \"{}\" from module because it is not exported. Add \"export\" before the definition to export it.",
import_item.name.name
),
source_ranges: vec![SourceRange::from(&import_item.name)],
}));
}
if ty.is_ok() && !module_exports.contains(&ty_name) {
ty = Err(KclError::Semantic(KclErrorDetails {
message: String::new(),
source_ranges: vec![],
}));
}
if value.is_err() && ty.is_err() {
return value.map(Option::Some);
}
// Add the item to the current module.
if let Ok(value) = value {
exec_state.mut_stack().add(
import_item.identifier().to_owned(),
value,
SourceRange::from(&import_item.name),
)?;
if let ItemVisibility::Export = import_stmt.visibility {
exec_state
.mod_local
.module_exports
.push(import_item.identifier().to_owned());
}
}
if let Ok(ty) = ty {
let ty_name = format!("{}{}", memory::TYPE_PREFIX, import_item.identifier());
// Add the item to the current module.
exec_state.mut_stack().add(
ty_name.clone(),
ty,
SourceRange::from(&import_item.name),
)?;
if let ItemVisibility::Export = import_stmt.visibility {
exec_state.mod_local.module_exports.push(ty_name);
}
}
}
}
ImportSelector::Glob(_) => {
let (env_ref, module_exports) =
self.exec_module_for_items(module_id, exec_state, source_range).await?;
for name in module_exports.iter() {
let item = exec_state
.stack()
.memory
.get_from(name, env_ref, source_range, 0)
.map_err(|_err| {
KclError::Internal(KclErrorDetails {
message: format!("{} is not defined in module (but was exported?)", name),
source_ranges: vec![source_range],
})
})?
.clone();
exec_state.mut_stack().add(name.to_owned(), item, source_range)?;
if let ItemVisibility::Export = import_stmt.visibility {
exec_state.mod_local.module_exports.push(name.clone());
}
}
}
ImportSelector::None { .. } => {
let name = import_stmt.module_name().unwrap();
let item = KclValue::Module {
value: module_id,
meta: vec![source_range.into()],
};
exec_state.mut_stack().add(name, item, source_range)?;
}
}
last_expr = None;
}
BodyItem::ExpressionStatement(expression_statement) => {
let metadata = Metadata::from(expression_statement);
last_expr = Some(
self.execute_expr(
&expression_statement.expression,
exec_state,
&metadata,
&[],
StatementKind::Expression,
)
.await?,
);
}
BodyItem::VariableDeclaration(variable_declaration) => {
let var_name = variable_declaration.declaration.id.name.to_string();
let source_range = SourceRange::from(&variable_declaration.declaration.init);
let metadata = Metadata { source_range };
let annotations = &variable_declaration.outer_attrs;
let value = self
.execute_expr(
&variable_declaration.declaration.init,
exec_state,
&metadata,
annotations,
StatementKind::Declaration { name: &var_name },
)
.await?;
exec_state
.mut_stack()
.add(var_name.clone(), value.clone(), source_range)?;
// Track exports.
if let ItemVisibility::Export = variable_declaration.visibility {
exec_state.mod_local.module_exports.push(var_name);
}
// Variable declaration can be the return value of a module.
last_expr = matches!(body_type, BodyType::Root).then_some(value);
}
BodyItem::TypeDeclaration(ty) => {
let metadata = Metadata::from(&**ty);
let impl_kind = annotations::get_impl(&ty.outer_attrs, metadata.source_range)?.unwrap_or_default();
match impl_kind {
annotations::Impl::Rust => {
let std_path = match &exec_state.mod_local.std_path {
Some(p) => p,
None => {
return Err(KclError::Semantic(KclErrorDetails {
message: "User-defined types are not yet supported.".to_owned(),
source_ranges: vec![metadata.source_range],
}));
}
};
let (t, props) = crate::std::std_ty(std_path, &ty.name.name);
let value = KclValue::Type {
value: TypeDef::RustRepr(t, props),
meta: vec![metadata],
};
let name_in_mem = format!("{}{}", memory::TYPE_PREFIX, ty.name.name);
exec_state
.mut_stack()
.add(name_in_mem.clone(), value, metadata.source_range)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!("Redefinition of type {}.", ty.name.name),
source_ranges: vec![metadata.source_range],
})
})?;
if let ItemVisibility::Export = ty.visibility {
exec_state.mod_local.module_exports.push(name_in_mem);
}
}
// Do nothing for primitive types, they get special treatment and their declarations are just for documentation.
annotations::Impl::Primitive => {}
annotations::Impl::Kcl => match &ty.alias {
Some(alias) => {
let value = KclValue::Type {
value: TypeDef::Alias(
RuntimeType::from_parsed(
alias.inner.clone(),
exec_state,
metadata.source_range,
)
.map_err(|e| KclError::Semantic(e.into()))?,
),
meta: vec![metadata],
};
let name_in_mem = format!("{}{}", memory::TYPE_PREFIX, ty.name.name);
exec_state
.mut_stack()
.add(name_in_mem.clone(), value, metadata.source_range)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!("Redefinition of type {}.", ty.name.name),
source_ranges: vec![metadata.source_range],
})
})?;
if let ItemVisibility::Export = ty.visibility {
exec_state.mod_local.module_exports.push(name_in_mem);
}
}
None => {
return Err(KclError::Semantic(KclErrorDetails {
message: "User-defined types are not yet supported.".to_owned(),
source_ranges: vec![metadata.source_range],
}))
}
},
}
last_expr = None;
}
BodyItem::ReturnStatement(return_statement) => {
let metadata = Metadata::from(return_statement);
if matches!(body_type, BodyType::Root) {
return Err(KclError::Semantic(KclErrorDetails {
message: "Cannot return from outside a function.".to_owned(),
source_ranges: vec![metadata.source_range],
}));
}
let value = self
.execute_expr(
&return_statement.argument,
exec_state,
&metadata,
&[],
StatementKind::Expression,
)
.await?;
exec_state
.mut_stack()
.add(memory::RETURN_NAME.to_owned(), value, metadata.source_range)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: "Multiple returns from a single function.".to_owned(),
source_ranges: vec![metadata.source_range],
})
})?;
last_expr = None;
}
}
}
if matches!(body_type, BodyType::Root) {
// Flush the batch queue.
self.engine
.flush_batch(
// True here tells the engine to flush all the end commands as well like fillets
// and chamfers where the engine would otherwise eat the ID of the segments.
