* Add backtrace to errors * Add display of backtraces with hints * Change pane badge to only show count of errors * Fix property name to not collide with Error superclass * Increase min stack again * Add e2e test that checks that the diagnostics are created in CodeMirror * Remove unneeded code * Change to the new hotness
2448 lines
80 KiB
Rust
2448 lines
80 KiB
Rust
//! Functions related to sketching.
|
|
|
|
use anyhow::Result;
|
|
use indexmap::IndexMap;
|
|
use kcl_derive_docs::stdlib;
|
|
use kcmc::shared::Point2d as KPoint2d; // Point2d is already defined in this pkg, to impl ts_rs traits.
|
|
use kcmc::shared::Point3d as KPoint3d; // Point3d is already defined in this pkg, to impl ts_rs traits.
|
|
use kcmc::{each_cmd as mcmd, length_unit::LengthUnit, shared::Angle, websocket::ModelingCmdReq, ModelingCmd};
|
|
use kittycad_modeling_cmds as kcmc;
|
|
use kittycad_modeling_cmds::shared::PathSegment;
|
|
use parse_display::{Display, FromStr};
|
|
use schemars::JsonSchema;
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
#[cfg(feature = "artifact-graph")]
|
|
use crate::execution::{Artifact, ArtifactId, CodeRef, StartSketchOnFace, StartSketchOnPlane};
|
|
use crate::{
|
|
errors::{KclError, KclErrorDetails},
|
|
execution::{
|
|
types::{ArrayLen, NumericType, PrimitiveType, RuntimeType, UnitLen},
|
|
BasePath, ExecState, Face, GeoMeta, KclValue, Path, Plane, PlaneInfo, Point2d, Sketch, SketchSurface, Solid,
|
|
TagEngineInfo, TagIdentifier,
|
|
},
|
|
parsing::ast::types::TagNode,
|
|
std::{
|
|
args::{Args, TyF64},
|
|
utils::{
|
|
arc_center_and_end, get_tangential_arc_to_info, get_x_component, get_y_component,
|
|
intersection_with_parallel_line, point_to_len_unit, point_to_mm, untype_point, untyped_point_to_mm,
|
|
TangentialArcInfoInput,
|
|
},
|
|
},
|
|
};
|
|
|
|
/// A tag for a face.
|
|
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
|
|
#[ts(export)]
|
|
#[serde(rename_all = "snake_case", untagged)]
|
|
pub enum FaceTag {
|
|
StartOrEnd(StartOrEnd),
|
|
/// A tag for the face.
|
|
Tag(Box<TagIdentifier>),
|
|
}
|
|
|
|
impl std::fmt::Display for FaceTag {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
match self {
|
|
FaceTag::Tag(t) => write!(f, "{}", t),
|
|
FaceTag::StartOrEnd(StartOrEnd::Start) => write!(f, "start"),
|
|
FaceTag::StartOrEnd(StartOrEnd::End) => write!(f, "end"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl FaceTag {
|
|
/// Get the face id from the tag.
|
|
pub async fn get_face_id(
|
|
&self,
|
|
solid: &Solid,
|
|
exec_state: &mut ExecState,
|
|
args: &Args,
|
|
must_be_planar: bool,
|
|
) -> Result<uuid::Uuid, KclError> {
|
|
match self {
|
|
FaceTag::Tag(ref t) => args.get_adjacent_face_to_tag(exec_state, t, must_be_planar).await,
|
|
FaceTag::StartOrEnd(StartOrEnd::Start) => solid.start_cap_id.ok_or_else(|| {
|
|
KclError::Type(KclErrorDetails::new(
|
|
"Expected a start face".to_string(),
|
|
vec![args.source_range],
|
|
))
|
|
}),
|
|
FaceTag::StartOrEnd(StartOrEnd::End) => solid.end_cap_id.ok_or_else(|| {
|
|
KclError::Type(KclErrorDetails::new(
|
|
"Expected an end face".to_string(),
|
|
vec![args.source_range],
|
|
))
|
|
}),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema, FromStr, Display)]
|
|
#[ts(export)]
|
|
#[serde(rename_all = "snake_case")]
|
|
#[display(style = "snake_case")]
|
|
pub enum StartOrEnd {
|
|
/// The start face as in before you extruded. This could also be known as the bottom
|
|
/// face. But we do not call it bottom because it would be the top face if you
|
|
/// extruded it in the opposite direction or flipped the camera.
|
|
#[serde(rename = "start", alias = "START")]
|
|
Start,
|
|
/// The end face after you extruded. This could also be known as the top
|
|
/// face. But we do not call it top because it would be the bottom face if you
|
|
/// extruded it in the opposite direction or flipped the camera.
|
|
#[serde(rename = "end", alias = "END")]
|
|
End,
|
|
}
|
|
|
|
pub const NEW_TAG_KW: &str = "tag";
|
|
|
|
pub async fn involute_circular(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
|
|
let start_radius: TyF64 = args.get_kw_arg_typed("startRadius", &RuntimeType::length(), exec_state)?;
|
|
let end_radius: TyF64 = args.get_kw_arg_typed("endRadius", &RuntimeType::length(), exec_state)?;
|
|
let angle: TyF64 = args.get_kw_arg_typed("angle", &RuntimeType::angle(), exec_state)?;
|
|
let reverse = args.get_kw_arg_opt("reverse")?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
let new_sketch =
|
|
inner_involute_circular(sketch, start_radius, end_radius, angle, reverse, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
fn involute_curve(radius: f64, angle: f64) -> (f64, f64) {
|
|
(
|
|
radius * (angle.cos() + angle * angle.sin()),
|
|
radius * (angle.sin() - angle * angle.cos()),
|
|
)
|
|
}
|
|
|
|
/// Extend the current sketch with a new involute circular curve.
|
|
///
|
|
/// ```no_run
|
|
/// a = 10
|
|
/// b = 14
|
|
/// startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> involuteCircular(startRadius = a, endRadius = b, angle = 60)
|
|
/// |> involuteCircular(startRadius = a, endRadius = b, angle = 60, reverse = true)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "involuteCircular",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
start_radius = { docs = "The involute is described between two circles, start_radius is the radius of the inner circle."},
|
|
end_radius = { docs = "The involute is described between two circles, end_radius is the radius of the outer circle."},
|
|
angle = { docs = "The angle to rotate the involute by. A value of zero will produce a curve with a tangent along the x-axis at the start point of the curve."},
|
|
reverse = { docs = "If reverse is true, the segment will start from the end of the involute, otherwise it will start from that start. Defaults to false."},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
#[allow(clippy::too_many_arguments)]
|
|
async fn inner_involute_circular(
|
|
sketch: Sketch,
|
|
start_radius: TyF64,
|
|
end_radius: TyF64,
|
|
angle: TyF64,
|
|
reverse: Option<bool>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let id = exec_state.next_uuid();
|
|
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::CircularInvolute {
|
|
start_radius: LengthUnit(start_radius.to_mm()),
|
|
end_radius: LengthUnit(end_radius.to_mm()),
|
|
angle: Angle::from_degrees(angle.to_degrees()),
|
|
reverse: reverse.unwrap_or_default(),
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let from = sketch.current_pen_position()?;
|
|
|
|
let start_radius = start_radius.to_length_units(from.units);
|
|
let end_radius = end_radius.to_length_units(from.units);
|
|
|
|
let mut end: KPoint3d<f64> = Default::default(); // ADAM: TODO impl this below.
|
|
let theta = f64::sqrt(end_radius * end_radius - start_radius * start_radius) / start_radius;
|
|
let (x, y) = involute_curve(start_radius, theta);
|
|
|
|
end.x = x * angle.to_radians().cos() - y * angle.to_radians().sin();
|
|
end.y = x * angle.to_radians().sin() + y * angle.to_radians().cos();
|
|
|
|
end.x -= start_radius * angle.to_radians().cos();
|
|
end.y -= start_radius * angle.to_radians().sin();
|
|
|
|
if reverse.unwrap_or_default() {
|
|
end.x = -end.x;
|
|
}
|
|
|
|
end.x += from.x;
|
|
end.y += from.y;
|
|
|
|
let current_path = Path::ToPoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to: [end.x, end.y],
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
new_sketch.paths.push(current_path);
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw a line to a point.
|
|
pub async fn line(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch = args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::sketch(), exec_state)?;
|
|
let end = args.get_kw_arg_opt_typed("end", &RuntimeType::point2d(), exec_state)?;
|
|
let end_absolute = args.get_kw_arg_opt_typed("endAbsolute", &RuntimeType::point2d(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let new_sketch = inner_line(sketch, end_absolute, end, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Extend the current sketch with a new straight line.
|
|
///
|
|
/// ```no_run
|
|
/// triangle = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// // The END argument means it ends at exactly [10, 0].
|
|
/// // This is an absolute measurement, it is NOT relative to
|
|
/// // the start of the sketch.
|
|
/// |> line(endAbsolute = [10, 0])
|
|
/// |> line(endAbsolute = [0, 10])
|
|
/// |> line(endAbsolute = [-10, 0], tag = $thirdLineOfTriangle)
|
|
/// |> close()
|
|
/// |> extrude(length = 5)
|
|
///
|
|
/// box = startSketchOn(XZ)
|
|
/// |> startProfile(at = [10, 10])
|
|
/// // The 'to' argument means move the pen this much.
|
|
/// // So, [10, 0] is a relative distance away from the current point.
