YOU FOOLS I WON THE CONTEST (#6328)

* dodec

* fmt

* comment

* Update kcl-samples simulation test output

* Update kcl-samples simulation test output

* Fix so that just commands regenerate ast output

* overwrite

* Update just command to include manifest

* Update generated output

* merge main post

---------

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: Jonathan Tran <jonnytran@gmail.com>
This commit is contained in:
Kurt Hutten
2025-04-24 16:08:45 +10:00
committed by GitHub
parent 510d74f2c7
commit 2956f9ed55
9 changed files with 9677 additions and 4694 deletions

View File

@ -1,88 +1,79 @@
// Hollow Dodecahedron
// A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the individual faces of the dodecahedron and extruding inwards.
// Dodecahedron
// A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the a dodecahedron with a series of intersects.
// Set units
@settings(defaultLengthUnit = in)
// Input parameters
// circumscribed radius
circR = 25
// Define the dihedral angle for a regular dodecahedron
dihedral = 116.565
// Calculated parameters
// Thickness of the dodecahedron
wallThickness = circR * 0.2
// Angle between faces in radians
dihedral = acos(-(sqrt(5) / 5))
// Inscribed radius
inscR = circR / 15 * sqrt(75 + 30 * sqrt(5))
// Pentagon edge length
edgeL = 4 * circR / (sqrt(3) * (1 + sqrt(5)))
// Pentagon radius
pentR = edgeL / 2 / sin(toRadians(36))
// Define a plane for the bottom angled face
plane = {
origin = [
-inscR * cos(toRadians(toDegrees(dihedral) - 90)),
0,
inscR - (inscR * sin(toRadians(toDegrees(dihedral) - 90)))
],
xAxis = [cos(dihedral), 0.0, sin(dihedral)],
yAxis = [0, 1, 0],
zAxis = [sin(dihedral), 0, -cos(dihedral)]
// Create a face template function that makes a large thin cube
fn createFaceTemplate(dither) {
baseSketch = startSketchOn(XY)
|> startProfileAt([-1000 - dither, -1000 - dither], %)
|> line(endAbsolute = [1000 + dither, -1000 - dither])
|> line(endAbsolute = [1000 + dither, 1000 + dither])
|> line(endAbsolute = [-1000 - dither, 1000 + dither])
|> close()
extruded = extrude(baseSketch, length = 1000 + dither + 1000)
return extruded
|> translate(x = 0, y = 0, z = -260 - dither)
}
// Create a regular pentagon inscribed in a circle of radius pentR
bottomFace = startSketchOn(XY)
|> polygon(
radius = pentR,
numSides = 5,
center = [0, 0],
inscribed = true,
)
// Define the rotations array with [pitch, roll, yaw, dither] for each face
faceRotations = [
[0, 0, 0, 0],
// face1 - reference face
[dihedral, 0, 0, 0.1],
// face2
[dihedral, 0, 72, 0.2],
// face3
[dihedral, 0, 144, 0.3],
// face4
[dihedral, 0, 216, 0.4],
// face5
[dihedral, 0, 288, 0.5],
// face6
[180, 0, 0, 0.6],
// face7
[180 - dihedral, 0, 36, 0.7],
// face8
[180 - dihedral, 0, 108, 0.8],
// face9
[180 - dihedral, 0, 180, 0.9],
// face10
[180 - dihedral, 0, 252, 0.11],
// face11
[180 - dihedral, 0, 324, 0.12],
// face12
]
bottomSideFace = startSketchOn(plane)
|> polygon(
radius = pentR,
numSides = 5,
center = [0, 0],
inscribed = true,
)
// Create faces by mapping over the rotations array
dodecFaces = map(faceRotations, fn(rotation) {
return createFaceTemplate(rotation[3])
|> rotate(
pitch = rotation[0],
roll = rotation[1],
yaw = rotation[2],
global = true,
)
})
// Extrude the faces in each plane
bottom = extrude(bottomFace, length = wallThickness)
bottomSide = extrude(bottomSideFace, length = wallThickness)
fn calculateArrayLength(arr) {
return reduce(arr, 0, fn(item, accumulator) {
return accumulator + 1
})
}
// Pattern the sides so we have a full dodecahedron
bottomBowl = patternCircular3d(
bottomSide,
instances = 5,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
fn createIntersection(solids) {
fn reduceIntersect(previous, current) {
return intersect([previous, current])
}
lastIndex = calculateArrayLength(solids) - 1
lastSolid = solids[lastIndex]
remainingSolids = pop(solids)
return reduce(remainingSolids, lastSolid, reduceIntersect)
}
// Pattern the bottom to create the top face
patternCircular3d(
bottom,
instances = 2,
axis = [0, 1, 0],
center = [0, 0, inscR],
arcDegrees = 360,
rotateDuplicates = true,
)
// Pattern the bottom angled faces to create the top
patternCircular3d(
bottomBowl,
instances = 2,
axis = [0, 1, 0],
center = [0, 0, inscR],
arcDegrees = 360,
rotateDuplicates = true,
)
// Apply intersection to all faces
createIntersection(dodecFaces)