true,
SourceRange::new(program.end, program.end, program.module_id),
)
.await?;
}
Ok(last_expr)
}
pub async fn open_module(
&self,
path: &ImportPath,
attrs: &[Node<Annotation>],
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<ModuleId, KclError> {
let resolved_path = ModulePath::from_import_path(path, &self.settings.project_directory);
match path {
ImportPath::Kcl { .. } => {
exec_state.global.mod_loader.cycle_check(&resolved_path, source_range)?;
if let Some(id) = exec_state.id_for_module(&resolved_path) {
return Ok(id);
}
let id = exec_state.next_module_id();
// Add file path string to global state even if it fails to import
exec_state.add_path_to_source_id(resolved_path.clone(), id);
let source = resolved_path.source(&self.fs, source_range).await?;
exec_state.add_id_to_source(id, source.clone());
// TODO handle parsing errors properly
let parsed = crate::parsing::parse_str(&source.source, id).parse_errs_as_err()?;
exec_state.add_module(id, resolved_path, ModuleRepr::Kcl(parsed, None));
Ok(id)
}
ImportPath::Foreign { .. } => {
if let Some(id) = exec_state.id_for_module(&resolved_path) {
return Ok(id);
}
let id = exec_state.next_module_id();
let path = resolved_path.expect_path();
// Add file path string to global state even if it fails to import
exec_state.add_path_to_source_id(resolved_path.clone(), id);
let format = super::import::format_from_annotations(attrs, path, source_range)?;
let geom = super::import::import_foreign(path, format, exec_state, self, source_range).await?;
exec_state.add_module(id, resolved_path, ModuleRepr::Foreign(geom, None));
Ok(id)
}
ImportPath::Std { .. } => {
if let Some(id) = exec_state.id_for_module(&resolved_path) {
return Ok(id);
}
let id = exec_state.next_module_id();
// Add file path string to global state even if it fails to import
exec_state.add_path_to_source_id(resolved_path.clone(), id);
let source = resolved_path.source(&self.fs, source_range).await?;
exec_state.add_id_to_source(id, source.clone());
let parsed = crate::parsing::parse_str(&source.source, id)
.parse_errs_as_err()
.unwrap();
exec_state.add_module(id, resolved_path, ModuleRepr::Kcl(parsed, None));
Ok(id)
}
}
}
pub(super) async fn exec_module_for_items(
&self,
module_id: ModuleId,
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<(EnvironmentRef, Vec<String>), KclError> {
let path = exec_state.global.module_infos[&module_id].path.clone();
let mut repr = exec_state.global.module_infos[&module_id].take_repr();
// DON'T EARLY RETURN! We need to restore the module repr
let result = match &mut repr {
ModuleRepr::Root => Err(exec_state.circular_import_error(&path, source_range)),
ModuleRepr::Kcl(_, Some((_, env_ref, items))) => Ok((*env_ref, items.clone())),
ModuleRepr::Kcl(program, cache) => self
.exec_module_from_ast(program, module_id, &path, exec_state, source_range, false)
.await
.map(|(val, er, items)| {
*cache = Some((val, er, items.clone()));
(er, items)
}),
ModuleRepr::Foreign(geom, _) => Err(KclError::Semantic(KclErrorDetails {
message: "Cannot import items from foreign modules".to_owned(),
source_ranges: vec![geom.source_range],
})),
ModuleRepr::Dummy => unreachable!("Looking up {}, but it is still being interpreted", path),
};
exec_state.global.module_infos[&module_id].restore_repr(repr);
result
}
async fn exec_module_for_result(
&self,
module_id: ModuleId,
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<Option<KclValue>, KclError> {
let path = exec_state.global.module_infos[&module_id].path.clone();
let mut repr = exec_state.global.module_infos[&module_id].take_repr();
// DON'T EARLY RETURN! We need to restore the module repr
let result = match &mut repr {
ModuleRepr::Root => Err(exec_state.circular_import_error(&path, source_range)),
ModuleRepr::Kcl(_, Some((val, _, _))) => Ok(val.clone()),
ModuleRepr::Kcl(program, cached_items) => {
let result = self
.exec_module_from_ast(program, module_id, &path, exec_state, source_range, false)
.await;
match result {
Ok((val, env, items)) => {
*cached_items = Some((val.clone(), env, items));
Ok(val)
}
Err(e) => Err(e),
}
}
ModuleRepr::Foreign(_, Some(imported)) => Ok(Some(imported.clone())),
ModuleRepr::Foreign(geom, cached) => {
let result = super::import::send_to_engine(geom.clone(), self)
.await
.map(|geom| Some(KclValue::ImportedGeometry(geom)));
match result {
Ok(val) => {
*cached = val.clone();
Ok(val)
}
Err(e) => Err(e),
}
}
ModuleRepr::Dummy => unreachable!(),
};
exec_state.global.module_infos[&module_id].restore_repr(repr);
result
}
pub async fn exec_module_from_ast(
&self,
program: &Node<Program>,
module_id: ModuleId,
path: &ModulePath,
exec_state: &mut ExecState,
source_range: SourceRange,
preserve_mem: bool,
) -> Result<(Option<KclValue>, EnvironmentRef, Vec<String>), KclError> {
exec_state.global.mod_loader.enter_module(path);
let result = self
.exec_module_body(program, exec_state, preserve_mem, module_id, path)
.await;
exec_state.global.mod_loader.leave_module(path);
result.map_err(|err| {
if let KclError::ImportCycle(_) = err {
// It was an import cycle. Keep the original message.
err.override_source_ranges(vec![source_range])
} else {
// TODO would be great to have line/column for the underlying error here
KclError::Semantic(KclErrorDetails {
message: format!(
"Error loading imported file ({path}). Open it to view more details.\n {}",
err.message()
),
source_ranges: vec![source_range],
})
}
})
}
#[async_recursion]
async fn execute_expr<'a: 'async_recursion>(
&self,
init: &Expr,
exec_state: &mut ExecState,
metadata: &Metadata,
annotations: &[Node<Annotation>],
statement_kind: StatementKind<'a>,
) -> Result<KclValue, KclError> {
let item = match init {
Expr::None(none) => KclValue::from(none),
Expr::Literal(literal) => KclValue::from_literal((**literal).clone(), exec_state),
Expr::TagDeclarator(tag) => tag.execute(exec_state).await?,
Expr::Name(name) => {
let value = name.get_result(exec_state, self).await?.clone();
if let KclValue::Module { value: module_id, meta } = value {
self.exec_module_for_result(
module_id,
exec_state,
metadata.source_range
).await?
.unwrap_or_else(|| {
exec_state.warn(CompilationError::err(
metadata.source_range,
"Imported module has no return value. The last statement of the module must be an expression, usually the Solid.",
));
let mut new_meta = vec![metadata.to_owned()];
new_meta.extend(meta);
KclValue::KclNone {
value: Default::default(),
meta: new_meta,
}
})
} else {
value
}
}
Expr::BinaryExpression(binary_expression) => binary_expression.get_result(exec_state, self).await?,
Expr::FunctionExpression(function_expression) => {
let rust_impl = annotations::get_impl(annotations, metadata.source_range)?
.map(|s| s == annotations::Impl::Rust)
.unwrap_or(false);
if rust_impl {
if let Some(std_path) = &exec_state.mod_local.std_path {
let (func, props) = crate::std::std_fn(std_path, statement_kind.expect_name());
KclValue::Function {
value: FunctionSource::Std {
func,
props,
ast: function_expression.clone(),
},
meta: vec![metadata.to_owned()],
}
} else {
return Err(KclError::Semantic(KclErrorDetails {
message: "Rust implementation of functions is restricted to the standard library"
.to_owned(),
source_ranges: vec![metadata.source_range],
}));
}
} else {
// Snapshotting memory here is crucial for semantics so that we close
// over variables. Variables defined lexically later shouldn't
// be available to the function body.
KclValue::Function {
value: FunctionSource::User {
ast: function_expression.clone(),
settings: exec_state.mod_local.settings.clone(),
memory: exec_state.mut_stack().snapshot(),
},
meta: vec![metadata.to_owned()],
}
}
}
Expr::CallExpressionKw(call_expression) => call_expression.execute(exec_state, self).await?,
Expr::PipeExpression(pipe_expression) => pipe_expression.get_result(exec_state, self).await?,
Expr::PipeSubstitution(pipe_substitution) => match statement_kind {
StatementKind::Declaration { name } => {
let message = format!(
"you cannot declare variable {name} as %, because % can only be used in function calls"
);
return Err(KclError::Semantic(KclErrorDetails {
message,
source_ranges: vec![pipe_substitution.into()],
}));
}
StatementKind::Expression => match exec_state.mod_local.pipe_value.clone() {
Some(x) => x,
None => {
return Err(KclError::Semantic(KclErrorDetails {
message: "cannot use % outside a pipe expression".to_owned(),
source_ranges: vec![pipe_substitution.into()],
}));
}
},
},
Expr::ArrayExpression(array_expression) => array_expression.execute(exec_state, self).await?,
Expr::ArrayRangeExpression(range_expression) => range_expression.execute(exec_state, self).await?,
Expr::ObjectExpression(object_expression) => object_expression.execute(exec_state, self).await?,
Expr::MemberExpression(member_expression) => member_expression.get_result(exec_state)?,
Expr::UnaryExpression(unary_expression) => unary_expression.get_result(exec_state, self).await?,
Expr::IfExpression(expr) => expr.get_result(exec_state, self).await?,
Expr::LabelledExpression(expr) => {
let result = self
.execute_expr(&expr.expr, exec_state, metadata, &[], statement_kind)
.await?;
exec_state
.mut_stack()
.add(expr.label.name.clone(), result.clone(), init.into())?;
// TODO this lets us use the label as a variable name, but not as a tag in most cases
result
}
Expr::AscribedExpression(expr) => expr.get_result(exec_state, self).await?,
};
Ok(item)
}
}
impl Node<AscribedExpression> {
#[async_recursion]
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let metadata = Metadata {
source_range: SourceRange::from(self),
};
let result = ctx
.execute_expr(&self.expr, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
apply_ascription(&result, &self.ty, exec_state, self.into())
}
}
fn apply_ascription(
value: &KclValue,
ty: &Node<Type>,
exec_state: &mut ExecState,
source_range: SourceRange,
) -> Result<KclValue, KclError> {
let ty = RuntimeType::from_parsed(ty.inner.clone(), exec_state, value.into())
.map_err(|e| KclError::Semantic(e.into()))?;
if let KclValue::Number { value, meta, .. } = value {
// If the number has unknown units but the user is explicitly specifying them, treat the value as having had it's units erased,
// rather than forcing the user to explicitly erase them.