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0], tag = $thirdLineOfBox)
|
|
/// |> close()
|
|
/// |> extrude(length = 5)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "line",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
end_absolute = { docs = "Which absolute point should this line go to? Incompatible with `end`."},
|
|
end = { docs = "How far away (along the X and Y axes) should this line go? Incompatible with `endAbsolute`.", include_in_snippet = true},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_line(
|
|
sketch: Sketch,
|
|
end_absolute: Option<[TyF64; 2]>,
|
|
end: Option<[TyF64; 2]>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
straight_line(
|
|
StraightLineParams {
|
|
sketch,
|
|
end_absolute,
|
|
end,
|
|
tag,
|
|
relative_name: "end",
|
|
},
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await
|
|
}
|
|
|
|
struct StraightLineParams {
|
|
sketch: Sketch,
|
|
end_absolute: Option<[TyF64; 2]>,
|
|
end: Option<[TyF64; 2]>,
|
|
tag: Option<TagNode>,
|
|
relative_name: &'static str,
|
|
}
|
|
|
|
impl StraightLineParams {
|
|
fn relative(p: [TyF64; 2], sketch: Sketch, tag: Option<TagNode>) -> Self {
|
|
Self {
|
|
sketch,
|
|
tag,
|
|
end: Some(p),
|
|
end_absolute: None,
|
|
relative_name: "end",
|
|
}
|
|
}
|
|
fn absolute(p: [TyF64; 2], sketch: Sketch, tag: Option<TagNode>) -> Self {
|
|
Self {
|
|
sketch,
|
|
tag,
|
|
end: None,
|
|
end_absolute: Some(p),
|
|
relative_name: "end",
|
|
}
|
|
}
|
|
}
|
|
|
|
async fn straight_line(
|
|
StraightLineParams {
|
|
sketch,
|
|
end,
|
|
end_absolute,
|
|
tag,
|
|
relative_name,
|
|
}: StraightLineParams,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
let (point, is_absolute) = match (end_absolute, end) {
|
|
(Some(_), Some(_)) => {
|
|
return Err(KclError::Semantic(KclErrorDetails::new(
|
|
"You cannot give both `end` and `endAbsolute` params, you have to choose one or the other".to_owned(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
(Some(end_absolute), None) => (end_absolute, true),
|
|
(None, Some(end)) => (end, false),
|
|
(None, None) => {
|
|
return Err(KclError::Semantic(KclErrorDetails::new(
|
|
format!("You must supply either `{relative_name}` or `endAbsolute` arguments"),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
};
|
|
|
|
let id = exec_state.next_uuid();
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::Line {
|
|
end: KPoint2d::from(point_to_mm(point.clone())).with_z(0.0).map(LengthUnit),
|
|
relative: !is_absolute,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let end = if is_absolute {
|
|
point_to_len_unit(point, from.units)
|
|
} else {
|
|
let from = sketch.current_pen_position()?;
|
|
let point = point_to_len_unit(point, from.units);
|
|
[from.x + point[0], from.y + point[1]]
|
|
};
|
|
|
|
let current_path = Path::ToPoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to: end,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw a line on the x-axis.
|
|
pub async fn x_line(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let length: Option<TyF64> = args.get_kw_arg_opt_typed("length", &RuntimeType::length(), exec_state)?;
|
|
let end_absolute: Option<TyF64> = args.get_kw_arg_opt_typed("endAbsolute", &RuntimeType::length(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let new_sketch = inner_x_line(sketch, length, end_absolute, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw a line relative to the current origin to a specified distance away
|
|
/// from the current position along the 'x' axis.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> xLine(length = 15)
|
|
/// |> angledLine(
|
|
/// angle = 80,
|
|
/// length = 15,
|
|
/// )
|
|
/// |> line(end = [8, -10])
|
|
/// |> xLine(length = 10)
|
|
/// |> angledLine(
|
|
/// angle = 120,
|
|
/// length = 30,
|
|
/// )
|
|
/// |> xLine(length = -15)
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "xLine",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
length = { docs = "How far away along the X axis should this line go? Incompatible with `endAbsolute`.", include_in_snippet = true},
|
|
end_absolute = { docs = "Which absolute X value should this line go to? Incompatible with `length`."},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_x_line(
|
|
sketch: Sketch,
|
|
length: Option<TyF64>,
|
|
end_absolute: Option<TyF64>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
straight_line(
|
|
StraightLineParams {
|
|
sketch,
|
|
end_absolute: end_absolute.map(|x| [x, from.into_y()]),
|
|
end: length.map(|x| [x, TyF64::new(0.0, NumericType::mm())]),
|
|
tag,
|
|
relative_name: "length",
|
|
},
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await
|
|
}
|
|
|
|
/// Draw a line on the y-axis.
|
|
pub async fn y_line(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let length: Option<TyF64> = args.get_kw_arg_opt_typed("length", &RuntimeType::length(), exec_state)?;
|
|
let end_absolute: Option<TyF64> = args.get_kw_arg_opt_typed("endAbsolute", &RuntimeType::length(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let new_sketch = inner_y_line(sketch, length, end_absolute, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw a line relative to the current origin to a specified distance away
|
|
/// from the current position along the 'y' axis.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> yLine(length = 15)
|
|
/// |> angledLine(
|
|
/// angle = 30,
|
|
/// length = 15,
|
|
/// )
|
|
/// |> line(end = [8, -10])
|
|
/// |> yLine(length = -5)
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "yLine",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
length = { docs = "How far away along the Y axis should this line go? Incompatible with `endAbsolute`.", include_in_snippet = true},
|
|
end_absolute = { docs = "Which absolute Y value should this line go to? Incompatible with `length`."},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_y_line(
|
|
sketch: Sketch,
|
|
length: Option<TyF64>,
|
|
end_absolute: Option<TyF64>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
straight_line(
|
|
StraightLineParams {
|
|
sketch,
|
|
end_absolute: end_absolute.map(|y| [from.into_x(), y]),
|
|
end: length.map(|y| [TyF64::new(0.0, NumericType::mm()), y]),
|
|
tag,
|
|
relative_name: "length",
|
|
},
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await
|
|
}
|
|
|
|
/// Draw an angled line.
|
|
pub async fn angled_line(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch = args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::sketch(), exec_state)?;
|
|
let angle: TyF64 = args.get_kw_arg_typed("angle", &RuntimeType::degrees(), exec_state)?;
|
|
let length: Option<TyF64> = args.get_kw_arg_opt_typed("length", &RuntimeType::length(), exec_state)?;
|
|
let length_x: Option<TyF64> = args.get_kw_arg_opt_typed("lengthX", &RuntimeType::length(), exec_state)?;
|
|
let length_y: Option<TyF64> = args.get_kw_arg_opt_typed("lengthY", &RuntimeType::length(), exec_state)?;
|
|
let end_absolute_x: Option<TyF64> =
|
|
args.get_kw_arg_opt_typed("endAbsoluteX", &RuntimeType::length(), exec_state)?;
|
|
let end_absolute_y: Option<TyF64> =
|
|
args.get_kw_arg_opt_typed("endAbsoluteY", &RuntimeType::length(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let new_sketch = inner_angled_line(
|
|
sketch,
|
|
angle.n,
|
|
length,
|
|
length_x,
|
|
length_y,
|
|
end_absolute_x,
|
|
end_absolute_y,
|
|
tag,
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw a line segment relative to the current origin using the polar
|
|
/// measure of some angle and distance.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> yLine(endAbsolute = 15)
|
|
/// |> angledLine(
|
|
/// angle = 30,
|
|
/// length = 15,
|
|
/// )
|
|
/// |> line(end = [8, -10])
|
|
/// |> yLine(endAbsolute = 0)
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "angledLine",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
angle = { docs = "Which angle should the line be drawn at?" },
|
|
length = { docs = "Draw the line this distance along the given angle. Only one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given."},
|
|
length_x = { docs = "Draw the line this distance along the X axis. Only one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given."},
|
|
length_y = { docs = "Draw the line this distance along the Y axis. Only one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given."},
|
|
end_absolute_x = { docs = "Draw the line along the given angle until it reaches this point along the X axis. Only one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given."},
|
|
end_absolute_y = { docs = "Draw the line along the given angle until it reaches this point along the Y axis. Only one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given."},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
#[allow(clippy::too_many_arguments)]
|
|
async fn inner_angled_line(
|
|
sketch: Sketch,
|
|
angle: f64,
|
|
length: Option<TyF64>,
|
|
length_x: Option<TyF64>,
|
|
length_y: Option<TyF64>,
|
|
end_absolute_x: Option<TyF64>,
|
|
end_absolute_y: Option<TyF64>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let options_given = [&length, &length_x, &length_y, &end_absolute_x, &end_absolute_y]
|
|
.iter()
|
|
.filter(|x| x.is_some())
|
|
.count();
|
|
if options_given > 1 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
" one of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
if let Some(length_x) = length_x {
|
|
return inner_angled_line_of_x_length(angle, length_x, sketch, tag, exec_state, args).await;