View File

@ -66,8 +66,8 @@
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "dodecahedron/main.kcl",
"multipleFiles": false,
"title": "Hollow Dodecahedron",
"description": "A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the individual faces of the dodecahedron and extruding inwards."
"title": "Dodecahedron",
"description": "A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the a dodecahedron with a series of intersects."
},
{
"file": "main.kcl",

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 68 KiB

View File

@ -1,143 +1,690 @@
```mermaid
flowchart LR
subgraph path2 [Path]
2["Path<br>[1130, 1238, 0]"]
3["Segment<br>[1130, 1238, 0]"]
4["Segment<br>[1130, 1238, 0]"]
5["Segment<br>[1130, 1238, 0]"]
6["Segment<br>[1130, 1238, 0]"]
7["Segment<br>[1130, 1238, 0]"]
8["Segment<br>[1130, 1238, 0]"]
9[Solid2d]
2["Path<br>[496, 547, 0]"]
3["Segment<br>[555, 606, 0]"]
4["Segment<br>[614, 664, 0]"]
5["Segment<br>[672, 723, 0]"]
6["Segment<br>[731, 738, 0]"]
7[Solid2d]
end
subgraph path11 [Path]
11["Path<br>[1283, 1391, 0]"]
12["Segment<br>[1283, 1391, 0]"]
13["Segment<br>[1283, 1391, 0]"]
14["Segment<br>[1283, 1391, 0]"]
15["Segment<br>[1283, 1391, 0]"]
16["Segment<br>[1283, 1391, 0]"]
17["Segment<br>[1283, 1391, 0]"]
18[Solid2d]
subgraph path24 [Path]
24["Path<br>[496, 547, 0]"]
25["Segment<br>[555, 606, 0]"]
26["Segment<br>[614, 664, 0]"]
27["Segment<br>[672, 723, 0]"]
28["Segment<br>[731, 738, 0]"]
29[Solid2d]
end
1["Plane<br>[1107, 1124, 0]"]
10["Plane<br>[1257, 1277, 0]"]
19["Sweep Extrusion<br>[1437, 1480, 0]"]
20[Wall]
21[Wall]
22[Wall]
23[Wall]
24[Wall]
25["Cap Start"]
26["Cap End"]
27["SweepEdge Opposite"]
28["SweepEdge Adjacent"]
29["SweepEdge Opposite"]
30["SweepEdge Adjacent"]
31["SweepEdge Opposite"]
32["SweepEdge Adjacent"]
33["SweepEdge Opposite"]
34["SweepEdge Adjacent"]
35["SweepEdge Opposite"]
36["SweepEdge Adjacent"]
37["Sweep Extrusion<br>[1494, 1541, 0]"]
38[Wall]
39[Wall]
40[Wall]
41[Wall]
42[Wall]
43["Cap Start"]
44["Cap End"]
45["SweepEdge Opposite"]
46["SweepEdge Adjacent"]
47["SweepEdge Opposite"]
48["SweepEdge Adjacent"]
49["SweepEdge Opposite"]
50["SweepEdge Adjacent"]
51["SweepEdge Opposite"]
52["SweepEdge Adjacent"]
53["SweepEdge Opposite"]
54["SweepEdge Adjacent"]
subgraph path46 [Path]
46["Path<br>[496, 547, 0]"]
47["Segment<br>[555, 606, 0]"]
48["Segment<br>[614, 664, 0]"]
49["Segment<br>[672, 723, 0]"]
50["Segment<br>[731, 738, 0]"]
51[Solid2d]
end
subgraph path68 [Path]
68["Path<br>[496, 547, 0]"]
69["Segment<br>[555, 606, 0]"]
70["Segment<br>[614, 664, 0]"]
71["Segment<br>[672, 723, 0]"]
72["Segment<br>[731, 738, 0]"]
73[Solid2d]
end
subgraph path90 [Path]
90["Path<br>[496, 547, 0]"]
91["Segment<br>[555, 606, 0]"]