KclValue::Number {
ty: NumericType::Any,
value: *value,
meta: meta.clone(),
}
.coerce(&ty, exec_state)
} else {
value.coerce(&ty, exec_state)
}
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!("could not coerce {} value to type {}", value.human_friendly_type(), ty),
source_ranges: vec![source_range],
})
})
}
impl BinaryPart {
#[async_recursion]
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
match self {
BinaryPart::Literal(literal) => Ok(KclValue::from_literal((**literal).clone(), exec_state)),
BinaryPart::Name(name) => name.get_result(exec_state, ctx).await.cloned(),
BinaryPart::BinaryExpression(binary_expression) => binary_expression.get_result(exec_state, ctx).await,
BinaryPart::CallExpressionKw(call_expression) => call_expression.execute(exec_state, ctx).await,
BinaryPart::UnaryExpression(unary_expression) => unary_expression.get_result(exec_state, ctx).await,
BinaryPart::MemberExpression(member_expression) => member_expression.get_result(exec_state),
BinaryPart::IfExpression(e) => e.get_result(exec_state, ctx).await,
BinaryPart::AscribedExpression(e) => e.get_result(exec_state, ctx).await,
}
}
}
impl Node<Name> {
async fn get_result<'a>(
&self,
exec_state: &'a mut ExecState,
ctx: &ExecutorContext,
) -> Result<&'a KclValue, KclError> {
if self.abs_path {
return Err(KclError::Semantic(KclErrorDetails {
message: "Absolute paths (names beginning with `::` are not yet supported)".to_owned(),
source_ranges: self.as_source_ranges(),
}));
}
if self.path.is_empty() {
return exec_state.stack().get(&self.name.name, self.into());
}
let mut mem_spec: Option<(EnvironmentRef, Vec<String>)> = None;
for p in &self.path {
let value = match mem_spec {
Some((env, exports)) => {
if !exports.contains(&p.name) {
return Err(KclError::Semantic(KclErrorDetails {
message: format!("Item {} not found in module's exported items", p.name),
source_ranges: p.as_source_ranges(),
}));
}
exec_state
.stack()
.memory
.get_from(&p.name, env, p.as_source_range(), 0)?
}
None => exec_state.stack().get(&p.name, self.into())?,
};
let KclValue::Module { value: module_id, .. } = value else {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Identifier in path must refer to a module, found {}",
value.human_friendly_type()
),
source_ranges: p.as_source_ranges(),
}));
};
mem_spec = Some(
ctx.exec_module_for_items(*module_id, exec_state, p.as_source_range())
.await?,
);
}
let (env, exports) = mem_spec.unwrap();
if !exports.contains(&self.name.name) {
return Err(KclError::Semantic(KclErrorDetails {
message: format!("Item {} not found in module's exported items", self.name.name),
source_ranges: self.name.as_source_ranges(),
}));
}
exec_state
.stack()
.memory
.get_from(&self.name.name, env, self.name.as_source_range(), 0)
}
}
impl Node<MemberExpression> {
fn get_result(&self, exec_state: &mut ExecState) -> Result<KclValue, KclError> {
let property = Property::try_from(self.computed, self.property.clone(), exec_state, self.into())?;
let object = match &self.object {
// TODO: Don't use recursion here, use a loop.
MemberObject::MemberExpression(member_expr) => member_expr.get_result(exec_state)?,
MemberObject::Identifier(identifier) => {
let value = exec_state.stack().get(&identifier.name, identifier.into())?;
value.clone()
}
};
// Check the property and object match -- e.g. ints for arrays, strs for objects.
match (object, property, self.computed) {
(KclValue::Object { value: map, meta: _ }, Property::String(property), false) => {
if let Some(value) = map.get(&property) {
Ok(value.to_owned())
} else {
Err(KclError::UndefinedValue(KclErrorDetails {
message: format!("Property '{property}' not found in object"),
source_ranges: vec![self.clone().into()],
}))
}
}
(KclValue::Object { .. }, Property::String(property), true) => Err(KclError::Semantic(KclErrorDetails {
message: format!("Cannot index object with string; use dot notation instead, e.g. `obj.{property}`"),
source_ranges: vec![self.clone().into()],
})),
(KclValue::Object { .. }, p, _) => {
let t = p.type_name();
let article = article_for(t);
Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Only strings can be used as the property of an object, but you're using {article} {t}",
),
source_ranges: vec![self.clone().into()],
}))
}
(KclValue::HomArray { value: arr, .. }, Property::UInt(index), _) => {
let value_of_arr = arr.get(index);
if let Some(value) = value_of_arr {
Ok(value.to_owned())
} else {
Err(KclError::UndefinedValue(KclErrorDetails {
message: format!("The array doesn't have any item at index {index}"),
source_ranges: vec![self.clone().into()],
}))
}
}
(KclValue::HomArray { .. }, p, _) => {
let t = p.type_name();
let article = article_for(t);
Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Only integers >= 0 can be used as the index of an array, but you're using {article} {t}",
),
source_ranges: vec![self.clone().into()],
}))
}
(KclValue::Solid { value }, Property::String(prop), false) if prop == "sketch" => Ok(KclValue::Sketch {
value: Box::new(value.sketch),
}),
(KclValue::Sketch { value: sk }, Property::String(prop), false) if prop == "tags" => Ok(KclValue::Object {
meta: vec![Metadata {
source_range: SourceRange::from(self.clone()),
}],
value: sk
.tags
.iter()
.map(|(k, tag)| (k.to_owned(), KclValue::TagIdentifier(Box::new(tag.to_owned()))))
.collect(),
}),
(being_indexed, _, _) => {
let t = being_indexed.human_friendly_type();
let article = article_for(&t);
Err(KclError::Semantic(KclErrorDetails {
message: format!("Only arrays can be indexed, but you're trying to index {article} {t}"),
source_ranges: vec![self.clone().into()],
}))
}
}
}
}
impl Node<BinaryExpression> {
#[async_recursion]
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let left_value = self.left.get_result(exec_state, ctx).await?;
let right_value = self.right.get_result(exec_state, ctx).await?;
let mut meta = left_value.metadata();
meta.extend(right_value.metadata());
// First check if we are doing string concatenation.
if self.operator == BinaryOperator::Add {
if let (KclValue::String { value: left, meta: _ }, KclValue::String { value: right, meta: _ }) =
(&left_value, &right_value)
{
return Ok(KclValue::String {
value: format!("{}{}", left, right),
meta,
});
}
}
// Then check if we have solids.
if self.operator == BinaryOperator::Add || self.operator == BinaryOperator::Or {
if let (KclValue::Solid { value: left }, KclValue::Solid { value: right }) = (&left_value, &right_value) {
let args = Args::new(Default::default(), self.into(), ctx.clone(), None);
let result = crate::std::csg::inner_union(
vec![*left.clone(), *right.clone()],
Default::default(),
exec_state,
args,
)
.await?;
return Ok(result.into());
}
} else if self.operator == BinaryOperator::Sub {
// Check if we have solids.
if let (KclValue::Solid { value: left }, KclValue::Solid { value: right }) = (&left_value, &right_value) {
let args = Args::new(Default::default(), self.into(), ctx.clone(), None);
let result = crate::std::csg::inner_subtract(
vec![*left.clone()],
vec![*right.clone()],
Default::default(),
exec_state,
args,
)
.await?;
return Ok(result.into());
}
} else if self.operator == BinaryOperator::And {
// Check if we have solids.
if let (KclValue::Solid { value: left }, KclValue::Solid { value: right }) = (&left_value, &right_value) {
let args = Args::new(Default::default(), self.into(), ctx.clone(), None);
let result = crate::std::csg::inner_intersect(
vec![*left.clone(), *right.clone()],
Default::default(),
exec_state,
args,
)
.await?;
return Ok(result.into());
}
}
// Check if we are doing logical operations on booleans.