|
|
}
|
|
if let Some(length_y) = length_y {
|
|
return inner_angled_line_of_y_length(angle, length_y, sketch, tag, exec_state, args).await;
|
|
}
|
|
let angle_degrees = angle;
|
|
match (length, length_x, length_y, end_absolute_x, end_absolute_y) {
|
|
(Some(length), None, None, None, None) => {
|
|
inner_angled_line_length(sketch, angle_degrees, length, tag, exec_state, args).await
|
|
}
|
|
(None, Some(length_x), None, None, None) => {
|
|
inner_angled_line_of_x_length(angle_degrees, length_x, sketch, tag, exec_state, args).await
|
|
}
|
|
(None, None, Some(length_y), None, None) => {
|
|
inner_angled_line_of_y_length(angle_degrees, length_y, sketch, tag, exec_state, args).await
|
|
}
|
|
(None, None, None, Some(end_absolute_x), None) => {
|
|
inner_angled_line_to_x(angle_degrees, end_absolute_x, sketch, tag, exec_state, args).await
|
|
}
|
|
(None, None, None, None, Some(end_absolute_y)) => {
|
|
inner_angled_line_to_y(angle_degrees, end_absolute_y, sketch, tag, exec_state, args).await
|
|
}
|
|
(None, None, None, None, None) => Err(KclError::Type(KclErrorDetails::new(
|
|
"One of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` must be given".to_string(),
|
|
vec![args.source_range],
|
|
))),
|
|
_ => Err(KclError::Type(KclErrorDetails::new(
|
|
"Only One of `length`, `lengthX`, `lengthY`, `endAbsoluteX`, `endAbsoluteY` can be given".to_owned(),
|
|
vec![args.source_range],
|
|
))),
|
|
}
|
|
}
|
|
|
|
async fn inner_angled_line_length(
|
|
sketch: Sketch,
|
|
angle_degrees: f64,
|
|
length: TyF64,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
let length = length.to_length_units(from.units);
|
|
|
|
//double check me on this one - mike
|
|
let delta: [f64; 2] = [
|
|
length * f64::cos(angle_degrees.to_radians()),
|
|
length * f64::sin(angle_degrees.to_radians()),
|
|
];
|
|
let relative = true;
|
|
|
|
let to: [f64; 2] = [from.x + delta[0], from.y + delta[1]];
|
|
|
|
let id = exec_state.next_uuid();
|
|
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::Line {
|
|
end: KPoint2d::from(untyped_point_to_mm(delta, from.units))
|
|
.with_z(0.0)
|
|
.map(LengthUnit),
|
|
relative,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let current_path = Path::ToPoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
async fn inner_angled_line_of_x_length(
|
|
angle_degrees: f64,
|
|
length: TyF64,
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
if angle_degrees.abs() == 270.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have an x constrained angle of 270 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
if angle_degrees.abs() == 90.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have an x constrained angle of 90 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
let to = get_y_component(Angle::from_degrees(angle_degrees), length.n);
|
|
let to = [TyF64::new(to[0], length.ty.clone()), TyF64::new(to[1], length.ty)];
|
|
|
|
let new_sketch = straight_line(StraightLineParams::relative(to, sketch, tag), exec_state, args).await?;
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
async fn inner_angled_line_to_x(
|
|
angle_degrees: f64,
|
|
x_to: TyF64,
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
|
|
if angle_degrees.abs() == 270.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have an x constrained angle of 270 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
if angle_degrees.abs() == 90.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have an x constrained angle of 90 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
let x_component = x_to.to_length_units(from.units) - from.x;
|
|
let y_component = x_component * f64::tan(angle_degrees.to_radians());
|
|
let y_to = from.y + y_component;
|
|
|
|
let new_sketch = straight_line(
|
|
StraightLineParams::absolute([x_to, TyF64::new(y_to, from.units.into())], sketch, tag),
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await?;
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
async fn inner_angled_line_of_y_length(
|
|
angle_degrees: f64,
|
|
length: TyF64,
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
if angle_degrees.abs() == 0.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have a y constrained angle of 0 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
if angle_degrees.abs() == 180.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have a y constrained angle of 180 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
let to = get_x_component(Angle::from_degrees(angle_degrees), length.n);
|
|
let to = [TyF64::new(to[0], length.ty.clone()), TyF64::new(to[1], length.ty)];
|
|
|
|
let new_sketch = straight_line(StraightLineParams::relative(to, sketch, tag), exec_state, args).await?;
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
async fn inner_angled_line_to_y(
|
|
angle_degrees: f64,
|
|
y_to: TyF64,
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
|
|
if angle_degrees.abs() == 0.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have a y constrained angle of 0 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
if angle_degrees.abs() == 180.0 {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Cannot have a y constrained angle of 180 degrees".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
let y_component = y_to.to_length_units(from.units) - from.y;
|
|
let x_component = y_component / f64::tan(angle_degrees.to_radians());
|
|
let x_to = from.x + x_component;
|
|
|
|
let new_sketch = straight_line(
|
|
StraightLineParams::absolute([TyF64::new(x_to, from.units.into()), y_to], sketch, tag),
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await?;
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw an angled line that intersects with a given line.
|
|
pub async fn angled_line_that_intersects(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let angle: TyF64 = args.get_kw_arg("angle")?;
|
|
let intersect_tag: TagIdentifier = args.get_kw_arg("intersectTag")?;
|
|
let offset: Option<TyF64> = args.get_kw_arg_opt("offset")?;
|
|
let tag: Option<TagNode> = args.get_kw_arg_opt("tag")?;
|
|
let new_sketch =
|
|
inner_angled_line_that_intersects(sketch, angle, intersect_tag, offset, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw an angled line from the current origin, constructing a line segment
|
|
/// such that the newly created line intersects the desired target line
|
|
/// segment.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(endAbsolute = [5, 10])
|
|
/// |> line(endAbsolute = [-10, 10], tag = $lineToIntersect)
|
|
/// |> line(endAbsolute = [0, 20])
|
|
/// |> angledLineThatIntersects(
|
|
/// angle = 80,
|
|
/// intersectTag = lineToIntersect,
|
|
/// offset = 10,
|
|
/// )
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "angledLineThatIntersects",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
angle = { docs = "Which angle should the line be drawn at?" },
|
|
intersect_tag = { docs = "The tag of the line to intersect with" },
|
|
offset = { docs = "The offset from the intersecting line. Defaults to 0." },
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub async fn inner_angled_line_that_intersects(
|
|
sketch: Sketch,
|
|
angle: TyF64,
|
|
intersect_tag: TagIdentifier,
|
|
offset: Option<TyF64>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let intersect_path = args.get_tag_engine_info(exec_state, &intersect_tag)?;
|
|
let path = intersect_path.path.clone().ok_or_else(|| {
|
|
KclError::Type(KclErrorDetails::new(
|
|
format!("Expected an intersect path with a path, found `{:?}`", intersect_path),
|
|
vec![args.source_range],
|
|
))
|
|
})?;
|
|
|
|
let from = sketch.current_pen_position()?;
|
|
let to = intersection_with_parallel_line(
|
|
&[
|
|
point_to_len_unit(path.get_from(), from.units),
|
|
point_to_len_unit(path.get_to(), from.units),
|
|
],
|
|
offset.map(|t| t.to_length_units(from.units)).unwrap_or_default(),
|
|
angle.to_degrees(),
|
|
from.ignore_units(),
|
|
);
|
|
let to = [
|
|
TyF64::new(to[0], from.units.into()),
|
|
TyF64::new(to[1], from.units.into()),
|
|
];
|
|
|
|
straight_line(StraightLineParams::absolute(to, sketch, tag), exec_state, args).await
|
|
}
|
|
|
|
/// Data for start sketch on.
|
|
/// You can start a sketch on a plane or an solid.
|
|
#[derive(Debug, Clone, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
|
|
#[ts(export)]
|
|
#[serde(rename_all = "camelCase", untagged)]
|
|
#[allow(clippy::large_enum_variant)]
|
|
pub enum SketchData {
|
|
PlaneOrientation(PlaneData),
|
|
Plane(Box<Plane>),
|
|
Solid(Box<Solid>),
|
|
}
|
|
|
|
/// Orientation data that can be used to construct a plane, not a plane in itself.
|
|
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq, ts_rs::TS, JsonSchema)]
|
|
#[ts(export)]
|
|
#[serde(rename_all = "camelCase")]
|
|
#[allow(clippy::large_enum_variant)]
|
|
pub enum PlaneData {
|
|
/// The XY plane.
|
|
#[serde(rename = "XY", alias = "xy")]
|
|
XY,
|
|
/// The opposite side of the XY plane.
|
|
#[serde(rename = "-XY", alias = "-xy")]
|
|
NegXY,
|
|
/// The XZ plane.
|
|
#[serde(rename = "XZ", alias = "xz")]
|
|
XZ,
|
|
/// The opposite side of the XZ plane.
|
|
#[serde(rename = "-XZ", alias = "-xz")]
|
|
NegXZ,
|
|
/// The YZ plane.
|
|
#[serde(rename = "YZ", alias = "yz")]
|
|
YZ,
|
|
/// The opposite side of the YZ plane.
|
|
#[serde(rename = "-YZ", alias = "-yz")]
|
|
NegYZ,
|
|
/// A defined plane.
|
|
Plane(PlaneInfo),
|
|
}
|
|
|
|
/// Start a sketch on a specific plane or face.