92["Segment<br>[614, 664, 0]"]
93["Segment<br>[672, 723, 0]"]
94["Segment<br>[731, 738, 0]"]
95[Solid2d]
end
subgraph path112 [Path]
112["Path<br>[496, 547, 0]"]
113["Segment<br>[555, 606, 0]"]
114["Segment<br>[614, 664, 0]"]
115["Segment<br>[672, 723, 0]"]
116["Segment<br>[731, 738, 0]"]
117[Solid2d]
end
subgraph path134 [Path]
134["Path<br>[496, 547, 0]"]
135["Segment<br>[555, 606, 0]"]
136["Segment<br>[614, 664, 0]"]
137["Segment<br>[672, 723, 0]"]
138["Segment<br>[731, 738, 0]"]
139[Solid2d]
end
subgraph path156 [Path]
156["Path<br>[496, 547, 0]"]
157["Segment<br>[555, 606, 0]"]
158["Segment<br>[614, 664, 0]"]
159["Segment<br>[672, 723, 0]"]
160["Segment<br>[731, 738, 0]"]
161[Solid2d]
end
subgraph path178 [Path]
178["Path<br>[496, 547, 0]"]
179["Segment<br>[555, 606, 0]"]
180["Segment<br>[614, 664, 0]"]
181["Segment<br>[672, 723, 0]"]
182["Segment<br>[731, 738, 0]"]
183[Solid2d]
end
subgraph path200 [Path]
200["Path<br>[496, 547, 0]"]
201["Segment<br>[555, 606, 0]"]
202["Segment<br>[614, 664, 0]"]
203["Segment<br>[672, 723, 0]"]
204["Segment<br>[731, 738, 0]"]
205[Solid2d]
end
subgraph path222 [Path]
222["Path<br>[496, 547, 0]"]
223["Segment<br>[555, 606, 0]"]
224["Segment<br>[614, 664, 0]"]
225["Segment<br>[672, 723, 0]"]
226["Segment<br>[731, 738, 0]"]
227[Solid2d]
end
subgraph path244 [Path]
244["Path<br>[496, 547, 0]"]
245["Segment<br>[555, 606, 0]"]
246["Segment<br>[614, 664, 0]"]
247["Segment<br>[672, 723, 0]"]
248["Segment<br>[731, 738, 0]"]
249[Solid2d]
end
1["Plane<br>[471, 488, 0]"]
8["Sweep Extrusion<br>[752, 802, 0]"]
9[Wall]
10[Wall]
11[Wall]
12[Wall]
13["Cap Start"]
14["Cap End"]
15["SweepEdge Opposite"]
16["SweepEdge Adjacent"]
17["SweepEdge Opposite"]
18["SweepEdge Adjacent"]
19["SweepEdge Opposite"]
20["SweepEdge Adjacent"]
21["SweepEdge Opposite"]
22["SweepEdge Adjacent"]
23["Plane<br>[471, 488, 0]"]
30["Sweep Extrusion<br>[752, 802, 0]"]
31[Wall]
32[Wall]
33[Wall]
34[Wall]
35["Cap Start"]
36["Cap End"]
37["SweepEdge Opposite"]
38["SweepEdge Adjacent"]
39["SweepEdge Opposite"]
40["SweepEdge Adjacent"]
41["SweepEdge Opposite"]
42["SweepEdge Adjacent"]
43["SweepEdge Opposite"]
44["SweepEdge Adjacent"]
45["Plane<br>[471, 488, 0]"]
52["Sweep Extrusion<br>[752, 802, 0]"]
53[Wall]
54[Wall]
55[Wall]
56[Wall]
57["Cap Start"]
58["Cap End"]
59["SweepEdge Opposite"]
60["SweepEdge Adjacent"]
61["SweepEdge Opposite"]
62["SweepEdge Adjacent"]
63["SweepEdge Opposite"]
64["SweepEdge Adjacent"]
65["SweepEdge Opposite"]
66["SweepEdge Adjacent"]
67["Plane<br>[471, 488, 0]"]
74["Sweep Extrusion<br>[752, 802, 0]"]
75[Wall]
76[Wall]
77[Wall]
78[Wall]
79["Cap Start"]
80["Cap End"]
81["SweepEdge Opposite"]
82["SweepEdge Adjacent"]
83["SweepEdge Opposite"]
84["SweepEdge Adjacent"]
85["SweepEdge Opposite"]