if self.operator == BinaryOperator::Or || self.operator == BinaryOperator::And {
let KclValue::Bool {
value: left_value,
meta: _,
} = left_value
else {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Cannot apply logical operator to non-boolean value: {}",
left_value.human_friendly_type()
),
source_ranges: vec![self.left.clone().into()],
}));
};
let KclValue::Bool {
value: right_value,
meta: _,
} = right_value
else {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Cannot apply logical operator to non-boolean value: {}",
right_value.human_friendly_type()
),
source_ranges: vec![self.right.clone().into()],
}));
};
let raw_value = match self.operator {
BinaryOperator::Or => left_value || right_value,
BinaryOperator::And => left_value && right_value,
_ => unreachable!(),
};
return Ok(KclValue::Bool { value: raw_value, meta });
}
let left = number_as_f64(&left_value, self.left.clone().into())?;
let right = number_as_f64(&right_value, self.right.clone().into())?;
let value = match self.operator {
BinaryOperator::Add => {
let (l, r, ty) = NumericType::combine_eq_coerce(left, right);
self.warn_on_unknown(&ty, "Adding", exec_state);
KclValue::Number { value: l + r, meta, ty }
}
BinaryOperator::Sub => {
let (l, r, ty) = NumericType::combine_eq_coerce(left, right);
self.warn_on_unknown(&ty, "Subtracting", exec_state);
KclValue::Number { value: l - r, meta, ty }
}
BinaryOperator::Mul => {
let (l, r, ty) = NumericType::combine_mul(left, right);
self.warn_on_unknown(&ty, "Multiplying", exec_state);
KclValue::Number { value: l * r, meta, ty }
}
BinaryOperator::Div => {
let (l, r, ty) = NumericType::combine_div(left, right);
self.warn_on_unknown(&ty, "Dividing", exec_state);
KclValue::Number { value: l / r, meta, ty }
}
BinaryOperator::Mod => {
let (l, r, ty) = NumericType::combine_div(left, right);
self.warn_on_unknown(&ty, "Modulo of", exec_state);
KclValue::Number { value: l % r, meta, ty }
}
BinaryOperator::Pow => KclValue::Number {
value: left.n.powf(right.n),
meta,
ty: exec_state.current_default_units(),
},
BinaryOperator::Neq => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l != r, meta }
}
BinaryOperator::Gt => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l > r, meta }
}
BinaryOperator::Gte => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l >= r, meta }
}
BinaryOperator::Lt => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l < r, meta }
}
BinaryOperator::Lte => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l <= r, meta }
}
BinaryOperator::Eq => {
let (l, r, ty) = NumericType::combine_eq(left, right);
self.warn_on_unknown(&ty, "Comparing", exec_state);
KclValue::Bool { value: l == r, meta }
}
BinaryOperator::And | BinaryOperator::Or => unreachable!(),
};
Ok(value)
}
fn warn_on_unknown(&self, ty: &NumericType, verb: &str, exec_state: &mut ExecState) {
if ty == &NumericType::Unknown {
// TODO suggest how to fix this
exec_state.warn(CompilationError::err(
self.as_source_range(),
format!("{} numbers which have unknown or incompatible units.", verb),
));
}
}
}
impl Node<UnaryExpression> {
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
if self.operator == UnaryOperator::Not {
let value = self.argument.get_result(exec_state, ctx).await?;
let KclValue::Bool {
value: bool_value,
meta: _,
} = value
else {
return Err(KclError::Semantic(KclErrorDetails {
message: format!(
"Cannot apply unary operator ! to non-boolean value: {}",
value.human_friendly_type()
),
source_ranges: vec![self.into()],
}));
};
let meta = vec![Metadata {
source_range: self.into(),
}];
let negated = KclValue::Bool {
value: !bool_value,
meta,
};
return Ok(negated);
}
let value = &self.argument.get_result(exec_state, ctx).await?;
let err = || {
KclError::Semantic(KclErrorDetails {
message: format!(
"You can only negate numbers, planes, or lines, but this is a {}",
value.human_friendly_type()
),
source_ranges: vec![self.into()],
})
};
match value {
KclValue::Number { value, ty, .. } => {
let meta = vec![Metadata {
source_range: self.into(),
}];
Ok(KclValue::Number {
value: -value,
meta,
ty: ty.clone(),
})
}
KclValue::Plane { value } => {
let mut plane = value.clone();
if plane.info.x_axis.x != 0.0 {
plane.info.x_axis.x *= -1.0;
}
if plane.info.x_axis.y != 0.0 {
plane.info.x_axis.y *= -1.0;
}
if plane.info.x_axis.z != 0.0 {
plane.info.x_axis.z *= -1.0;
}
plane.value = PlaneType::Uninit;
plane.id = exec_state.next_uuid();
Ok(KclValue::Plane { value: plane })
}
KclValue::Object { value: values, meta } => {
// Special-case for negating line-like objects.
let Some(direction) = values.get("direction") else {
return Err(err());
};
let direction = match direction {
KclValue::Tuple { value: values, meta } => {
let values = values
.iter()
.map(|v| match v {
KclValue::Number { value, ty, meta } => Ok(KclValue::Number {
value: *value * -1.0,
ty: ty.clone(),
meta: meta.clone(),
}),
_ => Err(err()),
})
.collect::<Result<Vec<_>, _>>()?;
KclValue::Tuple {
value: values,
meta: meta.clone(),
}
}
KclValue::HomArray {
value: values,
ty: ty @ RuntimeType::Primitive(PrimitiveType::Number(_)),
} => {
let values = values
.iter()
.map(|v| match v {
KclValue::Number { value, ty, meta } => Ok(KclValue::Number {
value: *value * -1.0,
ty: ty.clone(),
meta: meta.clone(),
}),
_ => Err(err()),
})
.collect::<Result<Vec<_>, _>>()?;
KclValue::HomArray {
value: values,
ty: ty.clone(),
}
}
_ => return Err(err()),
};
let mut value = values.clone();
value.insert("direction".to_owned(), direction);
Ok(KclValue::Object {
value,
meta: meta.clone(),
})
}
_ => Err(err()),
}
}
}
pub(crate) async fn execute_pipe_body(
exec_state: &mut ExecState,
body: &[Expr],
source_range: SourceRange,
ctx: &ExecutorContext,
) -> Result<KclValue, KclError> {
let Some((first, body)) = body.split_first() else {
return Err(KclError::Semantic(KclErrorDetails {
message: "Pipe expressions cannot be empty".to_owned(),
source_ranges: vec![source_range],
}));
};
// Evaluate the first element in the pipeline.
// They use the pipe_value from some AST node above this, so that if pipe expression is nested in a larger pipe expression,
// they use the % from the parent. After all, this pipe expression hasn't been executed yet, so it doesn't have any % value
// of its own.
let meta = Metadata {
source_range: SourceRange::from(first),
};
let output = ctx
.execute_expr(first, exec_state, &meta, &[], StatementKind::Expression)
.await?;
// Now that we've evaluated the first child expression in the pipeline, following child expressions
// should use the previous child expression for %.
// This means there's no more need for the previous pipe_value from the parent AST node above this one.
let previous_pipe_value = std::mem::replace(&mut exec_state.mod_local.pipe_value, Some(output));
// Evaluate remaining elements.
let result = inner_execute_pipe_body(exec_state, body, ctx).await;
// Restore the previous pipe value.
exec_state.mod_local.pipe_value = previous_pipe_value;
result
}
/// Execute the tail of a pipe expression. exec_state.pipe_value must be set by
/// the caller.
#[async_recursion]
async fn inner_execute_pipe_body(
exec_state: &mut ExecState,
body: &[Expr],
ctx: &ExecutorContext,
) -> Result<KclValue, KclError> {
for expression in body {
if let Expr::TagDeclarator(_) = expression {
return Err(KclError::Semantic(KclErrorDetails {
message: format!("This cannot be in a PipeExpression: {:?}", expression),
source_ranges: vec![expression.into()],
}));
}
let metadata = Metadata {
source_range: SourceRange::from(expression),
};
let output = ctx
.execute_expr(expression, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
exec_state.mod_local.pipe_value = Some(output);
}
// Safe to unwrap here, because pipe_value always has something pushed in when the `match first` executes.
let final_output = exec_state.mod_local.pipe_value.take().unwrap();
Ok(final_output)
}
impl Node<CallExpressionKw> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let fn_name = &self.callee;
let callsite: SourceRange = self.into();
// Build a hashmap from argument labels to the final evaluated values.
let mut fn_args = IndexMap::with_capacity(self.arguments.len());
let mut errors = Vec::new();
for arg_expr in &self.arguments {
let source_range = SourceRange::from(arg_expr.arg.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(&arg_expr.arg, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let arg = Arg::new(value, source_range);
match &arg_expr.label {
Some(l) => {
fn_args.insert(l.name.clone(), arg);
}
None => {
if let Some(id) = arg_expr.arg.ident_name() {
fn_args.insert(id.to_owned(), arg);
} else {
errors.push(arg);
}
}
}
}
// Evaluate the unlabeled first param, if any exists.
let unlabeled = if let Some(ref arg_expr) = self.unlabeled {
let source_range = SourceRange::from(arg_expr.clone());
let metadata = Metadata { source_range };
let value = ctx
.execute_expr(arg_expr, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let label = arg_expr.ident_name().map(str::to_owned);
Some((label, Arg::new(value, source_range)))
} else {
None
};
let mut args = Args::new_kw(
KwArgs {
unlabeled,
labeled: fn_args,
errors,
},
self.into(),
ctx.clone(),
exec_state.pipe_value().map(|v| Arg::new(v.clone(), callsite)),
);
match ctx.stdlib.get_either(fn_name) {
FunctionKind::Core(func) => {
if func.deprecated() {
exec_state.warn(CompilationError::err(
self.callee.as_source_range(),
format!("`{fn_name}` is deprecated, see the docs for a recommended replacement"),
));
}
let formals = func.args(false);
// If it's possible the input arg was meant to be labelled and we probably don't want to use
// it as the input arg, then treat it as labelled.
if let Some((Some(label), _)) = &args.kw_args.unlabeled {
if (formals.iter().all(|a| a.label_required) || exec_state.pipe_value().is_some())
&& formals.iter().any(|a| &a.name == label && a.label_required)
&& !args.kw_args.labeled.contains_key(label)
{
let (label, arg) = args.kw_args.unlabeled.take().unwrap();
args.kw_args.labeled.insert(label.unwrap(), arg);
}
}
#[cfg(feature = "artifact-graph")]
let op = if func.feature_tree_operation() {
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
Some(Operation::StdLibCall {
std_lib_fn: (&func).into(),
unlabeled_arg: args
.unlabeled_kw_arg_unconverted()
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
labeled_args: op_labeled_args,
source_range: callsite,
is_error: false,
})
} else {
None
};
for (label, arg) in &args.kw_args.labeled {
match formals.iter().find(|p| &p.name == label) {
Some(p) => {
if !p.label_required {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"The function `{fn_name}` expects an unlabeled first parameter (`{label}`), but it is labelled in the call"
),
));
}
}
None => {
exec_state.err(CompilationError::err(
arg.source_range,
format!("`{label}` is not an argument of `{fn_name}`"),
));
}
}
}
// Attempt to call the function.