|
|
pub async fn start_sketch_on(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let data = args.get_unlabeled_kw_arg_typed(
|
|
"planeOrSolid",
|
|
&RuntimeType::Union(vec![RuntimeType::solid(), RuntimeType::plane()]),
|
|
exec_state,
|
|
)?;
|
|
let face = args.get_kw_arg_opt("face")?;
|
|
|
|
match inner_start_sketch_on(data, face, exec_state, &args).await? {
|
|
SketchSurface::Plane(value) => Ok(KclValue::Plane { value }),
|
|
SketchSurface::Face(value) => Ok(KclValue::Face { value }),
|
|
}
|
|
}
|
|
|
|
/// Start a new 2-dimensional sketch on a specific plane or face.
|
|
///
|
|
/// ### Sketch on Face Behavior
|
|
///
|
|
/// There are some important behaviors to understand when sketching on a face:
|
|
///
|
|
/// The resulting sketch will _include_ the face and thus Solid
|
|
/// that was sketched on. So say you were to export the resulting Sketch / Solid
|
|
/// from a sketch on a face, you would get both the artifact of the sketch
|
|
/// on the face and the parent face / Solid itself.
|
|
///
|
|
/// This is important to understand because if you were to then sketch on the
|
|
/// resulting Solid, it would again include the face and parent Solid that was
|
|
/// sketched on. This could go on indefinitely.
|
|
///
|
|
/// The point is if you want to export the result of a sketch on a face, you
|
|
/// only need to export the final Solid that was created from the sketch on the
|
|
/// face, since it will include all the parent faces and Solids.
|
|
///
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 5)
|
|
///
|
|
/// exampleSketch002 = startSketchOn(example, face = END)
|
|
/// |> startProfile(at = [1, 1])
|
|
/// |> line(end = [8, 0])
|
|
/// |> line(end = [0, 8])
|
|
/// |> line(end = [-8, 0])
|
|
/// |> close()
|
|
///
|
|
/// example002 = extrude(exampleSketch002, length = 5)
|
|
///
|
|
/// exampleSketch003 = startSketchOn(example002, face = END)
|
|
/// |> startProfile(at = [2, 2])
|
|
/// |> line(end = [6, 0])
|
|
/// |> line(end = [0, 6])
|
|
/// |> line(end = [-6, 0])
|
|
/// |> close()
|
|
///
|
|
/// example003 = extrude(exampleSketch003, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// // Sketch on the end of an extruded face by tagging the end face.
|
|
///
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 5, tagEnd = $end01)
|
|
///
|
|
/// exampleSketch002 = startSketchOn(example, face = end01)
|
|
/// |> startProfile(at = [1, 1])
|
|
/// |> line(end = [8, 0])
|
|
/// |> line(end = [0, 8])
|
|
/// |> line(end = [-8, 0])
|
|
/// |> close()
|
|
///
|
|
/// example002 = extrude(exampleSketch002, length = 5, tagEnd = $end02)
|
|
///
|
|
/// exampleSketch003 = startSketchOn(example002, face = end02)
|
|
/// |> startProfile(at = [2, 2])
|
|
/// |> line(end = [6, 0])
|
|
/// |> line(end = [0, 6])
|
|
/// |> line(end = [-6, 0])
|
|
/// |> close()
|
|
///
|
|
/// example003 = extrude(exampleSketch003, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10], tag = $sketchingFace)
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
///
|
|
/// exampleSketch002 = startSketchOn(example, face = sketchingFace)
|
|
/// |> startProfile(at = [1, 1])
|
|
/// |> line(end = [8, 0])
|
|
/// |> line(end = [0, 8])
|
|
/// |> line(end = [-8, 0])
|
|
/// |> close(tag = $sketchingFace002)
|
|
///
|
|
/// example002 = extrude(exampleSketch002, length = 10)
|
|
///
|
|
/// exampleSketch003 = startSketchOn(example002, face = sketchingFace002)
|
|
/// |> startProfile(at = [-8, 12])
|
|
/// |> line(end = [0, 6])
|
|
/// |> line(end = [6, 0])
|
|
/// |> line(end = [0, -6])
|
|
/// |> close()
|
|
///
|
|
/// example003 = extrude(exampleSketch003, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [4, 12])
|
|
/// |> line(end = [2, 0])
|
|
/// |> line(end = [0, -6])
|
|
/// |> line(end = [4, -6])
|
|
/// |> line(end = [0, -6])
|
|
/// |> line(end = [-3.75, -4.5])
|
|
/// |> line(end = [0, -5.5])
|
|
/// |> line(end = [-2, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = revolve(exampleSketch, axis = Y, angle = 180)
|
|
///
|
|
/// exampleSketch002 = startSketchOn(example, face = END)
|
|
/// |> startProfile(at = [4.5, -5])
|
|
/// |> line(end = [0, 5])
|
|
/// |> line(end = [5, 0])
|
|
/// |> line(end = [0, -5])
|
|
/// |> close()
|
|
///
|
|
/// example002 = extrude(exampleSketch002, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// // Sketch on the end of a revolved face by tagging the end face.
|
|
///
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [4, 12])
|
|
/// |> line(end = [2, 0])
|
|
/// |> line(end = [0, -6])
|
|
/// |> line(end = [4, -6])
|
|
/// |> line(end = [0, -6])
|
|
/// |> line(end = [-3.75, -4.5])
|
|
/// |> line(end = [0, -5.5])
|
|
/// |> line(end = [-2, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = revolve(exampleSketch, axis = Y, angle = 180, tagEnd = $end01)
|
|
///
|
|
/// exampleSketch002 = startSketchOn(example, face = end01)
|
|
/// |> startProfile(at = [4.5, -5])
|
|
/// |> line(end = [0, 5])
|
|
/// |> line(end = [5, 0])
|
|
/// |> line(end = [0, -5])
|
|
/// |> close()
|
|
///
|
|
/// example002 = extrude(exampleSketch002, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// a1 = startSketchOn({
|
|
/// origin = { x = 0, y = 0, z = 0 },
|
|
/// xAxis = { x = 1, y = 0, z = 0 },
|
|
/// yAxis = { x = 0, y = 1, z = 0 },
|
|
/// zAxis = { x = 0, y = 0, z = 1 }
|
|
/// })
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [100.0, 0])
|
|
/// |> yLine(length = -100.0)
|
|
/// |> xLine(length = -100.0)
|
|
/// |> yLine(length = 100.0)
|
|
/// |> close()
|
|
/// |> extrude(length = 3.14)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "startSketchOn",
|
|
feature_tree_operation = true,
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
plane_or_solid = { docs = "The plane or solid to sketch on"},
|
|
face = { docs = "Identify a face of a solid if a solid is specified as the input argument (`plane_or_solid`)"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_start_sketch_on(
|
|
plane_or_solid: SketchData,
|
|
face: Option<FaceTag>,
|
|
exec_state: &mut ExecState,
|
|
args: &Args,
|
|
) -> Result<SketchSurface, KclError> {
|
|
match plane_or_solid {
|
|
SketchData::PlaneOrientation(plane_data) => {
|
|
let plane = make_sketch_plane_from_orientation(plane_data, exec_state, args).await?;
|
|
Ok(SketchSurface::Plane(plane))
|
|
}
|
|
SketchData::Plane(plane) => {
|
|
if plane.value == crate::exec::PlaneType::Uninit {
|
|
if plane.info.origin.units == UnitLen::Unknown {
|
|
return Err(KclError::Semantic(KclErrorDetails::new(
|
|
"Origin of plane has unknown units".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
let plane = make_sketch_plane_from_orientation(plane.info.into_plane_data(), exec_state, args).await?;
|
|
Ok(SketchSurface::Plane(plane))
|
|
} else {
|
|
// Create artifact used only by the UI, not the engine.
|
|
#[cfg(feature = "artifact-graph")]
|
|
{
|
|
let id = exec_state.next_uuid();
|
|
exec_state.add_artifact(Artifact::StartSketchOnPlane(StartSketchOnPlane {
|
|
id: ArtifactId::from(id),
|
|
plane_id: plane.artifact_id,
|
|
code_ref: CodeRef::placeholder(args.source_range),
|
|
}));
|
|
}
|
|
|
|
Ok(SketchSurface::Plane(plane))
|
|
}
|
|
}
|
|
SketchData::Solid(solid) => {
|
|
let Some(tag) = face else {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Expected a tag for the face to sketch on".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
};
|
|
let face = start_sketch_on_face(solid, tag, exec_state, args).await?;
|
|
|
|
#[cfg(feature = "artifact-graph")]
|
|
{
|
|
// Create artifact used only by the UI, not the engine.
|
|
let id = exec_state.next_uuid();
|
|
exec_state.add_artifact(Artifact::StartSketchOnFace(StartSketchOnFace {
|
|
id: ArtifactId::from(id),
|
|
face_id: face.artifact_id,
|
|
code_ref: CodeRef::placeholder(args.source_range),
|
|
}));
|
|
}
|
|
|
|
Ok(SketchSurface::Face(face))
|
|
}
|
|
}
|
|
}
|
|
|
|
async fn start_sketch_on_face(
|
|
solid: Box<Solid>,
|
|
tag: FaceTag,
|
|
exec_state: &mut ExecState,
|
|
args: &Args,
|
|
) -> Result<Box<Face>, KclError> {
|
|
let extrude_plane_id = tag.get_face_id(&solid, exec_state, args, true).await?;
|
|
|
|
Ok(Box::new(Face {
|
|
id: extrude_plane_id,
|
|
artifact_id: extrude_plane_id.into(),
|
|
value: tag.to_string(),
|
|
// TODO: get this from the extrude plane data.