86["SweepEdge Adjacent"]
87["SweepEdge Opposite"]
88["SweepEdge Adjacent"]
89["Plane<br>[471, 488, 0]"]
96["Sweep Extrusion<br>[752, 802, 0]"]
97[Wall]
98[Wall]
99[Wall]
100[Wall]
101["Cap Start"]
102["Cap End"]
103["SweepEdge Opposite"]
104["SweepEdge Adjacent"]
105["SweepEdge Opposite"]
106["SweepEdge Adjacent"]
107["SweepEdge Opposite"]
108["SweepEdge Adjacent"]
109["SweepEdge Opposite"]
110["SweepEdge Adjacent"]
111["Plane<br>[471, 488, 0]"]
118["Sweep Extrusion<br>[752, 802, 0]"]
119[Wall]
120[Wall]
121[Wall]
122[Wall]
123["Cap Start"]
124["Cap End"]
125["SweepEdge Opposite"]
126["SweepEdge Adjacent"]
127["SweepEdge Opposite"]
128["SweepEdge Adjacent"]
129["SweepEdge Opposite"]
130["SweepEdge Adjacent"]
131["SweepEdge Opposite"]
132["SweepEdge Adjacent"]
133["Plane<br>[471, 488, 0]"]
140["Sweep Extrusion<br>[752, 802, 0]"]
141[Wall]
142[Wall]
143[Wall]
144[Wall]
145["Cap Start"]
146["Cap End"]
147["SweepEdge Opposite"]
148["SweepEdge Adjacent"]
149["SweepEdge Opposite"]
150["SweepEdge Adjacent"]
151["SweepEdge Opposite"]
152["SweepEdge Adjacent"]
153["SweepEdge Opposite"]
154["SweepEdge Adjacent"]
155["Plane<br>[471, 488, 0]"]
162["Sweep Extrusion<br>[752, 802, 0]"]
163[Wall]
164[Wall]
165[Wall]
166[Wall]
167["Cap Start"]
168["Cap End"]
169["SweepEdge Opposite"]
170["SweepEdge Adjacent"]
171["SweepEdge Opposite"]
172["SweepEdge Adjacent"]
173["SweepEdge Opposite"]
174["SweepEdge Adjacent"]
175["SweepEdge Opposite"]
176["SweepEdge Adjacent"]
177["Plane<br>[471, 488, 0]"]
184["Sweep Extrusion<br>[752, 802, 0]"]
185[Wall]
186[Wall]
187[Wall]
188[Wall]
189["Cap Start"]
190["Cap End"]
191["SweepEdge Opposite"]
192["SweepEdge Adjacent"]
193["SweepEdge Opposite"]
194["SweepEdge Adjacent"]
195["SweepEdge Opposite"]
196["SweepEdge Adjacent"]
197["SweepEdge Opposite"]
198["SweepEdge Adjacent"]
199["Plane<br>[471, 488, 0]"]
206["Sweep Extrusion<br>[752, 802, 0]"]
207[Wall]
208[Wall]
209[Wall]
210[Wall]
211["Cap Start"]
212["Cap End"]
213["SweepEdge Opposite"]
214["SweepEdge Adjacent"]
215["SweepEdge Opposite"]
216["SweepEdge Adjacent"]
217["SweepEdge Opposite"]
218["SweepEdge Adjacent"]
219["SweepEdge Opposite"]
220["SweepEdge Adjacent"]
221["Plane<br>[471, 488, 0]"]
228["Sweep Extrusion<br>[752, 802, 0]"]
229[Wall]
230[Wall]
231[Wall]
232[Wall]
233["Cap Start"]
234["Cap End"]
235["SweepEdge Opposite"]
236["SweepEdge Adjacent"]
237["SweepEdge Opposite"]
238["SweepEdge Adjacent"]
239["SweepEdge Opposite"]
240["SweepEdge Adjacent"]
241["SweepEdge Opposite"]
242["SweepEdge Adjacent"]
243["Plane<br>[471, 488, 0]"]
250["Sweep Extrusion<br>[752, 802, 0]"]
251[Wall]
252[Wall]
253[Wall]
254[Wall]
255["Cap Start"]
256["Cap End"]
257["SweepEdge Opposite"]
258["SweepEdge Adjacent"]