let mut return_value = {
// Don't early-return in this block.
exec_state.mut_stack().push_new_env_for_rust_call();
let result = func.std_lib_fn()(exec_state, args).await;
exec_state.mut_stack().pop_env();
#[cfg(feature = "artifact-graph")]
if let Some(mut op) = op {
op.set_std_lib_call_is_error(result.is_err());
// Track call operation. We do this after the call
// since things like patternTransform may call user code
// before running, and we will likely want to use the
// return value. The call takes ownership of the args,
// so we need to build the op before the call.
exec_state.global.operations.push(op);
}
result
}?;
update_memory_for_tags_of_geometry(&mut return_value, exec_state)?;
Ok(return_value)
}
FunctionKind::UserDefined => {
// Clone the function so that we can use a mutable reference to
// exec_state.
let func = fn_name.get_result(exec_state, ctx).await?.clone();
let Some(fn_src) = func.as_fn() else {
return Err(KclError::Semantic(KclErrorDetails {
message: "cannot call this because it isn't a function".to_string(),
source_ranges: vec![callsite],
}));
};
let return_value = fn_src
.call_kw(Some(fn_name.to_string()), exec_state, ctx, args, callsite)
.await
.map_err(|e| {
// Add the call expression to the source ranges.
// TODO currently ignored by the frontend
e.add_source_ranges(vec![callsite])
})?;
let result = return_value.ok_or_else(move || {
let mut source_ranges: Vec<SourceRange> = vec![callsite];
// We want to send the source range of the original function.
if let KclValue::Function { meta, .. } = func {
source_ranges = meta.iter().map(|m| m.source_range).collect();
};
KclError::UndefinedValue(KclErrorDetails {
message: format!("Result of user-defined function {} is undefined", fn_name),
source_ranges,
})
})?;
Ok(result)
}
}
}
}
fn update_memory_for_tags_of_geometry(result: &mut KclValue, exec_state: &mut ExecState) -> Result<(), KclError> {
// If the return result is a sketch or solid, we want to update the
// memory for the tags of the group.
// TODO: This could probably be done in a better way, but as of now this was my only idea
// and it works.
match result {
KclValue::Sketch { value } => {
for (name, tag) in value.tags.iter() {
if exec_state.stack().cur_frame_contains(name) {
exec_state.mut_stack().update(name, |v, _| {
v.as_mut_tag().unwrap().merge_info(tag);
});
} else {
exec_state
.mut_stack()
.add(
name.to_owned(),
KclValue::TagIdentifier(Box::new(tag.clone())),
SourceRange::default(),
)
.unwrap();
}
}
}
KclValue::Solid { ref mut value } => {
for v in &value.value {
if let Some(tag) = v.get_tag() {
// Get the past tag and update it.
let tag_id = if let Some(t) = value.sketch.tags.get(&tag.name) {
let mut t = t.clone();
let Some(info) = t.get_cur_info() else {
return Err(KclError::Internal(KclErrorDetails {
message: format!("Tag {} does not have path info", tag.name),
source_ranges: vec![tag.into()],
}));
};
let mut info = info.clone();
info.surface = Some(v.clone());
info.sketch = value.id;
t.info.push((exec_state.stack().current_epoch(), info));
t
} else {
// It's probably a fillet or a chamfer.
// Initialize it.
TagIdentifier {
value: tag.name.clone(),
info: vec![(
exec_state.stack().current_epoch(),
TagEngineInfo {
id: v.get_id(),
surface: Some(v.clone()),
path: None,
sketch: value.id,
},
)],
meta: vec![Metadata {
source_range: tag.clone().into(),
}],
}
};
// update the sketch tags.
value.sketch.merge_tags(Some(&tag_id).into_iter());
if exec_state.stack().cur_frame_contains(&tag.name) {
exec_state.mut_stack().update(&tag.name, |v, _| {
v.as_mut_tag().unwrap().merge_info(&tag_id);
});
} else {
exec_state
.mut_stack()
.add(
tag.name.clone(),
KclValue::TagIdentifier(Box::new(tag_id)),
SourceRange::default(),
)
.unwrap();
}
}
}
// Find the stale sketch in memory and update it.
if !value.sketch.tags.is_empty() {
let sketches_to_update: Vec<_> = exec_state
.stack()
.find_keys_in_current_env(|v| match v {
KclValue::Sketch { value: sk } => sk.original_id == value.sketch.original_id,
_ => false,
})
.cloned()
.collect();
for k in sketches_to_update {
exec_state.mut_stack().update(&k, |v, _| {
let sketch = v.as_mut_sketch().unwrap();
sketch.merge_tags(value.sketch.tags.values());
});
}
}
}
KclValue::Tuple { value, .. } | KclValue::HomArray { value, .. } => {
for v in value {
update_memory_for_tags_of_geometry(v, exec_state)?;
}
}
_ => {}
}
Ok(())
}
impl Node<TagDeclarator> {
pub async fn execute(&self, exec_state: &mut ExecState) -> Result<KclValue, KclError> {
let memory_item = KclValue::TagIdentifier(Box::new(TagIdentifier {
value: self.name.clone(),
info: Vec::new(),
meta: vec![Metadata {
source_range: self.into(),
}],
}));
exec_state
.mut_stack()
.add(self.name.clone(), memory_item.clone(), self.into())?;
Ok(self.into())
}
}
impl Node<ArrayExpression> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let mut results = Vec::with_capacity(self.elements.len());
for element in &self.elements {
let metadata = Metadata::from(element);
// TODO: Carry statement kind here so that we know if we're
// inside a variable declaration.
let value = ctx
.execute_expr(element, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
results.push(value);
}
Ok(KclValue::HomArray {
value: results,
ty: RuntimeType::Primitive(PrimitiveType::Any),
})
}
}
impl Node<ArrayRangeExpression> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let metadata = Metadata::from(&self.start_element);
let start_val = ctx
.execute_expr(
&self.start_element,
exec_state,
&metadata,
&[],
StatementKind::Expression,
)
.await?;
let (start, start_ty) = start_val.as_int_with_ty().ok_or(KclError::Semantic(KclErrorDetails {
source_ranges: vec![self.into()],
message: format!("Expected int but found {}", start_val.human_friendly_type()),
}))?;
let metadata = Metadata::from(&self.end_element);
let end_val = ctx
.execute_expr(&self.end_element, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
let (end, end_ty) = end_val.as_int_with_ty().ok_or(KclError::Semantic(KclErrorDetails {
source_ranges: vec![self.into()],
message: format!("Expected int but found {}", end_val.human_friendly_type()),
}))?;
if start_ty != end_ty {
let start = start_val.as_ty_f64().unwrap_or(TyF64 { n: 0.0, ty: start_ty });
let start = fmt::human_display_number(start.n, start.ty);
let end = end_val.as_ty_f64().unwrap_or(TyF64 { n: 0.0, ty: end_ty });
let end = fmt::human_display_number(end.n, end.ty);
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![self.into()],
message: format!("Range start and end must be of the same type, but found {start} and {end}"),
}));
}
if end < start {
return Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![self.into()],
message: format!("Range start is greater than range end: {start} .. {end}"),
}));
}
let range: Vec<_> = if self.end_inclusive {
(start..=end).collect()
} else {
(start..end).collect()
};
let meta = vec![Metadata {
source_range: self.into(),
}];
Ok(KclValue::HomArray {
value: range
.into_iter()
.map(|num| KclValue::Number {
value: num as f64,
ty: start_ty.clone(),
meta: meta.clone(),
})
.collect(),
ty: RuntimeType::Primitive(PrimitiveType::Number(start_ty)),
})
}
}
impl Node<ObjectExpression> {
#[async_recursion]
pub async fn execute(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
let mut object = HashMap::with_capacity(self.properties.len());
for property in &self.properties {
let metadata = Metadata::from(&property.value);
let result = ctx
.execute_expr(&property.value, exec_state, &metadata, &[], StatementKind::Expression)
.await?;
object.insert(property.key.name.clone(), result);
}
Ok(KclValue::Object {
value: object,
meta: vec![Metadata {
source_range: self.into(),
}],
})
}
}
fn article_for<S: AsRef<str>>(s: S) -> &'static str {
// '[' is included since it's an array.
if s.as_ref().starts_with(['a', 'e', 'i', 'o', 'u', '[']) {
"an"
} else {
"a"
}
}
fn number_as_f64(v: &KclValue, source_range: SourceRange) -> Result<TyF64, KclError> {
v.as_ty_f64().ok_or_else(|| {
let actual_type = v.human_friendly_type();
KclError::Semantic(KclErrorDetails {
source_ranges: vec![source_range],
message: format!("Expected a number, but found {actual_type}",),
})
})
}
impl Node<IfExpression> {
#[async_recursion]
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
// Check the `if` branch.
let cond = ctx
.execute_expr(
&self.cond,
exec_state,
&Metadata::from(self),
&[],
StatementKind::Expression,
)
.await?