|
|
x_axis: solid.sketch.on.x_axis(),
|
|
y_axis: solid.sketch.on.y_axis(),
|
|
units: solid.units,
|
|
solid,
|
|
meta: vec![args.source_range.into()],
|
|
}))
|
|
}
|
|
|
|
async fn make_sketch_plane_from_orientation(
|
|
data: PlaneData,
|
|
exec_state: &mut ExecState,
|
|
args: &Args,
|
|
) -> Result<Box<Plane>, KclError> {
|
|
let plane = Plane::from_plane_data(data.clone(), exec_state)?;
|
|
|
|
// Create the plane on the fly.
|
|
let clobber = false;
|
|
let size = LengthUnit(60.0);
|
|
let hide = Some(true);
|
|
args.batch_modeling_cmd(
|
|
plane.id,
|
|
ModelingCmd::from(mcmd::MakePlane {
|
|
clobber,
|
|
origin: plane.info.origin.into(),
|
|
size,
|
|
x_axis: plane.info.x_axis.into(),
|
|
y_axis: plane.info.y_axis.into(),
|
|
hide,
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
Ok(Box::new(plane))
|
|
}
|
|
|
|
/// Start a new profile at a given point.
|
|
pub async fn start_profile(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
// let (start, sketch_surface, tag) = args.get_data_and_sketch_surface()?;
|
|
let sketch_surface = args.get_unlabeled_kw_arg("startProfileOn")?;
|
|
let start: [TyF64; 2] = args.get_kw_arg_typed("at", &RuntimeType::point2d(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let sketch = inner_start_profile(sketch_surface, start, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(sketch),
|
|
})
|
|
}
|
|
|
|
/// Start a new profile at a given point.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(-XZ)
|
|
/// |> startProfile(at = [10, 10])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 5)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(-XZ)
|
|
/// |> startProfile(at = [-10, 23])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 5)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "startProfile",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch_surface = { docs = "What to start the profile on" },
|
|
at = { docs = "Where to start the profile. An absolute point." },
|
|
tag = { docs = "Tag this first starting point" },
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub(crate) async fn inner_start_profile(
|
|
sketch_surface: SketchSurface,
|
|
at: [TyF64; 2],
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
match &sketch_surface {
|
|
SketchSurface::Face(face) => {
|
|
// Flush the batch for our fillets/chamfers if there are any.
|
|
// If we do not do these for sketch on face, things will fail with face does not exist.
|
|
args.flush_batch_for_solids(exec_state, &[(*face.solid).clone()])
|
|
.await?;
|
|
}
|
|
SketchSurface::Plane(plane) if !plane.is_standard() => {
|
|
// Hide whatever plane we are sketching on.
|
|
// This is especially helpful for offset planes, which would be visible otherwise.
|
|
args.batch_end_cmd(
|
|
exec_state.next_uuid(),
|
|
ModelingCmd::from(mcmd::ObjectVisible {
|
|
object_id: plane.id,
|
|
hidden: true,
|
|
}),
|
|
)
|
|
.await?;
|
|
}
|
|
_ => {}
|
|
}
|
|
|
|
let enable_sketch_id = exec_state.next_uuid();
|
|
let path_id = exec_state.next_uuid();
|
|
let move_pen_id = exec_state.next_uuid();
|
|
args.batch_modeling_cmds(&[
|
|
// Enter sketch mode on the surface.
|
|
// We call this here so you can reuse the sketch surface for multiple sketches.
|
|
ModelingCmdReq {
|
|
cmd: ModelingCmd::from(mcmd::EnableSketchMode {
|
|
animated: false,
|
|
ortho: false,
|
|
entity_id: sketch_surface.id(),
|
|
adjust_camera: false,
|
|
planar_normal: if let SketchSurface::Plane(plane) = &sketch_surface {
|
|
// We pass in the normal for the plane here.
|
|
let normal = plane.info.x_axis.axes_cross_product(&plane.info.y_axis);
|
|
Some(normal.into())
|
|
} else {
|
|
None
|
|
},
|
|
}),
|
|
cmd_id: enable_sketch_id.into(),
|
|
},
|
|
ModelingCmdReq {
|
|
cmd: ModelingCmd::from(mcmd::StartPath::default()),
|
|
cmd_id: path_id.into(),
|
|
},
|
|
ModelingCmdReq {
|
|
cmd: ModelingCmd::from(mcmd::MovePathPen {
|
|
path: path_id.into(),
|
|
to: KPoint2d::from(point_to_mm(at.clone())).with_z(0.0).map(LengthUnit),
|
|
}),
|
|
cmd_id: move_pen_id.into(),
|
|
},
|
|
ModelingCmdReq {
|
|
cmd: ModelingCmd::SketchModeDisable(mcmd::SketchModeDisable::default()),
|
|
cmd_id: exec_state.next_uuid().into(),
|
|
},
|
|
])
|
|
.await?;
|
|
|
|
let (to, ty) = untype_point(at);
|
|
let current_path = BasePath {
|
|
from: to,
|
|
to,
|
|
tag: tag.clone(),
|
|
units: ty.expect_length(),
|
|
geo_meta: GeoMeta {
|
|
id: move_pen_id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
};
|
|
|
|
let sketch = Sketch {
|
|
id: path_id,
|
|
original_id: path_id,
|
|
artifact_id: path_id.into(),
|
|
on: sketch_surface.clone(),
|
|
paths: vec![],
|
|
units: ty.expect_length(),
|
|
mirror: Default::default(),
|
|
meta: vec![args.source_range.into()],
|
|
tags: if let Some(tag) = &tag {
|
|
let mut tag_identifier: TagIdentifier = tag.into();
|
|
tag_identifier.info = vec![(
|
|
exec_state.stack().current_epoch(),
|
|
TagEngineInfo {
|
|
id: current_path.geo_meta.id,
|
|
sketch: path_id,
|
|
path: Some(Path::Base {
|
|
base: current_path.clone(),
|
|
}),
|
|
surface: None,
|
|
},
|
|
)];
|
|
IndexMap::from([(tag.name.to_string(), tag_identifier)])
|
|
} else {
|
|
Default::default()
|
|
},
|
|
start: current_path,
|
|
};
|
|
Ok(sketch)
|
|
}
|
|
|
|
/// Returns the X component of the sketch profile start point.
|
|
pub async fn profile_start_x(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch: Sketch = args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::sketch(), exec_state)?;
|
|
let ty = sketch.units.into();
|
|
let x = inner_profile_start_x(sketch)?;
|
|
Ok(args.make_user_val_from_f64_with_type(TyF64::new(x, ty)))
|
|
}
|
|
|
|
/// Extract the provided 2-dimensional sketch's profile's origin's 'x'
|
|
/// value.
|
|
///
|
|
/// ```no_run
|
|
/// sketch001 = startSketchOn(XY)
|
|
/// |> startProfile(at = [5, 2])
|
|
/// |> angledLine(angle = -26.6, length = 50)
|
|
/// |> angledLine(angle = 90, length = 50)
|
|
/// |> angledLine(angle = 30, endAbsoluteX = profileStartX(%))
|
|
/// ```
|
|
#[stdlib {
|
|
name = "profileStartX",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
profile = {docs = "Profile whose start is being used"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub(crate) fn inner_profile_start_x(profile: Sketch) -> Result<f64, KclError> {
|
|
Ok(profile.start.to[0])
|
|
}
|
|
|
|
/// Returns the Y component of the sketch profile start point.
|
|
pub async fn profile_start_y(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch: Sketch = args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::sketch(), exec_state)?;
|
|
let ty = sketch.units.into();
|
|
let x = inner_profile_start_y(sketch)?;
|
|
Ok(args.make_user_val_from_f64_with_type(TyF64::new(x, ty)))
|
|
}
|
|
|
|
/// Extract the provided 2-dimensional sketch's profile's origin's 'y'
|
|
/// value.
|
|
///
|
|
/// ```no_run
|
|
/// sketch001 = startSketchOn(XY)
|
|
/// |> startProfile(at = [5, 2])
|
|
/// |> angledLine(angle = -60, length = 14 )
|
|
/// |> angledLine(angle = 30, endAbsoluteY = profileStartY(%))
|
|
/// ```
|
|
#[stdlib {
|
|
name = "profileStartY",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
profile = {docs = "Profile whose start is being used"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub(crate) fn inner_profile_start_y(profile: Sketch) -> Result<f64, KclError> {
|
|
Ok(profile.start.to[1])
|
|
}
|
|
|
|
/// Returns the sketch profile start point.
|
|
pub async fn profile_start(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch: Sketch = args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::sketch(), exec_state)?;
|
|
let ty = sketch.units.into();
|
|
let point = inner_profile_start(sketch)?;
|
|
Ok(KclValue::from_point2d(point, ty, args.into()))
|
|
}
|
|
|
|
/// Extract the provided 2-dimensional sketch's profile's origin
|
|
/// value.
