kittycad.models.jetstream.Jetstream
- class kittycad.models.jetstream.Jetstream(**data)[source][source]
Bases:
BaseModelJetstream information.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
Methods
__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
construct([_fields_set])copy(*[, include, exclude, update, deep])Returns a copy of the model.
dict(*[, include, exclude, by_alias, ...])from_orm(obj)json(*[, include, exclude, by_alias, ...])model_construct([_fields_set])Creates a new instance of the
Modelclass with validated data.model_copy(*[, update, deep])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
model_dump(*[, mode, include, exclude, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
model_dump_json(*[, indent, include, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
model_json_schema([by_alias, ref_template, ...])Generates a JSON schema for a model class.
model_parametrized_name(params)Compute the class name for parametrizations of generic classes.
model_post_init(_BaseModel__context)Override this method to perform additional initialization after
__init__andmodel_construct.model_rebuild(*[, force, raise_errors, ...])Try to rebuild the pydantic-core schema for the model.
model_validate(obj, *[, strict, ...])Validate a pydantic model instance.
model_validate_json(json_data, *[, strict, ...])Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
model_validate_strings(obj, *[, strict, context])Validate the given object with string data against the Pydantic model.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)validate(value)Attributes
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].Get extra fields set during validation.
Returns the set of fields that have been explicitly set on this model instance.
- __annotations__ = {'__class_vars__': 'ClassVar[set[str]]', '__private_attributes__': 'ClassVar[Dict[str, ModelPrivateAttr]]', '__pydantic_complete__': 'ClassVar[bool]', '__pydantic_computed_fields__': 'ClassVar[Dict[str, ComputedFieldInfo]]', '__pydantic_core_schema__': 'ClassVar[CoreSchema]', '__pydantic_custom_init__': 'ClassVar[bool]', '__pydantic_decorators__': 'ClassVar[_decorators.DecoratorInfos]', '__pydantic_extra__': 'dict[str, Any] | None', '__pydantic_fields__': 'ClassVar[Dict[str, FieldInfo]]', '__pydantic_fields_set__': 'set[str]', '__pydantic_generic_metadata__': 'ClassVar[_generics.PydanticGenericMetadata]', '__pydantic_parent_namespace__': 'ClassVar[Dict[str, Any] | None]', '__pydantic_post_init__': "ClassVar[None | Literal['model_post_init']]", '__pydantic_private__': 'dict[str, Any] | None', '__pydantic_root_model__': 'ClassVar[bool]', '__pydantic_serializer__': 'ClassVar[SchemaSerializer]', '__pydantic_validator__': 'ClassVar[SchemaValidator | PluggableSchemaValidator]', '__signature__': 'ClassVar[Signature]', 'config': <class 'kittycad.models.jetstream_config.JetstreamConfig'>, 'meta': <class 'kittycad.models.meta_cluster_info.MetaClusterInfo'>, 'model_computed_fields': 'ClassVar[dict[str, ComputedFieldInfo]]', 'model_config': 'ClassVar[ConfigDict]', 'model_fields': 'ClassVar[dict[str, FieldInfo]]', 'stats': <class 'kittycad.models.jetstream_stats.JetstreamStats'>}[source]
- classmethod __class_getitem__(typevar_values)[source]
- Return type:
type[BaseModel] |PydanticRecursiveRef
- __class_vars__: ClassVar[set[str]] = {}[source]
The names of the class variables defined on the model.
- classmethod __get_pydantic_core_schema__(source, handler, /)[source]
Hook into generating the model’s CoreSchema.
- Parameters:
source (
type[BaseModel]) – The class we are generating a schema for. This will generally be the same as theclsargument if this is a classmethod.handler (
GetCoreSchemaHandler) – A callable that calls into Pydantic’s internal CoreSchema generation logic.
- Return type:
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]- Returns:
A
pydantic-coreCoreSchema.
- classmethod __get_pydantic_json_schema__(core_schema, handler, /)[source]
Hook into generating the model’s JSON schema.