259["SweepEdge Opposite"]
260["SweepEdge Adjacent"]
261["SweepEdge Opposite"]
262["SweepEdge Adjacent"]
263["SweepEdge Opposite"]
264["SweepEdge Adjacent"]
265["CompositeSolid Intersect<br>[1935, 1965, 0]"]
1 --- 2
2 --- 3
2 --- 4
2 --- 5
2 --- 6
2 ---- 8
2 --- 7
2 --- 8
2 ---- 19
2 --- 9
3 --- 20
3 --- 27
3 --- 28
4 --- 21
4 --- 29
4 --- 30
5 --- 22
5 --- 31
5 --- 32
6 --- 23
6 --- 33
6 --- 34
7 --- 24
7 --- 35
7 --- 36
10 --- 11
11 --- 12
11 --- 13
11 --- 14
11 --- 15
11 --- 16
11 --- 17
11 ---- 37
11 --- 18
12 --- 42
12 --- 53
12 --- 54
13 --- 41
13 --- 51
13 --- 52
14 --- 40
14 --- 49
14 --- 50
15 --- 39
15 --- 47
15 --- 48
16 --- 38
16 --- 45
16 --- 46
19 --- 20
19 --- 21
19 --- 22
19 --- 23
19 --- 24
19 --- 25
19 --- 26
19 --- 27
19 --- 28
19 --- 29
19 --- 30
19 --- 31
19 --- 32
19 --- 33
19 --- 34
19 --- 35
19 --- 36
37 --- 38
37 --- 39
37 --- 40
37 --- 41
37 --- 42
37 --- 43
37 --- 44
37 --- 45
37 --- 46
37 --- 47
37 --- 48
37 --- 49
37 --- 50
37 --- 51
37 --- 52
37 --- 53
37 --- 54
3 --- 9
3 --- 15
3 --- 16
4 --- 10
4 --- 17
4 --- 18
5 --- 11
5 --- 19
5 --- 20
6 --- 12
6 --- 21
6 --- 22
8 --- 9
8 --- 10
8 --- 11
8 --- 12
8 --- 13
8 --- 14
8 --- 15
8 --- 16
8 --- 17
8 --- 18
8 --- 19
8 --- 20
8 --- 21
8 --- 22
23 --- 24
24 --- 25
24 --- 26
24 --- 27
24 --- 28
24 ---- 30
24 --- 29
25 --- 31
25 --- 37
25 --- 38
26 --- 32
26 --- 39
26 --- 40
27 --- 33
27 --- 41
27 --- 42
28 --- 34
28 --- 43
28 --- 44
30 --- 31
30 --- 32
30 --- 33
30 --- 34
30 --- 35
30 --- 36
30 --- 37
30 --- 38
30 --- 39
30 --- 40
30 --- 41
30 --- 42
30 --- 43
30 --- 44
45 --- 46
46 --- 47
46 --- 48
46 --- 49
46 --- 50
46 ---- 52
46 --- 51
47 --- 53
47 --- 59
47 --- 60
48 --- 54
48 --- 61
48 --- 62
49 --- 55
49 --- 63
49 --- 64
50 --- 56
50 --- 65
50 --- 66
52 --- 53
52 --- 54
52 --- 55
52 --- 56
52 --- 57
52 --- 58
52 --- 59
52 --- 60
52 --- 61
52 --- 62
52 --- 63
52 --- 64
52 --- 65
52 --- 66
67 --- 68
68 --- 69
68 --- 70
68 --- 71
68 --- 72
68 ---- 74
68 --- 73
69 --- 75
69 --- 81
69 --- 82
70 --- 76
70 --- 83
70 --- 84
71 --- 77
71 --- 85
71 --- 86
72 --- 78
72 --- 87
72 --- 88
74 --- 75
74 --- 76
74 --- 77
74 --- 78
74 --- 79
74 --- 80
74 --- 81
74 --- 82
74 --- 83
74 --- 84
74 --- 85
74 --- 86
74 --- 87
74 --- 88
89 --- 90
90 --- 91
90 --- 92
90 --- 93
90 --- 94
90 ---- 96
90 --- 95
91 --- 97
91 --- 103
91 --- 104
92 --- 98
92 --- 105
92 --- 106
93 --- 99
93 --- 107
93 --- 108
94 --- 100
94 --- 109
94 --- 110
96 --- 97
96 --- 98
96 --- 99
96 --- 100
96 --- 101
96 --- 102
96 --- 103
96 --- 104
96 --- 105
96 --- 106
96 --- 107
96 --- 108
96 --- 109
96 --- 110
111 --- 112
112 --- 113
112 --- 114
112 --- 115
112 --- 116
112 ---- 118
112 --- 117
113 --- 119
113 --- 125
113 --- 126
114 --- 120
114 --- 127