|
|
///
|
|
/// ```no_run
|
|
/// sketch001 = startSketchOn(XY)
|
|
/// |> startProfile(at = [5, 2])
|
|
/// |> angledLine(angle = 120, length = 50 , tag = $seg01)
|
|
/// |> angledLine(angle = segAng(seg01) + 120, length = 50 )
|
|
/// |> line(end = profileStart(%))
|
|
/// |> close()
|
|
/// |> extrude(length = 20)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "profileStart",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
profile = {docs = "Profile whose start is being used"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub(crate) fn inner_profile_start(profile: Sketch) -> Result<[f64; 2], KclError> {
|
|
Ok(profile.start.to)
|
|
}
|
|
|
|
/// Close the current sketch.
|
|
pub async fn close(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
let new_sketch = inner_close(sketch, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Construct a line segment from the current origin back to the profile's
|
|
/// origin, ensuring the resulting 2-dimensional sketch is not open-ended.
|
|
///
|
|
/// ```no_run
|
|
/// startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 10])
|
|
/// |> line(end = [10, 0])
|
|
/// |> close()
|
|
/// |> extrude(length = 10)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(-XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "close",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "The sketch you want to close"},
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
pub(crate) async fn inner_close(
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
let to = point_to_len_unit(sketch.start.get_from(), from.units);
|
|
|
|
let id = exec_state.next_uuid();
|
|
|
|
args.batch_modeling_cmd(id, ModelingCmd::from(mcmd::ClosePath { path_id: sketch.id }))
|
|
.await?;
|
|
|
|
let current_path = Path::ToPoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw an arc.
|
|
pub async fn arc(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
|
|
let angle_start: Option<TyF64> = args.get_kw_arg_opt_typed("angleStart", &RuntimeType::degrees(), exec_state)?;
|
|
let angle_end: Option<TyF64> = args.get_kw_arg_opt_typed("angleEnd", &RuntimeType::degrees(), exec_state)?;
|
|
let radius: Option<TyF64> = args.get_kw_arg_opt_typed("radius", &RuntimeType::length(), exec_state)?;
|
|
let end_absolute: Option<[TyF64; 2]> =
|
|
args.get_kw_arg_opt_typed("endAbsolute", &RuntimeType::point2d(), exec_state)?;
|
|
let interior_absolute: Option<[TyF64; 2]> =
|
|
args.get_kw_arg_opt_typed("interiorAbsolute", &RuntimeType::point2d(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
let new_sketch = inner_arc(
|
|
sketch,
|
|
angle_start,
|
|
angle_end,
|
|
radius,
|
|
interior_absolute,
|
|
end_absolute,
|
|
tag,
|
|
exec_state,
|
|
args,
|
|
)
|
|
.await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw a curved line segment along an imaginary circle.
|
|
///
|
|
/// The arc is constructed such that the current position of the sketch is
|
|
/// placed along an imaginary circle of the specified radius, at angleStart
|
|
/// degrees. The resulting arc is the segment of the imaginary circle from
|
|
/// that origin point to angleEnd, radius away from the center of the imaginary
|
|
/// circle.
|
|
///
|
|
/// Unless this makes a lot of sense and feels like what you're looking
|
|
/// for to construct your shape, you're likely looking for tangentialArc.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [10, 0])
|
|
/// |> arc(
|
|
/// angleStart = 0,
|
|
/// angleEnd = 280,
|
|
/// radius = 16
|
|
/// )
|
|
/// |> close()
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> arc(
|
|
/// endAbsolute = [10,0],
|
|
/// interiorAbsolute = [5,5]
|
|
/// )
|
|
/// |> close()
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "arc",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?" },
|
|
angle_start = { docs = "Where along the circle should this arc start?", include_in_snippet = true },
|
|
angle_end = { docs = "Where along the circle should this arc end?", include_in_snippet = true },
|
|
radius = { docs = "How large should the circle be?", include_in_snippet = true },
|
|
interior_absolute = { docs = "Any point between the arc's start and end? Requires `endAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
|
|
end_absolute = { docs = "Where should this arc end? Requires `interiorAbsolute`. Incompatible with `angleStart` or `angleEnd`" },
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub(crate) async fn inner_arc(
|
|
sketch: Sketch,
|
|
angle_start: Option<TyF64>,
|
|
angle_end: Option<TyF64>,
|
|
radius: Option<TyF64>,
|
|
interior_absolute: Option<[TyF64; 2]>,
|
|
end_absolute: Option<[TyF64; 2]>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from: Point2d = sketch.current_pen_position()?;
|
|
let id = exec_state.next_uuid();
|
|
|
|
match (angle_start, angle_end, radius, interior_absolute, end_absolute) {
|
|
(Some(angle_start), Some(angle_end), Some(radius), None, None) => {
|
|
relative_arc(&args, id, exec_state, sketch, from, angle_start, angle_end, radius, tag).await
|
|
}
|
|
(None, None, None, Some(interior_absolute), Some(end_absolute)) => {
|
|
absolute_arc(&args, id, exec_state, sketch, from, interior_absolute, end_absolute, tag).await
|
|
}
|
|
_ => {
|
|
Err(KclError::Type(KclErrorDetails::new(
|
|
"Invalid combination of arguments. Either provide (angleStart, angleEnd, radius) or (endAbsolute, interiorAbsolute)".to_owned(),
|
|
vec![args.source_range],
|
|
)))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub async fn absolute_arc(
|
|
args: &Args,
|
|
id: uuid::Uuid,
|
|
exec_state: &mut ExecState,
|
|
sketch: Sketch,
|
|
from: Point2d,
|
|
interior_absolute: [TyF64; 2],
|
|
end_absolute: [TyF64; 2],
|
|
tag: Option<TagNode>,
|
|
) -> Result<Sketch, KclError> {
|
|
// The start point is taken from the path you are extending.
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::ArcTo {
|
|
end: kcmc::shared::Point3d {
|
|
x: LengthUnit(end_absolute[0].to_mm()),
|
|
y: LengthUnit(end_absolute[1].to_mm()),
|
|
z: LengthUnit(0.0),
|
|
},
|
|
interior: kcmc::shared::Point3d {
|
|
x: LengthUnit(interior_absolute[0].to_mm()),
|
|
y: LengthUnit(interior_absolute[1].to_mm()),
|
|
z: LengthUnit(0.0),
|
|
},
|
|
relative: false,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let start = [from.x, from.y];
|
|
let end = point_to_len_unit(end_absolute, from.units);
|
|
|
|
let current_path = Path::ArcThreePoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to: end,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
p1: start,
|
|
p2: point_to_len_unit(interior_absolute, from.units),
|
|
p3: end,
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub async fn relative_arc(
|
|
args: &Args,
|
|
id: uuid::Uuid,
|
|
exec_state: &mut ExecState,
|
|
sketch: Sketch,
|
|
from: Point2d,
|
|
angle_start: TyF64,
|
|
angle_end: TyF64,
|
|
radius: TyF64,
|
|
tag: Option<TagNode>,
|
|
) -> Result<Sketch, KclError> {
|
|
let a_start = Angle::from_degrees(angle_start.to_degrees());
|
|
let a_end = Angle::from_degrees(angle_end.to_degrees());
|
|
let radius = radius.to_length_units(from.units);
|
|
let (center, end) = arc_center_and_end(from.ignore_units(), a_start, a_end, radius);
|
|
if a_start == a_end {
|
|
return Err(KclError::Type(KclErrorDetails::new(
|
|
"Arc start and end angles must be different".to_string(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
let ccw = a_start < a_end;
|
|
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::Arc {
|
|
start: a_start,
|
|
end: a_end,
|
|
center: KPoint2d::from(untyped_point_to_mm(center, from.units)).map(LengthUnit),
|
|
radius: LengthUnit(from.units.adjust_to(radius, UnitLen::Mm).0),
|
|
relative: false,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let current_path = Path::Arc {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to: end,
|
|
tag: tag.clone(),
|
|
units: from.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
center,
|
|
radius,
|
|
ccw,
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw a tangential arc to a specific point.
|
|
pub async fn tangential_arc(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let end = args.get_kw_arg_opt_typed("end", &RuntimeType::point2d(), exec_state)?;
|
|
let end_absolute = args.get_kw_arg_opt_typed("endAbsolute", &RuntimeType::point2d(), exec_state)?;
|
|
let radius = args.get_kw_arg_opt_typed("radius", &RuntimeType::length(), exec_state)?;
|
|
let angle = args.get_kw_arg_opt_typed("angle", &RuntimeType::angle(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt(NEW_TAG_KW)?;
|
|
|
|
let new_sketch = inner_tangential_arc(sketch, end_absolute, end, radius, angle, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Starting at the current sketch's origin, draw a curved line segment along
|
|
/// some part of an imaginary circle until it reaches the desired (x, y)
|
|
/// coordinates.