.get_bool()?;
if cond {
let block_result = ctx.exec_block(&self.then_val, exec_state, BodyType::Block).await?;
// Block must end in an expression, so this has to be Some.
// Enforced by the parser.
// See https://github.com/KittyCAD/modeling-app/issues/4015
return Ok(block_result.unwrap());
}
// Check any `else if` branches.
for else_if in &self.else_ifs {
let cond = ctx
.execute_expr(
&else_if.cond,
exec_state,
&Metadata::from(self),
&[],
StatementKind::Expression,
)
.await?
.get_bool()?;
if cond {
let block_result = ctx.exec_block(&else_if.then_val, exec_state, BodyType::Block).await?;
// Block must end in an expression, so this has to be Some.
// Enforced by the parser.
// See https://github.com/KittyCAD/modeling-app/issues/4015
return Ok(block_result.unwrap());
}
}
// Run the final `else` branch.
ctx.exec_block(&self.final_else, exec_state, BodyType::Block)
.await
.map(|expr| expr.unwrap())
}
}
#[derive(Debug)]
enum Property {
UInt(usize),
String(String),
}
impl Property {
fn try_from(
computed: bool,
value: LiteralIdentifier,
exec_state: &ExecState,
sr: SourceRange,
) -> Result<Self, KclError> {
let property_sr = vec![sr];
let property_src: SourceRange = value.clone().into();
match value {
LiteralIdentifier::Identifier(identifier) => {
let name = &identifier.name;
if !computed {
// This is dot syntax. Treat the property as a literal.
Ok(Property::String(name.to_string()))
} else {
// This is bracket syntax. Actually evaluate memory to
// compute the property.
let prop = exec_state.stack().get(name, property_src)?;
jvalue_to_prop(prop, property_sr, name)
}
}
LiteralIdentifier::Literal(literal) => {
let value = literal.value.clone();
match value {
LiteralValue::Number { value, .. } => {
if let Some(x) = crate::try_f64_to_usize(value) {
Ok(Property::UInt(x))
} else {
Err(KclError::Semantic(KclErrorDetails {
source_ranges: property_sr,
message: format!("{value} is not a valid index, indices must be whole numbers >= 0"),
}))
}
}
_ => Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![sr],
message: "Only numbers (>= 0) can be indexes".to_owned(),
})),
}
}
}
}
}
fn jvalue_to_prop(value: &KclValue, property_sr: Vec<SourceRange>, name: &str) -> Result<Property, KclError> {
let make_err = |message: String| {
Err::<Property, _>(KclError::Semantic(KclErrorDetails {
source_ranges: property_sr,
message,
}))
};
match value {
KclValue::Number{value: num, .. } => {
let num = *num;
if num < 0.0 {
return make_err(format!("'{num}' is negative, so you can't index an array with it"))
}
let nearest_int = crate::try_f64_to_usize(num);
if let Some(nearest_int) = nearest_int {
Ok(Property::UInt(nearest_int))
} else {
make_err(format!("'{num}' is not an integer, so you can't index an array with it"))
}
}
KclValue::String{value: x, meta:_} => Ok(Property::String(x.to_owned())),
_ => {
make_err(format!("{name} is not a valid property/index, you can only use a string to get the property of an object, or an int (>= 0) to get an item in an array"))
}
}
}
impl Property {
fn type_name(&self) -> &'static str {
match self {
Property::UInt(_) => "number",
Property::String(_) => "string",
}
}
}
impl Node<PipeExpression> {
#[async_recursion]
pub async fn get_result(&self, exec_state: &mut ExecState, ctx: &ExecutorContext) -> Result<KclValue, KclError> {
execute_pipe_body(exec_state, &self.body, self.into(), ctx).await
}
}
fn type_check_params_kw(
fn_name: Option<&str>,
function_expression: NodeRef<'_, FunctionExpression>,
args: &mut KwArgs,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
// If it's possible the input arg was meant to be labelled and we probably don't want to use
// it as the input arg, then treat it as labelled.
if let Some((Some(label), _)) = &args.unlabeled {
if (function_expression.params.iter().all(|p| p.labeled) || exec_state.pipe_value().is_some())
&& function_expression
.params
.iter()
.any(|p| &p.identifier.name == label && p.labeled)
&& !args.labeled.contains_key(label)
{
let (label, arg) = args.unlabeled.take().unwrap();
args.labeled.insert(label.unwrap(), arg);
}
}
for (label, arg) in &mut args.labeled {
match function_expression.params.iter().find(|p| &p.identifier.name == label) {
Some(p) => {
if !p.labeled {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"{} expects an unlabeled first parameter (`{label}`), but it is labelled in the call",
fn_name
.map(|n| format!("The function `{}`", n))
.unwrap_or_else(|| "This function".to_owned()),
),
));
}
if let Some(ty) = &p.type_ {
arg.value = arg
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.source_range).map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|e| {
let mut message = format!(
"{label} requires a value with type `{}`, but found {}",
ty.inner,
arg.value.human_friendly_type(),
);
if let Some(ty) = e.explicit_coercion {
// TODO if we have access to the AST for the argument we could choose which example to suggest.
message = format!("{message}\n\nYou may need to add information about the type of the argument, for example:\n using a numeric suffix: `42{ty}`\n or using type ascription: `foo(): number({ty})`");
}
KclError::Semantic(KclErrorDetails {
message,
source_ranges: vec![arg.source_range],
})
})?;
}
}
None => {
exec_state.err(CompilationError::err(
arg.source_range,
format!(
"`{label}` is not an argument of {}",
fn_name
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "this function".to_owned()),
),
));
}
}
}
if !args.errors.is_empty() {
let actuals = args.labeled.keys();
let formals: Vec<_> = function_expression
.params
.iter()
.filter_map(|p| {
if !p.labeled {
return None;
}
let name = &p.identifier.name;
if actuals.clone().any(|a| a == name) {
return None;
}
Some(format!("`{name}`"))
})
.collect();
let suggestion = if formals.is_empty() {
String::new()
} else {
format!("; suggested labels: {}", formals.join(", "))
};
let mut errors = args.errors.iter().map(|e| {
CompilationError::err(
e.source_range,
format!("This argument needs a label, but it doesn't have one{suggestion}"),
)
});
let first = errors.next().unwrap();
errors.for_each(|e| exec_state.err(e));
return Err(KclError::Semantic(first.into()));
}
if let Some(arg) = &mut args.unlabeled {
if let Some(p) = function_expression.params.iter().find(|p| !p.labeled) {
if let Some(ty) = &p.type_ {
arg.1.value = arg
.1
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.1.source_range)
.map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"The input argument of {} requires a value with type `{}`, but found {}",
fn_name
.map(|n| format!("`{}`", n))
.unwrap_or_else(|| "this function".to_owned()),
ty.inner,
arg.1.value.human_friendly_type()
),
source_ranges: vec![arg.1.source_range],
})
})?;
}
}
}
Ok(())
}
fn assign_args_to_params_kw(
fn_name: Option<&str>,
function_expression: NodeRef<'_, FunctionExpression>,
mut args: Args,
exec_state: &mut ExecState,
) -> Result<(), KclError> {
type_check_params_kw(fn_name, function_expression, &mut args.kw_args, exec_state)?;
// Add the arguments to the memory. A new call frame should have already
// been created.
let source_ranges = vec![function_expression.into()];
for param in function_expression.params.iter() {
if param.labeled {
let arg = args.kw_args.labeled.get(&param.identifier.name);
let arg_val = match arg {
Some(arg) => arg.value.clone(),
None => match param.default_value {
Some(ref default_val) => KclValue::from_default_param(default_val.clone(), exec_state),
None => {
return Err(KclError::Semantic(KclErrorDetails {
source_ranges,
message: format!(
"This function requires a parameter {}, but you haven't passed it one.",
param.identifier.name
),
}));
}
},
};
exec_state
.mut_stack()
.add(param.identifier.name.clone(), arg_val, (&param.identifier).into())?;
} else {
let unlabelled = args.unlabeled_kw_arg_unconverted();
let Some(unlabeled) = unlabelled else {
let param_name = &param.identifier.name;
return Err(if args.kw_args.labeled.contains_key(param_name) {
KclError::Semantic(KclErrorDetails {
source_ranges,
message: format!("The function does declare a parameter named '{param_name}', but this parameter doesn't use a label. Try removing the `{param_name}:`"),
})
} else {
KclError::Semantic(KclErrorDetails {
source_ranges,
message: "This function expects an unlabeled first parameter, but you haven't passed it one."