- Parameters:
core_schema (
Union[InvalidSchema,AnySchema,NoneSchema,BoolSchema,IntSchema,FloatSchema,DecimalSchema,StringSchema,BytesSchema,DateSchema,TimeSchema,DatetimeSchema,TimedeltaSchema,LiteralSchema,EnumSchema,IsInstanceSchema,IsSubclassSchema,CallableSchema,ListSchema,TupleSchema,SetSchema,FrozenSetSchema,GeneratorSchema,DictSchema,AfterValidatorFunctionSchema,BeforeValidatorFunctionSchema,WrapValidatorFunctionSchema,PlainValidatorFunctionSchema,WithDefaultSchema,NullableSchema,UnionSchema,TaggedUnionSchema,ChainSchema,LaxOrStrictSchema,JsonOrPythonSchema,TypedDictSchema,ModelFieldsSchema,ModelSchema,DataclassArgsSchema,DataclassSchema,ArgumentsSchema,CallSchema,CustomErrorSchema,JsonSchema,UrlSchema,MultiHostUrlSchema,DefinitionsSchema,DefinitionReferenceSchema,UuidSchema,ComplexSchema]) – Apydantic-coreCoreSchema. You can ignore this argument and call the handler with a new CoreSchema, wrap this CoreSchema ({'type': 'nullable', 'schema': current_schema}), or just call the handler with the original schema.handler (
GetJsonSchemaHandler) – Call into Pydantic’s internal JSON schema generation. This will raise apydantic.errors.PydanticInvalidForJsonSchemaif JSON schema generation fails. Since this gets called byBaseModel.model_json_schemayou can override theschema_generatorargument to that function to change JSON schema generation globally for a type.
- Return type:
- Returns:
A JSON schema, as a Python object.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.selfis explicitly positional-only to allowselfas a field name.
- __pretty__(fmt, **kwargs)[source]
Used by devtools (https://python-devtools.helpmanual.io/) to pretty print objects.
- __private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] = {}[source]
Metadata about the private attributes of the model.
- __pydantic_complete__: ClassVar[bool] = True[source]
Whether model building is completed, or if there are still undefined fields.
- __pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] = {}[source]
A dictionary of computed field names and their corresponding [
ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.
- __pydantic_core_schema__: ClassVar[CoreSchema] = {'cls': <class 'kittycad.models.jetstream.Jetstream'>, 'config': {'title': 'Jetstream'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.jetstream.Jetstream'>>]}, 'ref': 'kittycad.models.jetstream.Jetstream:94250663979344', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'config': {'metadata': {}, 'schema': {'default': {'domain': '', 'max_memory': 0, 'max_storage': 0, 'store_dir': ''}, 'schema': {'cls': <class 'kittycad.models.jetstream_config.JetstreamConfig'>, 'config': {'title': 'JetstreamConfig'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.jetstream_config.JetstreamConfig'>>]}, 'ref': 'kittycad.models.jetstream_config.JetstreamConfig:94250663971264', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'domain': {'metadata': {}, 'schema': {'default': '', 'schema': {'type': 'str'}, 'type': 'default'}, 'type': 'model-field'}, 'max_memory': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'max_storage': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'store_dir': {'metadata': {}, 'schema': {'default': '', 'schema': {'type': 'str'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'JetstreamConfig', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'default'}, 'type': 'model-field'}, 'meta': {'metadata': {}, 'schema': {'default': {'cluster_size': 0, 'leader': '', 'name': ''}, 'schema': {'cls': <class 'kittycad.models.meta_cluster_info.MetaClusterInfo'>, 'config': {'title': 'MetaClusterInfo'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.meta_cluster_info.MetaClusterInfo'>>]}, 'ref': 'kittycad.models.meta_cluster_info.MetaClusterInfo:94250663947424', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'cluster_size': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'leader': {'metadata': {}, 'schema': {'default': '', 'schema': {'type': 'str'}, 'type': 'default'}, 'type': 'model-field'}, 'name': {'metadata': {}, 'schema': {'default': '', 'schema': {'type': 'str'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'MetaClusterInfo', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'default'}, 'type': 'model-field'}, 'stats': {'metadata': {}, 'schema': {'default': {'accounts': 0, 'api': {'errors': 0, 'inflight': 0, 'total': 0}, 'ha_assets': 0, 'memory': 0, 'reserved_memory': 0, 'reserved_store': 0, 'store': 0}, 'schema': {'cls': <class 'kittycad.models.jetstream_stats.JetstreamStats'>, 'config': {'title': 'JetstreamStats'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.jetstream_stats.JetstreamStats'>>]}, 'ref': 'kittycad.models.jetstream_stats.JetstreamStats:94250663913200', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'accounts': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'api': {'metadata': {}, 'schema': {'default': {'errors': 0, 'inflight': 0, 'total': 0}, 'schema': {'cls': <class 'kittycad.models.jetstream_api_stats.JetstreamApiStats'>, 'config': {'title': 'JetstreamApiStats'}, 'custom_init': False, 'metadata': {'pydantic_js_functions': [<bound method BaseModel.__get_pydantic_json_schema__ of <class 'kittycad.models.jetstream_api_stats.JetstreamApiStats'>>]}, 'ref': 'kittycad.models.jetstream_api_stats.JetstreamApiStats:94250663903168', 'root_model': False, 'schema': {'computed_fields': [], 'fields': {'errors': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'inflight': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'total': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'JetstreamApiStats', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'default'}, 'type': 'model-field'}, 'ha_assets': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'memory': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'reserved_memory': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'reserved_store': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}, 'store': {'metadata': {}, 'schema': {'default': 0, 'schema': {'type': 'int'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'JetstreamStats', 'type': 'model-fields'}, 'type': 'model'}, 'type': 'default'}, 'type': 'model-field'}}, 'model_name': 'Jetstream', 'type': 'model-fields'}, 'type': 'model'}[source]
The core schema of the model.