|
|
///
|
|
/// When using radius and angle, draw a curved line segment along part of an
|
|
/// imaginary circle. The arc is constructed such that the last line segment is
|
|
/// placed tangent to the imaginary circle of the specified radius. The
|
|
/// resulting arc is the segment of the imaginary circle from that tangent point
|
|
/// for 'angle' degrees along the imaginary circle.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> angledLine(
|
|
/// angle = 45,
|
|
/// length = 10,
|
|
/// )
|
|
/// |> tangentialArc(end = [0, -10])
|
|
/// |> line(end = [-10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> angledLine(
|
|
/// angle = 60,
|
|
/// length = 10,
|
|
/// )
|
|
/// |> tangentialArc(endAbsolute = [15, 15])
|
|
/// |> line(end = [10, -15])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> angledLine(
|
|
/// angle = 60,
|
|
/// length = 10,
|
|
/// )
|
|
/// |> tangentialArc(radius = 10, angle = -120)
|
|
/// |> angledLine(
|
|
/// angle = -60,
|
|
/// length = 10,
|
|
/// )
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "tangentialArc",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
end_absolute = { docs = "Which absolute point should this arc go to? Incompatible with `end`, `radius`, and `offset`."},
|
|
end = { docs = "How far away (along the X and Y axes) should this arc go? Incompatible with `endAbsolute`, `radius`, and `offset`.", include_in_snippet = true },
|
|
radius = { docs = "Radius of the imaginary circle. `angle` must be given. Incompatible with `end` and `endAbsolute`."},
|
|
angle = { docs = "Offset of the arc in degrees. `radius` must be given. Incompatible with `end` and `endAbsolute`."},
|
|
tag = { docs = "Create a new tag which refers to this arc"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
#[allow(clippy::too_many_arguments)]
|
|
async fn inner_tangential_arc(
|
|
sketch: Sketch,
|
|
end_absolute: Option<[TyF64; 2]>,
|
|
end: Option<[TyF64; 2]>,
|
|
radius: Option<TyF64>,
|
|
angle: Option<TyF64>,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
match (end_absolute, end, radius, angle) {
|
|
(Some(point), None, None, None) => {
|
|
inner_tangential_arc_to_point(sketch, point, true, tag, exec_state, args).await
|
|
}
|
|
(None, Some(point), None, None) => {
|
|
inner_tangential_arc_to_point(sketch, point, false, tag, exec_state, args).await
|
|
}
|
|
(None, None, Some(radius), Some(angle)) => {
|
|
let data = TangentialArcData::RadiusAndOffset { radius, offset: angle };
|
|
inner_tangential_arc_radius_angle(data, sketch, tag, exec_state, args).await
|
|
}
|
|
(Some(_), Some(_), None, None) => Err(KclError::Semantic(KclErrorDetails::new(
|
|
"You cannot give both `end` and `endAbsolute` params, you have to choose one or the other".to_owned(),
|
|
vec![args.source_range],
|
|
))),
|
|
(None, None, Some(_), None) | (None, None, None, Some(_)) => Err(KclError::Semantic(KclErrorDetails::new(
|
|
"You must supply both `radius` and `angle` arguments".to_owned(),
|
|
vec![args.source_range],
|
|
))),
|
|
(_, _, _, _) => Err(KclError::Semantic(KclErrorDetails::new(
|
|
"You must supply `end`, `endAbsolute`, or both `radius` and `angle` arguments".to_owned(),
|
|
vec![args.source_range],
|
|
))),
|
|
}
|
|
}
|
|
|
|
/// Data to draw a tangential arc.
|
|
#[derive(Debug, Clone, Serialize, PartialEq, JsonSchema, ts_rs::TS)]
|
|
#[ts(export)]
|
|
#[serde(rename_all = "camelCase", untagged)]
|
|
pub enum TangentialArcData {
|
|
RadiusAndOffset {
|
|
/// Radius of the arc.
|
|
/// Not to be confused with Raiders of the Lost Ark.
|
|
radius: TyF64,
|
|
/// Offset of the arc, in degrees.
|
|
offset: TyF64,
|
|
},
|
|
}
|
|
|
|
/// Draw a curved line segment along part of an imaginary circle.
|
|
///
|
|
/// The arc is constructed such that the last line segment is placed tangent
|
|
/// to the imaginary circle of the specified radius. The resulting arc is the
|
|
/// segment of the imaginary circle from that tangent point for 'angle'
|
|
/// degrees along the imaginary circle.
|
|
async fn inner_tangential_arc_radius_angle(
|
|
data: TangentialArcData,
|
|
sketch: Sketch,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from: Point2d = sketch.current_pen_position()?;
|
|
// next set of lines is some undocumented voodoo from get_tangential_arc_to_info
|
|
let tangent_info = sketch.get_tangential_info_from_paths(); //this function desperately needs some documentation
|
|
let tan_previous_point = tangent_info.tan_previous_point(from.ignore_units());
|
|
|
|
let id = exec_state.next_uuid();
|
|
|
|
let (center, to, ccw) = match data {
|
|
TangentialArcData::RadiusAndOffset { radius, offset } => {
|
|
// KCL stdlib types use degrees.
|
|
let offset = Angle::from_degrees(offset.to_degrees());
|
|
|
|
// Calculate the end point from the angle and radius.
|
|
// atan2 outputs radians.
|
|
let previous_end_tangent = Angle::from_radians(f64::atan2(
|
|
from.y - tan_previous_point[1],
|
|
from.x - tan_previous_point[0],
|
|
));
|
|
// make sure the arc center is on the correct side to guarantee deterministic behavior
|
|
// note the engine automatically rejects an offset of zero, if we want to flag that at KCL too to avoid engine errors
|
|
let ccw = offset.to_degrees() > 0.0;
|
|
let tangent_to_arc_start_angle = if ccw {
|
|
// CCW turn
|
|
Angle::from_degrees(-90.0)
|
|
} else {
|
|
// CW turn
|
|
Angle::from_degrees(90.0)
|
|
};
|
|
// may need some logic and / or modulo on the various angle values to prevent them from going "backwards"
|
|
// but the above logic *should* capture that behavior
|
|
let start_angle = previous_end_tangent + tangent_to_arc_start_angle;
|
|
let end_angle = start_angle + offset;
|
|
let (center, to) = arc_center_and_end(
|
|
from.ignore_units(),
|
|
start_angle,
|
|
end_angle,
|
|
radius.to_length_units(from.units),
|
|
);
|
|
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::TangentialArc {
|
|
radius: LengthUnit(radius.to_mm()),
|
|
offset,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
(center, to, ccw)
|
|
}
|
|
};
|
|
|
|
let current_path = Path::TangentialArc {
|
|
ccw,
|
|
center,
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
// `to` must be in sketch.units
|
|
fn tan_arc_to(sketch: &Sketch, to: [f64; 2]) -> ModelingCmd {
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::TangentialArcTo {
|
|
angle_snap_increment: None,
|
|
to: KPoint2d::from(untyped_point_to_mm(to, sketch.units))
|
|
.with_z(0.0)
|
|
.map(LengthUnit),
|
|
},
|
|
})
|
|
}
|
|
|
|
async fn inner_tangential_arc_to_point(
|
|
sketch: Sketch,
|
|
point: [TyF64; 2],
|
|
is_absolute: bool,
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from: Point2d = sketch.current_pen_position()?;
|
|
let tangent_info = sketch.get_tangential_info_from_paths();
|
|
let tan_previous_point = tangent_info.tan_previous_point(from.ignore_units());
|
|
|
|
let point = point_to_len_unit(point, from.units);
|
|
|
|
let to = if is_absolute {
|
|
point
|
|
} else {
|
|
[from.x + point[0], from.y + point[1]]
|
|
};
|
|
let [to_x, to_y] = to;
|
|
let result = get_tangential_arc_to_info(TangentialArcInfoInput {
|
|
arc_start_point: [from.x, from.y],
|
|
arc_end_point: [to_x, to_y],
|
|
tan_previous_point,
|
|
obtuse: true,
|
|
});
|
|
|
|
if result.center[0].is_infinite() {
|
|
return Err(KclError::Semantic(KclErrorDetails::new(
|
|
"could not sketch tangential arc, because its center would be infinitely far away in the X direction"
|
|
.to_owned(),
|
|
vec![args.source_range],
|
|
)));
|
|
} else if result.center[1].is_infinite() {
|
|
return Err(KclError::Semantic(KclErrorDetails::new(
|
|
"could not sketch tangential arc, because its center would be infinitely far away in the Y direction"
|
|
.to_owned(),
|
|
vec![args.source_range],
|
|
)));
|
|
}
|
|
|
|
let delta = if is_absolute {
|
|
[to_x - from.x, to_y - from.y]
|
|
} else {
|
|
point
|
|
};
|
|
let id = exec_state.next_uuid();
|
|
args.batch_modeling_cmd(id, tan_arc_to(&sketch, delta)).await?;
|
|
|
|
let current_path = Path::TangentialArcTo {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
center: result.center,
|
|
ccw: result.ccw > 0,
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Draw a bezier curve.