114 --- 128
115 --- 121
115 --- 129
115 --- 130
116 --- 122
116 --- 131
116 --- 132
118 --- 119
118 --- 120
118 --- 121
118 --- 122
118 --- 123
118 --- 124
118 --- 125
118 --- 126
118 --- 127
118 --- 128
118 --- 129
118 --- 130
118 --- 131
118 --- 132
133 --- 134
134 --- 135
134 --- 136
134 --- 137
134 --- 138
134 ---- 140
134 --- 139
135 --- 141
135 --- 147
135 --- 148
136 --- 142
136 --- 149
136 --- 150
137 --- 143
137 --- 151
137 --- 152
138 --- 144
138 --- 153
138 --- 154
140 --- 141
140 --- 142
140 --- 143
140 --- 144
140 --- 145
140 --- 146
140 --- 147
140 --- 148
140 --- 149
140 --- 150
140 --- 151
140 --- 152
140 --- 153
140 --- 154
155 --- 156
156 --- 157
156 --- 158
156 --- 159
156 --- 160
156 ---- 162
156 --- 161
157 --- 163
157 --- 169
157 --- 170
158 --- 164
158 --- 171
158 --- 172
159 --- 165
159 --- 173
159 --- 174
160 --- 166
160 --- 175
160 --- 176
162 --- 163
162 --- 164
162 --- 165
162 --- 166
162 --- 167
162 --- 168
162 --- 169
162 --- 170
162 --- 171
162 --- 172
162 --- 173
162 --- 174
162 --- 175
162 --- 176
177 --- 178
178 --- 179
178 --- 180
178 --- 181
178 --- 182
178 ---- 184
178 --- 183
179 --- 185
179 --- 191
179 --- 192
180 --- 186
180 --- 193
180 --- 194
181 --- 187
181 --- 195
181 --- 196
182 --- 188
182 --- 197
182 --- 198
184 --- 185
184 --- 186
184 --- 187
184 --- 188
184 --- 189
184 --- 190
184 --- 191
184 --- 192
184 --- 193
184 --- 194
184 --- 195
184 --- 196
184 --- 197
184 --- 198
199 --- 200
200 --- 201
200 --- 202
200 --- 203
200 --- 204
200 ---- 206
200 --- 205
201 --- 207
201 --- 213
201 --- 214
202 --- 208
202 --- 215
202 --- 216
203 --- 209
203 --- 217
203 --- 218
204 --- 210
204 --- 219
204 --- 220
206 --- 207
206 --- 208
206 --- 209
206 --- 210
206 --- 211
206 --- 212
206 --- 213
206 --- 214
206 --- 215
206 --- 216
206 --- 217
206 --- 218
206 --- 219
206 --- 220
221 --- 222
222 --- 223
222 --- 224
222 --- 225
222 --- 226
222 ---- 228
222 --- 227
223 --- 229
223 --- 235
223 --- 236
224 --- 230
224 --- 237
224 --- 238
225 --- 231
225 --- 239
225 --- 240
226 --- 232
226 --- 241
226 --- 242
228 --- 229
228 --- 230
228 --- 231
228 --- 232
228 --- 233
228 --- 234
228 --- 235
228 --- 236
228 --- 237
228 --- 238
228 --- 239
228 --- 240
228 --- 241
228 --- 242
243 --- 244
244 --- 245
244 --- 246
244 --- 247
244 --- 248
244 ---- 250
244 --- 249
245 --- 251
245 --- 257
245 --- 258
246 --- 252
246 --- 259
246 --- 260
247 --- 253
247 --- 261
247 --- 262
248 --- 254
248 --- 263
248 --- 264
250 --- 251
250 --- 252
250 --- 253
250 --- 254
250 --- 255
250 --- 256
250 --- 257
250 --- 258
250 --- 259
250 --- 260
250 --- 261
250 --- 262
250 --- 263
250 --- 264
2 <--x 265
244 <--x 265
```

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 68 KiB