- __pydantic_custom_init__: ClassVar[bool] = False[source]
Whether the model has a custom
__init__method.
- __pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = DecoratorInfos(validators={}, field_validators={}, root_validators={}, field_serializers={}, model_serializers={}, model_validators={}, computed_fields={})[source]
Metadata containing the decorators defined on the model. This replaces
Model.__validators__andModel.__root_validators__from Pydantic V1.
- __pydantic_extra__: dict[str, Any] | None[source]
A dictionary containing extra values, if [
extra][pydantic.config.ConfigDict.extra] is set to'allow'.
- __pydantic_fields__: ClassVar[Dict[str, FieldInfo]] = {'config': FieldInfo(annotation=JetstreamConfig, required=False, default={'domain': '', 'max_memory': 0, 'max_storage': 0, 'store_dir': ''}), 'meta': FieldInfo(annotation=MetaClusterInfo, required=False, default={'cluster_size': 0, 'leader': '', 'name': ''}), 'stats': FieldInfo(annotation=JetstreamStats, required=False, default={'accounts': 0, 'api': {'errors': 0, 'inflight': 0, 'total': 0}, 'ha_assets': 0, 'memory': 0, 'reserved_memory': 0, 'reserved_store': 0, 'store': 0})}[source]
A dictionary of field names and their corresponding [
FieldInfo][pydantic.fields.FieldInfo] objects. This replacesModel.__fields__from Pydantic V1.
- __pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata] = {'args': (), 'origin': None, 'parameters': ()}[source]
Metadata for generic models; contains data used for a similar purpose to __args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
- classmethod __pydantic_init_subclass__(**kwargs)[source]
This is intended to behave just like
__init_subclass__, but is called byModelMetaclassonly after the class is actually fully initialized. In particular, attributes likemodel_fieldswill be present when this is called.This is necessary because
__init_subclass__will always be called bytype.__new__, and it would require a prohibitively large refactor to theModelMetaclassto ensure thattype.__new__was called in such a manner that the class would already be sufficiently initialized.This will receive the same
kwargsthat would be passed to the standard__init_subclass__, namely, any kwargs passed to the class definition that aren’t used internally by pydantic.
- __pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None[source]
Parent namespace of the model, used for automatic rebuilding of models.
- __pydantic_post_init__: ClassVar[None | Literal['model_post_init']] = None[source]
The name of the post-init method for the model, if defined.
- __pydantic_private__: dict[str, Any] | None[source]
Values of private attributes set on the model instance.
- __pydantic_root_model__: ClassVar[bool] = False[source]
Whether the model is a [
RootModel][pydantic.root_model.RootModel].