.to_owned(),
})
});
};
exec_state.mut_stack().add(
param.identifier.name.clone(),
unlabeled.value.clone(),
(&param.identifier).into(),
)?;
}
}
Ok(())
}
fn coerce_result_type(
result: Result<Option<KclValue>, KclError>,
function_expression: NodeRef<'_, FunctionExpression>,
exec_state: &mut ExecState,
) -> Result<Option<KclValue>, KclError> {
if let Ok(Some(val)) = result {
if let Some(ret_ty) = &function_expression.return_type {
let ty = RuntimeType::from_parsed(ret_ty.inner.clone(), exec_state, ret_ty.as_source_range())
.map_err(|e| KclError::Semantic(e.into()))?;
let val = val.coerce(&ty, exec_state).map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"This function requires its result to be of type `{}`, but found {}",
ty.human_friendly_type(),
val.human_friendly_type(),
),
source_ranges: ret_ty.as_source_ranges(),
})
})?;
Ok(Some(val))
} else {
Ok(Some(val))
}
} else {
result
}
}
async fn call_user_defined_function_kw(
fn_name: Option<&str>,
args: Args,
memory: EnvironmentRef,
function_expression: NodeRef<'_, FunctionExpression>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
) -> Result<Option<KclValue>, KclError> {
// Create a new environment to execute the function body in so that local
// variables shadow variables in the parent scope. The new environment's
// parent should be the environment of the closure.
exec_state.mut_stack().push_new_env_for_call(memory);
if let Err(e) = assign_args_to_params_kw(fn_name, function_expression, args, exec_state) {
exec_state.mut_stack().pop_env();
return Err(e);
}
// Execute the function body using the memory we just created.
let result = ctx
.exec_block(&function_expression.body, exec_state, BodyType::Block)
.await;
let mut result = result.map(|_| {
exec_state
.stack()
.get(memory::RETURN_NAME, function_expression.as_source_range())
.ok()
.cloned()
});
result = coerce_result_type(result, function_expression, exec_state);
// Restore the previous memory.
exec_state.mut_stack().pop_env();
result
}
impl FunctionSource {
pub async fn call_kw(
&self,
fn_name: Option<String>,
exec_state: &mut ExecState,
ctx: &ExecutorContext,
mut args: Args,
callsite: SourceRange,
) -> Result<Option<KclValue>, KclError> {
match self {
FunctionSource::Std { func, ast, props } => {
if props.deprecated {
exec_state.warn(CompilationError::err(
callsite,
format!(
"`{}` is deprecated, see the docs for a recommended replacement",
props.name
),
));
}
type_check_params_kw(Some(&props.name), ast, &mut args.kw_args, exec_state)?;
if let Some(arg) = &mut args.kw_args.unlabeled {
if let Some(p) = ast.params.iter().find(|p| !p.labeled) {
if let Some(ty) = &p.type_ {
arg.1.value = arg
.1
.value
.coerce(
&RuntimeType::from_parsed(ty.inner.clone(), exec_state, arg.1.source_range)
.map_err(|e| KclError::Semantic(e.into()))?,
exec_state,
)
.map_err(|_| {
KclError::Semantic(KclErrorDetails {
message: format!(
"The input argument of {} requires a value with type `{}`, but found {}",
props.name,
ty.inner,
arg.1.value.human_friendly_type(),
),
source_ranges: vec![callsite],
})
})?;
}
}
}
#[cfg(feature = "artifact-graph")]
let op = if props.include_in_feature_tree {
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
Some(Operation::KclStdLibCall {
name: fn_name.unwrap_or_default(),
unlabeled_arg: args
.unlabeled_kw_arg_unconverted()
.map(|arg| OpArg::new(OpKclValue::from(&arg.value), arg.source_range)),
labeled_args: op_labeled_args,
source_range: callsite,
is_error: false,
})
} else {
None
};
// Attempt to call the function.
exec_state.mut_stack().push_new_env_for_rust_call();
let mut result = {
// Don't early-return in this block.
let result = func(exec_state, args).await;
exec_state.mut_stack().pop_env();
#[cfg(feature = "artifact-graph")]
if let Some(mut op) = op {
op.set_std_lib_call_is_error(result.is_err());
// Track call operation. We do this after the call
// since things like patternTransform may call user code
// before running, and we will likely want to use the
// return value. The call takes ownership of the args,
// so we need to build the op before the call.
exec_state.global.operations.push(op);
}
result
}?;
update_memory_for_tags_of_geometry(&mut result, exec_state)?;
Ok(Some(result))
}
FunctionSource::User { ast, memory, .. } => {
// Track call operation.
#[cfg(feature = "artifact-graph")]
{
let op_labeled_args = args
.kw_args
.labeled
.iter()
.map(|(k, arg)| (k.clone(), OpArg::new(OpKclValue::from(&arg.value), arg.source_range)))
.collect();
exec_state.global.operations.push(Operation::GroupBegin {
group: Group::FunctionCall {
name: fn_name.clone(),
function_source_range: ast.as_source_range(),
unlabeled_arg: args
.kw_args
.unlabeled
.as_ref()
.map(|arg| OpArg::new(OpKclValue::from(&arg.1.value), arg.1.source_range)),
labeled_args: op_labeled_args,
},
source_range: callsite,
});
}
let result =
call_user_defined_function_kw(fn_name.as_deref(), args, *memory, ast, exec_state, ctx).await;
// Track return operation.
#[cfg(feature = "artifact-graph")]
exec_state.global.operations.push(Operation::GroupEnd);
result
}
FunctionSource::None => unreachable!(),
}
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use tokio::io::AsyncWriteExt;
use super::*;
use crate::{
exec::UnitType,
execution::{memory::Stack, parse_execute, ContextType},
parsing::ast::types::{DefaultParamVal, Identifier, Parameter},
ExecutorSettings, UnitLen,
};
#[tokio::test(flavor = "multi_thread")]
async fn test_assign_args_to_params() {
// Set up a little framework for this test.
fn mem(number: usize) -> KclValue {
KclValue::Number {
value: number as f64,
ty: NumericType::count(),
meta: Default::default(),
}
}
fn ident(s: &'static str) -> Node<Identifier> {
Node::no_src(Identifier {
name: s.to_owned(),
digest: None,
})
}
fn opt_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: Some(DefaultParamVal::none()),
labeled: true,
digest: None,
}
}
fn req_param(s: &'static str) -> Parameter {
Parameter {
identifier: ident(s),
type_: None,
default_value: None,
labeled: true,
digest: None,
}
}
fn additional_program_memory(items: &[(String, KclValue)]) -> Stack {
let mut program_memory = Stack::new_for_tests();
for (name, item) in items {
program_memory
.add(name.clone(), item.clone(), SourceRange::default())
.unwrap();
}
program_memory
}
// Declare the test cases.
for (test_name, params, args, expected) in [
("empty", Vec::new(), Vec::new(), Ok(additional_program_memory(&[]))),
(
"all params required, and all given, should be OK",
vec![req_param("x")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[("x".to_owned(), mem(1))])),
),
(
"all params required, none given, should error",
vec![req_param("x")],
vec![],
Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![SourceRange::default()],
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
})),
),
(
"all params optional, none given, should be OK",
vec![opt_param("x")],
vec![],
Ok(additional_program_memory(&[("x".to_owned(), KclValue::none())])),
),
(
"mixed params, too few given",
vec![req_param("x"), opt_param("y")],
vec![],
Err(KclError::Semantic(KclErrorDetails {
source_ranges: vec![SourceRange::default()],
message: "This function requires a parameter x, but you haven't passed it one.".to_owned(),
})),
),
(
"mixed params, minimum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), KclValue::none()),
])),
),
(
"mixed params, maximum given, should be OK",
vec![req_param("x"), opt_param("y")],
vec![("x", mem(1)), ("y", mem(2))],
Ok(additional_program_memory(&[
("x".to_owned(), mem(1)),
("y".to_owned(), mem(2)),
])),
),
] {
// Run each test.