|
|
pub async fn bezier_curve(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
let end: [TyF64; 2] = args.get_kw_arg_typed("end", &RuntimeType::point2d(), exec_state)?;
|
|
let control1: [TyF64; 2] = args.get_kw_arg_typed("control1", &RuntimeType::point2d(), exec_state)?;
|
|
let control2: [TyF64; 2] = args.get_kw_arg_typed("control2", &RuntimeType::point2d(), exec_state)?;
|
|
let tag = args.get_kw_arg_opt("tag")?;
|
|
|
|
let new_sketch = inner_bezier_curve(sketch, control1, control2, end, tag, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Draw a smooth, continuous, curved line segment from the current origin to
|
|
/// the desired (x, y), using a number of control points to shape the curve's
|
|
/// shape.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XZ)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [0, 10])
|
|
/// |> bezierCurve(
|
|
/// control1 = [5, 0],
|
|
/// control2 = [5, 10],
|
|
/// end = [10, 10],
|
|
/// )
|
|
/// |> line(endAbsolute = [10, 0])
|
|
/// |> close()
|
|
///
|
|
/// example = extrude(exampleSketch, length = 10)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "bezierCurve",
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?"},
|
|
end = { docs = "How far away (along the X and Y axes) should this line go?" },
|
|
control1 = { docs = "First control point for the cubic" },
|
|
control2 = { docs = "Second control point for the cubic" },
|
|
tag = { docs = "Create a new tag which refers to this line"},
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_bezier_curve(
|
|
sketch: Sketch,
|
|
control1: [TyF64; 2],
|
|
control2: [TyF64; 2],
|
|
end: [TyF64; 2],
|
|
tag: Option<TagNode>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
let from = sketch.current_pen_position()?;
|
|
|
|
let relative = true;
|
|
let delta = end.clone();
|
|
let to = [
|
|
from.x + end[0].to_length_units(from.units),
|
|
from.y + end[1].to_length_units(from.units),
|
|
];
|
|
|
|
let id = exec_state.next_uuid();
|
|
|
|
args.batch_modeling_cmd(
|
|
id,
|
|
ModelingCmd::from(mcmd::ExtendPath {
|
|
path: sketch.id.into(),
|
|
segment: PathSegment::Bezier {
|
|
control1: KPoint2d::from(point_to_mm(control1)).with_z(0.0).map(LengthUnit),
|
|
control2: KPoint2d::from(point_to_mm(control2)).with_z(0.0).map(LengthUnit),
|
|
end: KPoint2d::from(point_to_mm(delta)).with_z(0.0).map(LengthUnit),
|
|
relative,
|
|
},
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
let current_path = Path::ToPoint {
|
|
base: BasePath {
|
|
from: from.ignore_units(),
|
|
to,
|
|
tag: tag.clone(),
|
|
units: sketch.units,
|
|
geo_meta: GeoMeta {
|
|
id,
|
|
metadata: args.source_range.into(),
|
|
},
|
|
},
|
|
};
|
|
|
|
let mut new_sketch = sketch.clone();
|
|
if let Some(tag) = &tag {
|
|
new_sketch.add_tag(tag, ¤t_path, exec_state);
|
|
}
|
|
|
|
new_sketch.paths.push(current_path);
|
|
|
|
Ok(new_sketch)
|
|
}
|
|
|
|
/// Use a sketch to cut a hole in another sketch.
|
|
pub async fn subtract_2d(exec_state: &mut ExecState, args: Args) -> Result<KclValue, KclError> {
|
|
let sketch =
|
|
args.get_unlabeled_kw_arg_typed("sketch", &RuntimeType::Primitive(PrimitiveType::Sketch), exec_state)?;
|
|
|
|
let tool: Vec<Sketch> = args.get_kw_arg_typed(
|
|
"tool",
|
|
&RuntimeType::Array(
|
|
Box::new(RuntimeType::Primitive(PrimitiveType::Sketch)),
|
|
ArrayLen::NonEmpty,
|
|
),
|
|
exec_state,
|
|
)?;
|
|
|
|
let new_sketch = inner_subtract_2d(sketch, tool, exec_state, args).await?;
|
|
Ok(KclValue::Sketch {
|
|
value: Box::new(new_sketch),
|
|
})
|
|
}
|
|
|
|
/// Use a 2-dimensional sketch to cut a hole in another 2-dimensional sketch.
|
|
///
|
|
/// ```no_run
|
|
/// exampleSketch = startSketchOn(XY)
|
|
/// |> startProfile(at = [0, 0])
|
|
/// |> line(end = [0, 5])
|
|
/// |> line(end = [5, 0])
|
|
/// |> line(end = [0, -5])
|
|
/// |> close()
|
|
/// |> subtract2d(tool =circle( center = [1, 1], radius = .25 ))
|
|
/// |> subtract2d(tool =circle( center = [1, 4], radius = .25 ))
|
|
///
|
|
/// example = extrude(exampleSketch, length = 1)
|
|
/// ```
|
|
///
|
|
/// ```no_run
|
|
/// fn squareHoleSketch() {
|
|
/// squareSketch = startSketchOn(-XZ)
|
|
/// |> startProfile(at = [-1, -1])
|
|
/// |> line(end = [2, 0])
|
|
/// |> line(end = [0, 2])
|
|
/// |> line(end = [-2, 0])
|
|
/// |> close()
|
|
/// return squareSketch
|
|
/// }
|
|
///
|
|
/// exampleSketch = startSketchOn(-XZ)
|
|
/// |> circle( center = [0, 0], radius = 3 )
|
|
/// |> subtract2d(tool = squareHoleSketch())
|
|
/// example = extrude(exampleSketch, length = 1)
|
|
/// ```
|
|
#[stdlib {
|
|
name = "subtract2d",
|
|
feature_tree_operation = true,
|
|
keywords = true,
|
|
unlabeled_first = true,
|
|
args = {
|
|
sketch = { docs = "Which sketch should this path be added to?" },
|
|
tool = { docs = "The shape(s) which should be cut out of the sketch." },
|
|
},
|
|
tags = ["sketch"]
|
|
}]
|
|
async fn inner_subtract_2d(
|
|
sketch: Sketch,
|
|
tool: Vec<Sketch>,
|
|
exec_state: &mut ExecState,
|
|
args: Args,
|
|
) -> Result<Sketch, KclError> {
|
|
for hole_sketch in tool {
|
|
args.batch_modeling_cmd(
|
|
exec_state.next_uuid(),
|
|
ModelingCmd::from(mcmd::Solid2dAddHole {
|
|
object_id: sketch.id,
|
|
hole_id: hole_sketch.id,
|
|
}),
|
|
)
|
|
.await?;
|
|
|
|
// suggestion (mike)
|
|
// we also hide the source hole since its essentially "consumed" by this operation
|
|
args.batch_modeling_cmd(
|
|
exec_state.next_uuid(),
|
|
ModelingCmd::from(mcmd::ObjectVisible {
|
|
object_id: hole_sketch.id,
|
|
hidden: true,
|
|
}),
|
|
)
|
|
.await?;
|
|
}
|
|
|
|
Ok(sketch)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
use pretty_assertions::assert_eq;
|
|
|
|
use crate::{
|
|
execution::TagIdentifier,
|
|
std::{sketch::PlaneData, utils::calculate_circle_center},
|
|
};
|
|
|
|
#[test]
|
|
fn test_deserialize_plane_data() {
|
|
let data = PlaneData::XY;
|
|
let mut str_json = serde_json::to_string(&data).unwrap();
|
|
assert_eq!(str_json, "\"XY\"");
|
|
|
|
str_json = "\"YZ\"".to_string();
|
|
let data: PlaneData = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(data, PlaneData::YZ);
|
|
|
|
str_json = "\"-YZ\"".to_string();
|
|
let data: PlaneData = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(data, PlaneData::NegYZ);
|
|
|
|
str_json = "\"-xz\"".to_string();
|
|
let data: PlaneData = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(data, PlaneData::NegXZ);
|
|
}
|
|
|
|
#[test]
|
|
fn test_deserialize_sketch_on_face_tag() {
|
|
let data = "start";
|
|
let mut str_json = serde_json::to_string(&data).unwrap();
|
|
assert_eq!(str_json, "\"start\"");
|
|
|
|
str_json = "\"end\"".to_string();
|
|
let data: crate::std::sketch::FaceTag = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(
|
|
data,
|
|
crate::std::sketch::FaceTag::StartOrEnd(crate::std::sketch::StartOrEnd::End)
|
|
);
|
|
|
|
str_json = serde_json::to_string(&TagIdentifier {
|
|
value: "thing".to_string(),
|
|
info: Vec::new(),
|
|
meta: Default::default(),
|
|
})
|
|
.unwrap();
|
|
let data: crate::std::sketch::FaceTag = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(
|
|
data,
|
|
crate::std::sketch::FaceTag::Tag(Box::new(TagIdentifier {
|
|
value: "thing".to_string(),
|
|
info: Vec::new(),
|
|
meta: Default::default()
|
|
}))
|
|
);
|
|
|
|
str_json = "\"END\"".to_string();
|
|
let data: crate::std::sketch::FaceTag = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(
|
|
data,
|
|
crate::std::sketch::FaceTag::StartOrEnd(crate::std::sketch::StartOrEnd::End)
|
|
);
|
|
|
|
str_json = "\"start\"".to_string();
|
|
let data: crate::std::sketch::FaceTag = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(
|
|
data,
|
|
crate::std::sketch::FaceTag::StartOrEnd(crate::std::sketch::StartOrEnd::Start)
|
|
);
|
|
|
|
str_json = "\"START\"".to_string();
|
|
let data: crate::std::sketch::FaceTag = serde_json::from_str(&str_json).unwrap();
|
|
assert_eq!(
|
|
data,
|
|
crate::std::sketch::FaceTag::StartOrEnd(crate::std::sketch::StartOrEnd::Start)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn test_circle_center() {
|
|
let actual = calculate_circle_center([0.0, 0.0], [5.0, 5.0], [10.0, 0.0]);
|
|
assert_eq!(actual[0], 5.0);
|
|
assert_eq!(actual[1], 0.0);
|
|
}
|
|
}
|