- __pydantic_serializer__: ClassVar[SchemaSerializer] = SchemaSerializer(serializer=Model( ModelSerializer { class: Py( 0x000055b87158a950, ), serializer: Fields( GeneralFieldsSerializer { fields: { "config": SerField { key_py: Py( 0x00007fc70fb977b0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70bc19840, ), ), serializer: Model( ModelSerializer { class: Py( 0x000055b8715889c0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "max_storage": SerField { key_py: Py( 0x00007fc70bc1bf30, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "domain": SerField { key_py: Py( 0x00007fc70f7eaa90, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710619e30, ), ), serializer: Str( StrSerializer, ), }, ), ), required: true, }, "max_memory": SerField { key_py: Py( 0x00007fc70bc1bef0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "store_dir": SerField { key_py: Py( 0x00007fc70bc1bf70, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710619e30, ), ), serializer: Str( StrSerializer, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 4, }, ), has_extra: false, root_model: false, name: "JetstreamConfig", }, ), }, ), ), required: true, }, "meta": SerField { key_py: Py( 0x00007fc70f730d80, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70bc25500, ), ), serializer: Model( ModelSerializer { class: Py( 0x000055b871582ca0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "cluster_size": SerField { key_py: Py( 0x00007fc70bc1bfb0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "leader": SerField { key_py: Py( 0x00007fc70bd444b0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710619e30, ), ), serializer: Str( StrSerializer, ), }, ), ), required: true, }, "name": SerField { key_py: Py( 0x00007fc710620668, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710619e30, ), ), serializer: Str( StrSerializer, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "MetaClusterInfo", }, ), }, ), ), required: true, }, "stats": SerField { key_py: Py( 0x00007fc70d56af10, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70bc254c0, ), ), serializer: Model( ModelSerializer { class: Py( 0x000055b87157a6f0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "reserved_memory": SerField { key_py: Py( 0x00007fc70bc24170, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "store": SerField { key_py: Py( 0x00007fc70f7e87b0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "ha_assets": SerField { key_py: Py( 0x00007fc70bc240f0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "api": SerField { key_py: Py( 0x00007fc70d59dfe0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc70bc3c100, ), ), serializer: Model( ModelSerializer { class: Py( 0x000055b871577fc0, ), serializer: Fields( GeneralFieldsSerializer { fields: { "errors": SerField { key_py: Py( 0x00007fc71061e780, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "total": SerField { key_py: Py( 0x00007fc70f7666d0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "inflight": SerField { key_py: Py( 0x00007fc70bc240b0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "JetstreamApiStats", }, ), }, ), ), required: true, }, "memory": SerField { key_py: Py( 0x00007fc70bd447e0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "accounts": SerField { key_py: Py( 0x00007fc70bc24070, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, "reserved_store": SerField { key_py: Py( 0x00007fc70bc241f0, ), alias: None, alias_py: None, serializer: Some( WithDefault( WithDefaultSerializer { default: Default( Py( 0x00007fc710614b28, ), ), serializer: Int( IntSerializer, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 7, }, ), has_extra: false, root_model: false, name: "JetstreamStats", }, ), }, ), ), required: true, }, }, computed_fields: Some( ComputedFields( [], ), ), mode: SimpleDict, extra_serializer: None, filter: SchemaFilter { include: None, exclude: None, }, required_fields: 3, }, ), has_extra: false, root_model: false, name: "Jetstream", }, ), definitions=[])[source]
The
pydantic-coreSchemaSerializerused to dump instances of the model.
- __pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator] = SchemaValidator(title="Jetstream", validator=Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "config", lookup_key: Simple { key: "config", py_key: Py( 0x00007fc70c715c50, ), path: LookupPath( [ S( "config", Py( 0x00007fc70c716cd0, ), ), ], ), }, name_py: Py( 0x00007fc70fb977b0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70bc19840, ), ), on_error: Raise, validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "domain", lookup_key: Simple { key: "domain", py_key: Py( 0x00007fc70c716f10, ), path: LookupPath( [ S( "domain", Py( 0x00007fc70c716c10, ), ), ], ), }, name_py: Py( 0x00007fc70f7eaa90, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710619e30, ), ), on_error: Raise, validator: Str( StrValidator { strict: false, coerce_numbers_to_str: false, }, ), validate_default: false, copy_default: false, name: "default[str]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "max_memory", lookup_key: Simple { key: "max_memory", py_key: Py( 0x00007fc70bc266b0, ), path: LookupPath( [ S( "max_memory", Py( 0x00007fc70bc26ef0, ), ), ], ), }, name_py: Py( 0x00007fc70bc1bef0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "max_storage", lookup_key: Simple { key: "max_storage", py_key: Py( 0x00007fc70bc27130, ), path: LookupPath( [ S( "max_storage", Py( 0x00007fc70bc25d30, ), ), ], ), }, name_py: Py( 0x00007fc70bc1bf30, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "store_dir", lookup_key: Simple { key: "store_dir", py_key: Py( 0x00007fc70bc27270, ), path: LookupPath( [ S( "store_dir", Py( 0x00007fc70bc265f0, ), ), ], ), }, name_py: Py( 0x00007fc70bc1bf70, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710619e30, ), ), on_error: Raise, validator: Str( StrValidator { strict: false, coerce_numbers_to_str: false, }, ), validate_default: false, copy_default: false, name: "default[str]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "JetstreamConfig", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b8715889c0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "JetstreamConfig", }, ), validate_default: false, copy_default: true, name: "default[JetstreamConfig]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "meta", lookup_key: Simple { key: "meta", py_key: Py( 0x00007fc70c714690, ), path: LookupPath( [ S( "meta", Py( 0x00007fc70c714750, ), ), ], ), }, name_py: Py( 0x00007fc70f730d80, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70bc25500, ), ), on_error: Raise, validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "cluster_size", lookup_key: Simple { key: "cluster_size", py_key: Py( 0x00007fc70bc263b0, ), path: LookupPath( [ S( "cluster_size", Py( 0x00007fc70bc258f0, ), ), ], ), }, name_py: Py( 0x00007fc70bc1bfb0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "leader", lookup_key: Simple { key: "leader", py_key: Py( 0x00007fc70c716ca0, ), path: LookupPath( [ S( "leader", Py( 0x00007fc70c716be0, ), ), ], ), }, name_py: Py( 0x00007fc70bd444b0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710619e30, ), ), on_error: Raise, validator: Str( StrValidator { strict: false, coerce_numbers_to_str: false, }, ), validate_default: false, copy_default: false, name: "default[str]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "name", lookup_key: Simple { key: "name", py_key: Py( 0x00007fc70c716c40, ), path: LookupPath( [ S( "name", Py( 0x00007fc70c716ee0, ), ), ], ), }, name_py: Py( 0x00007fc710620668, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710619e30, ), ), on_error: Raise, validator: Str( StrValidator { strict: false, coerce_numbers_to_str: false, }, ), validate_default: false, copy_default: false, name: "default[str]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "MetaClusterInfo", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871582ca0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "MetaClusterInfo", }, ), validate_default: false, copy_default: true, name: "default[MetaClusterInfo]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "stats", lookup_key: Simple { key: "stats", py_key: Py( 0x00007fc70c712160, ), path: LookupPath( [ S( "stats", Py( 0x00007fc70c7122e0, ), ), ], ), }, name_py: Py( 0x00007fc70d56af10, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70bc254c0, ), ), on_error: Raise, validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "accounts", lookup_key: Simple { key: "accounts", py_key: Py( 0x00007fc70bc26e30, ), path: LookupPath( [ S( "accounts", Py( 0x00007fc70bc26f70, ), ), ], ), }, name_py: Py( 0x00007fc70bc24070, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "api", lookup_key: Simple { key: "api", py_key: Py( 0x00007fc70c715ec0, ), path: LookupPath( [ S( "api", Py( 0x00007fc70c715d40, ), ), ], ), }, name_py: Py( 0x00007fc70d59dfe0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc70bc3c100, ), ), on_error: Raise, validator: Model( ModelValidator { revalidate: Never, validator: ModelFields( ModelFieldsValidator { fields: [ Field { name: "errors", lookup_key: Simple { key: "errors", py_key: Py( 0x00007fc70c715e30, ), path: LookupPath( [ S( "errors", Py( 0x00007fc70c715d70, ), ), ], ), }, name_py: Py( 0x00007fc71061e780, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "inflight", lookup_key: Simple { key: "inflight", py_key: Py( 0x00007fc70bc26ff0, ), path: LookupPath( [ S( "inflight", Py( 0x00007fc70bc26d70, ), ), ], ), }, name_py: Py( 0x00007fc70bc240b0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "total", lookup_key: Simple { key: "total", py_key: Py( 0x00007fc70c715e00, ), path: LookupPath( [ S( "total", Py( 0x00007fc70c715e60, ), ), ], ), }, name_py: Py( 0x00007fc70f7666d0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "JetstreamApiStats", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b871577fc0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "JetstreamApiStats", }, ), validate_default: false, copy_default: true, name: "default[JetstreamApiStats]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "ha_assets", lookup_key: Simple { key: "ha_assets", py_key: Py( 0x00007fc70bc26eb0, ), path: LookupPath( [ S( "ha_assets", Py( 0x00007fc70bc26f30, ), ), ], ), }, name_py: Py( 0x00007fc70bc240f0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "memory", lookup_key: Simple { key: "memory", py_key: Py( 0x00007fc70c715ef0, ), path: LookupPath( [ S( "memory", Py( 0x00007fc70c715e90, ), ), ], ), }, name_py: Py( 0x00007fc70bd447e0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "reserved_memory", lookup_key: Simple { key: "reserved_memory", py_key: Py( 0x00007fc70bc26c70, ), path: LookupPath( [ S( "reserved_memory", Py( 0x00007fc70bc26df0, ), ), ], ), }, name_py: Py( 0x00007fc70bc24170, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "reserved_store", lookup_key: Simple { key: "reserved_store", py_key: Py( 0x00007fc70bc26e70, ), path: LookupPath( [ S( "reserved_store", Py( 0x00007fc70bc26830, ), ), ], ), }, name_py: Py( 0x00007fc70bc241f0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, Field { name: "store", lookup_key: Simple { key: "store", py_key: Py( 0x00007fc70c7d7060, ), path: LookupPath( [ S( "store", Py( 0x00007fc70c7120d0, ), ), ], ), }, name_py: Py( 0x00007fc70f7e87b0, ), validator: WithDefault( WithDefaultValidator { default: Default( Py( 0x00007fc710614b28, ), ), on_error: Raise, validator: Int( IntValidator { strict: false, }, ), validate_default: false, copy_default: false, name: "default[int]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "JetstreamStats", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b87157a6f0, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "JetstreamStats", }, ), validate_default: false, copy_default: true, name: "default[JetstreamStats]", undefined: Py( 0x00007fc70e4ea3d0, ), }, ), frozen: false, }, ], model_name: "Jetstream", extra_behavior: Ignore, extras_validator: None, strict: false, from_attributes: false, loc_by_alias: true, }, ), class: Py( 0x000055b87158a950, ), generic_origin: None, post_init: None, frozen: false, custom_init: false, root_model: false, undefined: Py( 0x00007fc70e4ea3d0, ), name: "Jetstream", }, ), definitions=[], cache_strings=True)[source]
The
pydantic-coreSchemaValidatorused to validate instances of the model.
- __repr_recursion__(object)[source]
Returns the string representation of a recursive object.
- Return type:
- __rich_repr__()[source]
Used by Rich (https://rich.readthedocs.io/en/stable/pretty.html) to pretty print objects.
- __signature__: ClassVar[Signature] = <Signature (*, config: kittycad.models.jetstream_config.JetstreamConfig = {'domain': '', 'max_memory': 0, 'max_storage': 0, 'store_dir': ''}, meta: kittycad.models.meta_cluster_info.MetaClusterInfo = {'cluster_size': 0, 'leader': '', 'name': ''}, stats: kittycad.models.jetstream_stats.JetstreamStats = {'accounts': 0, 'api': {'errors': 0, 'inflight': 0, 'total': 0}, 'ha_assets': 0, 'memory': 0, 'reserved_memory': 0, 'reserved_store': 0, 'store': 0}) -> None>[source]
The synthesized
__init__[Signature][inspect.Signature] of the model.
- __slots__ = ('__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__')[source]
-
config:
JetstreamConfig[source]
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use
model_copyinstead.
If you need
includeorexclude, use:`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include – Optional set or mapping specifying which fields to include in the copied model.
exclude – Optional set or mapping specifying which fields to exclude in the copied model.
update – Optional dictionary of field-value pairs to override field values in the copied model.
deep – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Return type:
-
meta:
MetaClusterInfo[source]
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}[source]
Configuration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the
Modelclass with validated data.Creates a new model setting
__dict__and__pydantic_fields_set__from trusted or pre-validated data. Default values are respected, but no other validation is performed.- !!! note
model_construct()generally respects themodel_config.extrasetting on the provided model. That is, ifmodel_config.extra == 'allow', then all extra passed values are added to the model instance’s__dict__and__pydantic_extra__fields. Ifmodel_config.extra == 'ignore'(the default), then all extra passed values are ignored. Because no validation is performed with a call tomodel_construct(), havingmodel_config.extra == 'forbid'does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (
set[str] |None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from thevaluesargument will be used.values (
Any) – Trusted or pre-validated data dictionary.