let func_expr = &Node::no_src(FunctionExpression {
params,
body: Program::empty(),
return_type: None,
digest: None,
});
let labeled = args
.iter()
.map(|(name, value)| {
let arg = Arg::new(value.clone(), SourceRange::default());
((*name).to_owned(), arg)
})
.collect::<IndexMap<_, _>>();
let exec_ctxt = ExecutorContext {
engine: Arc::new(Box::new(
crate::engine::conn_mock::EngineConnection::new().await.unwrap(),
)),
fs: Arc::new(crate::fs::FileManager::new()),
stdlib: Arc::new(crate::std::StdLib::new()),
settings: Default::default(),
context_type: ContextType::Mock,
};
let mut exec_state = ExecState::new(&exec_ctxt);
exec_state.mod_local.stack = Stack::new_for_tests();
let args = Args::new_kw(
KwArgs {
unlabeled: None,
labeled,
errors: Vec::new(),
},
SourceRange::default(),
exec_ctxt,
None,
);
let actual =
assign_args_to_params_kw(None, func_expr, args, &mut exec_state).map(|_| exec_state.mod_local.stack);
assert_eq!(
actual, expected,
"failed test '{test_name}':\ngot {actual:?}\nbut expected\n{expected:?}"
);
}
}
#[tokio::test(flavor = "multi_thread")]
async fn ascription() {
let program = r#"
a = 42: number
b = a: number
p = {
origin = { x = 0, y = 0, z = 0 },
xAxis = { x = 1, y = 0, z = 0 },
yAxis = { x = 0, y = 1, z = 0 },
zAxis = { x = 0, y = 0, z = 1 }
}: Plane
arr1 = [42]: [number(cm)]
"#;
let result = parse_execute(program).await.unwrap();
let mem = result.exec_state.stack();
assert!(matches!(
mem.memory
.get_from("p", result.mem_env, SourceRange::default(), 0)
.unwrap(),
KclValue::Plane { .. }
));
let arr1 = mem
.memory
.get_from("arr1", result.mem_env, SourceRange::default(), 0)
.unwrap();
if let KclValue::HomArray { value, ty } = arr1 {
assert_eq!(value.len(), 1, "Expected Vec with specific length: found {:?}", value);
assert_eq!(*ty, RuntimeType::known_length(UnitLen::Cm));
// Compare, ignoring meta.
if let KclValue::Number { value, ty, .. } = &value[0] {
// Converted from mm to cm.
assert_eq!(*value, 4.2);
assert_eq!(*ty, NumericType::Known(UnitType::Length(UnitLen::Cm)));
} else {
panic!("Expected a number; found {:?}", value[0]);
}
} else {
panic!("Expected HomArray; found {arr1:?}");
}
let program = r#"
a = 42: string
"#;
let result = parse_execute(program).await;
let err = result.unwrap_err();
assert!(
err.to_string()
.contains("could not coerce number(default units) value to type string"),
"Expected error but found {err:?}"
);
let program = r#"
a = 42: Plane
"#;
let result = parse_execute(program).await;
let err = result.unwrap_err();
assert!(
err.to_string()
.contains("could not coerce number(default units) value to type Plane"),
"Expected error but found {err:?}"
);
let program = r#"
arr = [0]: [string]
"#;
let result = parse_execute(program).await;
let err = result.unwrap_err();
assert!(
err.to_string()
.contains("could not coerce [any; 1] value to type [string]"),
"Expected error but found {err:?}"
);
let program = r#"
mixedArr = [0, "a"]: [number(mm)]
"#;
let result = parse_execute(program).await;
let err = result.unwrap_err();
assert!(
err.to_string()
.contains("could not coerce [any; 2] value to type [number(mm)]"),
"Expected error but found {err:?}"
);
}
#[tokio::test(flavor = "multi_thread")]
async fn neg_plane() {
let program = r#"
p = {
origin = { x = 0, y = 0, z = 0 },
xAxis = { x = 1, y = 0, z = 0 },
yAxis = { x = 0, y = 1, z = 0 },
}: Plane
p2 = -p
"#;
let result = parse_execute(program).await.unwrap();
let mem = result.exec_state.stack();
match mem
.memory
.get_from("p2", result.mem_env, SourceRange::default(), 0)
.unwrap()
{
KclValue::Plane { value } => {
assert_eq!(value.info.x_axis.x, -1.0);
assert_eq!(value.info.x_axis.y, 0.0);
assert_eq!(value.info.x_axis.z, 0.0);
}
_ => unreachable!(),
}
}
#[tokio::test(flavor = "multi_thread")]
async fn multiple_returns() {
let program = r#"fn foo() {
return 0
return 42
}
a = foo()
"#;
let result = parse_execute(program).await;
assert!(result.unwrap_err().to_string().contains("return"));
}
#[tokio::test(flavor = "multi_thread")]
async fn load_all_modules() {
// program a.kcl
let program_a_kcl = r#"
export a = 1
"#;
// program b.kcl
let program_b_kcl = r#"
import a from 'a.kcl'
export b = a + 1
"#;
// program c.kcl
let program_c_kcl = r#"
import a from 'a.kcl'
export c = a + 2
"#;
// program main.kcl
let main_kcl = r#"
import b from 'b.kcl'
import c from 'c.kcl'
d = b + c
"#;
let main = crate::parsing::parse_str(main_kcl, ModuleId::default())
.parse_errs_as_err()
.unwrap();
let tmpdir = tempfile::TempDir::with_prefix("zma_kcl_load_all_modules").unwrap();
tokio::fs::File::create(tmpdir.path().join("main.kcl"))
.await
.unwrap()
.write_all(main_kcl.as_bytes())
.await
.unwrap();
tokio::fs::File::create(tmpdir.path().join("a.kcl"))
.await
.unwrap()
.write_all(program_a_kcl.as_bytes())
.await
.unwrap();
tokio::fs::File::create(tmpdir.path().join("b.kcl"))
.await
.unwrap()
.write_all(program_b_kcl.as_bytes())
.await
.unwrap();
tokio::fs::File::create(tmpdir.path().join("c.kcl"))
.await
.unwrap()
.write_all(program_c_kcl.as_bytes())
.await
.unwrap();
let exec_ctxt = ExecutorContext {
engine: Arc::new(Box::new(
crate::engine::conn_mock::EngineConnection::new()
.await
.map_err(|err| {
KclError::Internal(crate::errors::KclErrorDetails {
message: format!("Failed to create mock engine connection: {}", err),
source_ranges: vec![SourceRange::default()],
})
})
.unwrap(),
)),
fs: Arc::new(crate::fs::FileManager::new()),
settings: ExecutorSettings {
project_directory: Some(crate::TypedPath(tmpdir.path().into())),
..Default::default()
},
stdlib: Arc::new(crate::std::StdLib::new()),
context_type: ContextType::Mock,
};
let mut exec_state = ExecState::new(&exec_ctxt);
exec_ctxt
.run(
&crate::Program {
ast: main.clone(),
original_file_contents: "".to_owned(),
},
&mut exec_state,
)
.await
.unwrap();
}
#[tokio::test(flavor = "multi_thread")]
async fn user_coercion() {
let program = r#"fn foo(x: Axis2d) {
return 0
}
foo(x = { direction = [0, 0], origin = [0, 0]})
"#;
parse_execute(program).await.unwrap();
let program = r#"fn foo(x: Axis3d) {
return 0
}
foo(x = { direction = [0, 0], origin = [0, 0]})
"#;
parse_execute(program).await.unwrap_err();
}
#[tokio::test(flavor = "multi_thread")]
async fn coerce_return() {
let program = r#"fn foo(): number(mm) {
return 42
}
a = foo()
"#;
parse_execute(program).await.unwrap();
let program = r#"fn foo(): number(mm) {
return { bar: 42 }
}
a = foo()
"#;
parse_execute(program).await.unwrap_err();
}
#[tokio::test(flavor = "multi_thread")]
async fn test_sensible_error_when_missing_equals_in_kwarg() {
for (i, call) in ["f(x=1,3,0)", "f(x=1,3,z)", "f(x=1,0,z=1)", "f(x=1, 3 + 4, z)"]
.into_iter()
.enumerate()
{
let program = format!(
"fn foo() {{ return 0 }}
z = 0
fn f(x, y, z) {{ return 0 }}
{call}"
);
let err = parse_execute(&program).await.unwrap_err();
let msg = err.message();
assert!(
msg.contains("This argument needs a label, but it doesn't have one"),
"failed test {i}: {msg}"
);
assert!(msg.contains("`y`"), "failed test {i}, missing `y`: {msg}");
if i == 0 {
assert!(msg.contains("`z`"), "failed test {i}, missing `z`: {msg}");
}
}
}
#[tokio::test(flavor = "multi_thread")]
async fn default_param_for_unlabeled() {
// Tests that the input param for myExtrude is taken from the pipeline value and same-name
// keyword args.
let ast = r#"fn myExtrude(@sk, length) {
return extrude(sk, length)
}
sketch001 = startSketchOn(XY)
|> circle(center = [0, 0], radius = 93.75)
|> myExtrude(length = 40)
"#;
parse_execute(ast).await.unwrap();
}
#[tokio::test(flavor = "multi_thread")]
async fn dont_use_unlabelled_as_input() {
// `length` should be used as the `length` argument to extrude, not the unlabelled input
let ast = r#"length = 10
startSketchOn(XY)
|> circle(center = [0, 0], radius = 93.75)
|> extrude(length)
"#;
parse_execute(ast).await.unwrap();
}
#[tokio::test(flavor = "multi_thread")]
async fn ascription_in_binop() {
let ast = r#"foo = tan(0): number(rad) - 4deg"#;
parse_execute(ast).await.unwrap();
}
#[tokio::test(flavor = "multi_thread")]
async fn neg_sqrt() {
let ast = r#"bad = sqrt(-2)"#;
let e = parse_execute(ast).await.unwrap_err();
// Make sure we get a useful error message and not an engine error.
assert!(e.message().contains("sqrt"), "Error message: '{}'", e.message());
}
}