- Return type:
Self- Returns:
A new instance of the
Modelclass with validated data.
- model_copy(*, update=None, deep=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#model_copy
Returns a copy of the model.
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (
Union[Literal['json','python'],str]) – The mode in whichto_pythonshould run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to include in the output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – A set of fields to exclude from the output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to use the field’s alias in the dictionary key if defined.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, serialize_as_any=False)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic’s
to_jsonmethod.- Parameters:
indent (
int|None) – Indentation to use in the JSON output. If None is passed, the output will be compact.include (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to include in the JSON output.exclude (
Union[Set[int],Set[str],Mapping[int,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],Mapping[str,Union[Set[int],Set[str],Mapping[int,Union[IncEx,bool]],Mapping[str,Union[IncEx,bool]],bool]],None]) – Field(s) to exclude from the JSON output.context (
Any|None) – Additional context to pass to the serializer.by_alias (
bool) – Whether to serialize using field aliases.exclude_unset (
bool) – Whether to exclude fields that have not been explicitly set.exclude_defaults (
bool) – Whether to exclude fields that are set to their default value.exclude_none (
bool) – Whether to exclude fields that have a value ofNone.round_trip (
bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].warnings (
Union[bool,Literal['none','warn','error']]) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].serialize_as_any (
bool) – Whether to serialize fields with duck-typing serialization behavior.
- Return type:
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | None[source]
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or
Noneifconfig.extrais not set to"allow".
- model_fields: ClassVar[dict[str, FieldInfo]] = {'config': FieldInfo(annotation=JetstreamConfig, required=False, default={'domain': '', 'max_memory': 0, 'max_storage': 0, 'store_dir': ''}), 'meta': FieldInfo(annotation=MetaClusterInfo, required=False, default={'cluster_size': 0, 'leader': '', 'name': ''}), 'stats': FieldInfo(annotation=JetstreamStats, required=False, default={'accounts': 0, 'api': {'errors': 0, 'inflight': 0, 'total': 0}, 'ha_assets': 0, 'memory': 0, 'reserved_memory': 0, 'reserved_store': 0, 'store': 0})}[source]
- property model_fields_set: set[str][source]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template='#/$defs/{model}', schema_generator=<class 'pydantic.json_schema.GenerateJsonSchema'>, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (
bool) – Whether to use attribute aliases or not.ref_template (
str) – The reference template.schema_generator (
type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass ofGenerateJsonSchemawith your desired modificationsmode (
Literal['validation','serialization']) – The mode in which to generate the schema.
- Return type:
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (
tuple[type[Any],...]) – Tuple of types of the class. Given a generic classModelwith 2 type variables and a concrete modelModel[str, int], the value(str, int)would be passed toparams.- Return type:
- Returns:
String representing the new class where
paramsare passed toclsas type variables.- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context)[source]
Override this method to perform additional initialization after
__init__andmodel_construct. This is useful if you want to do some validation that requires the entire model to be initialized.- Return type:
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (
bool) – Whether to force the rebuilding of the model schema, defaults toFalse.raise_errors (
bool) – Whether to raise errors, defaults toTrue._parent_namespace_depth (
int) – The depth level of the parent namespace, defaults to 2._types_namespace (
Optional[Mapping[str,Any]]) – The types namespace, defaults toNone.
- Return type:
- Returns:
Returns
Noneif the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returnsTrueif rebuilding was successful, otherwiseFalse.
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None)[source]
Validate a pydantic model instance.
- Parameters:
- Raises:
ValidationError – If the object could not be validated.
- Return type:
Self- Returns:
The validated model instance.
- classmethod model_validate_json(json_data, *, strict=None, context=None)[source]
Usage docs: https://docs.pydantic.dev/2.10/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
- Return type:
Self- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If
json_datais not a JSON string or the object could not be validated.
- classmethod model_validate_strings(obj, *, strict=None, context=None)[source]
Validate the given object with string data against the Pydantic model.
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- Return type:
Self
- classmethod schema_json(*, by_alias=True, ref_template='#/$defs/{model}', **dumps_kwargs)[source]
- Return type:
-
stats:
JetstreamStats[source]