YOU FOOLS I WON THE CONTEST (#6328)
* dodec * fmt * comment * Update kcl-samples simulation test output * Update kcl-samples simulation test output * Fix so that just commands regenerate ast output * overwrite * Update just command to include manifest * Update generated output * merge main post --------- Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Jonathan Tran <jonnytran@gmail.com>
This commit is contained in:
@ -1,88 +1,79 @@
|
||||
// Hollow Dodecahedron
|
||||
// A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the individual faces of the dodecahedron and extruding inwards.
|
||||
// Dodecahedron
|
||||
// A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the a dodecahedron with a series of intersects.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Input parameters
|
||||
// circumscribed radius
|
||||
circR = 25
|
||||
// Define the dihedral angle for a regular dodecahedron
|
||||
dihedral = 116.565
|
||||
|
||||
// Calculated parameters
|
||||
// Thickness of the dodecahedron
|
||||
wallThickness = circR * 0.2
|
||||
|
||||
// Angle between faces in radians
|
||||
dihedral = acos(-(sqrt(5) / 5))
|
||||
|
||||
// Inscribed radius
|
||||
inscR = circR / 15 * sqrt(75 + 30 * sqrt(5))
|
||||
|
||||
// Pentagon edge length
|
||||
edgeL = 4 * circR / (sqrt(3) * (1 + sqrt(5)))
|
||||
|
||||
// Pentagon radius
|
||||
pentR = edgeL / 2 / sin(toRadians(36))
|
||||
|
||||
// Define a plane for the bottom angled face
|
||||
plane = {
|
||||
origin = [
|
||||
-inscR * cos(toRadians(toDegrees(dihedral) - 90)),
|
||||
0,
|
||||
inscR - (inscR * sin(toRadians(toDegrees(dihedral) - 90)))
|
||||
],
|
||||
xAxis = [cos(dihedral), 0.0, sin(dihedral)],
|
||||
yAxis = [0, 1, 0],
|
||||
zAxis = [sin(dihedral), 0, -cos(dihedral)]
|
||||
// Create a face template function that makes a large thin cube
|
||||
fn createFaceTemplate(dither) {
|
||||
baseSketch = startSketchOn(XY)
|
||||
|> startProfileAt([-1000 - dither, -1000 - dither], %)
|
||||
|> line(endAbsolute = [1000 + dither, -1000 - dither])
|
||||
|> line(endAbsolute = [1000 + dither, 1000 + dither])
|
||||
|> line(endAbsolute = [-1000 - dither, 1000 + dither])
|
||||
|> close()
|
||||
extruded = extrude(baseSketch, length = 1000 + dither + 1000)
|
||||
return extruded
|
||||
|> translate(x = 0, y = 0, z = -260 - dither)
|
||||
}
|
||||
|
||||
// Create a regular pentagon inscribed in a circle of radius pentR
|
||||
bottomFace = startSketchOn(XY)
|
||||
|> polygon(
|
||||
radius = pentR,
|
||||
numSides = 5,
|
||||
center = [0, 0],
|
||||
inscribed = true,
|
||||
)
|
||||
// Define the rotations array with [pitch, roll, yaw, dither] for each face
|
||||
faceRotations = [
|
||||
[0, 0, 0, 0],
|
||||
// face1 - reference face
|
||||
[dihedral, 0, 0, 0.1],
|
||||
// face2
|
||||
[dihedral, 0, 72, 0.2],
|
||||
// face3
|
||||
[dihedral, 0, 144, 0.3],
|
||||
// face4
|
||||
[dihedral, 0, 216, 0.4],
|
||||
// face5
|
||||
[dihedral, 0, 288, 0.5],
|
||||
// face6
|
||||
[180, 0, 0, 0.6],
|
||||
// face7
|
||||
[180 - dihedral, 0, 36, 0.7],
|
||||
// face8
|
||||
[180 - dihedral, 0, 108, 0.8],
|
||||
// face9
|
||||
[180 - dihedral, 0, 180, 0.9],
|
||||
// face10
|
||||
[180 - dihedral, 0, 252, 0.11],
|
||||
// face11
|
||||
[180 - dihedral, 0, 324, 0.12],
|
||||
// face12
|
||||
]
|
||||
|
||||
bottomSideFace = startSketchOn(plane)
|
||||
|> polygon(
|
||||
radius = pentR,
|
||||
numSides = 5,
|
||||
center = [0, 0],
|
||||
inscribed = true,
|
||||
)
|
||||
// Create faces by mapping over the rotations array
|
||||
dodecFaces = map(faceRotations, fn(rotation) {
|
||||
return createFaceTemplate(rotation[3])
|
||||
|> rotate(
|
||||
pitch = rotation[0],
|
||||
roll = rotation[1],
|
||||
yaw = rotation[2],
|
||||
global = true,
|
||||
)
|
||||
})
|
||||
|
||||
// Extrude the faces in each plane
|
||||
bottom = extrude(bottomFace, length = wallThickness)
|
||||
bottomSide = extrude(bottomSideFace, length = wallThickness)
|
||||
fn calculateArrayLength(arr) {
|
||||
return reduce(arr, 0, fn(item, accumulator) {
|
||||
return accumulator + 1
|
||||
})
|
||||
}
|
||||
|
||||
// Pattern the sides so we have a full dodecahedron
|
||||
bottomBowl = patternCircular3d(
|
||||
bottomSide,
|
||||
instances = 5,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
fn createIntersection(solids) {
|
||||
fn reduceIntersect(previous, current) {
|
||||
return intersect([previous, current])
|
||||
}
|
||||
lastIndex = calculateArrayLength(solids) - 1
|
||||
lastSolid = solids[lastIndex]
|
||||
remainingSolids = pop(solids)
|
||||
return reduce(remainingSolids, lastSolid, reduceIntersect)
|
||||
}
|
||||
|
||||
// Pattern the bottom to create the top face
|
||||
patternCircular3d(
|
||||
bottom,
|
||||
instances = 2,
|
||||
axis = [0, 1, 0],
|
||||
center = [0, 0, inscR],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
// Pattern the bottom angled faces to create the top
|
||||
patternCircular3d(
|
||||
bottomBowl,
|
||||
instances = 2,
|
||||
axis = [0, 1, 0],
|
||||
center = [0, 0, inscR],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
// Apply intersection to all faces
|
||||
createIntersection(dodecFaces)
|
||||
|
||||
@ -66,8 +66,8 @@
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "dodecahedron/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Hollow Dodecahedron",
|
||||
"description": "A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the individual faces of the dodecahedron and extruding inwards."
|
||||
"title": "Dodecahedron",
|
||||
"description": "A regular dodecahedron or pentagonal dodecahedron is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. This example shows constructing the a dodecahedron with a series of intersects."
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 68 KiB |
File diff suppressed because it is too large
Load Diff
@ -1,143 +1,690 @@
|
||||
```mermaid
|
||||
flowchart LR
|
||||
subgraph path2 [Path]
|
||||
2["Path<br>[1130, 1238, 0]"]
|
||||
3["Segment<br>[1130, 1238, 0]"]
|
||||
4["Segment<br>[1130, 1238, 0]"]
|
||||
5["Segment<br>[1130, 1238, 0]"]
|
||||
6["Segment<br>[1130, 1238, 0]"]
|
||||
7["Segment<br>[1130, 1238, 0]"]
|
||||
8["Segment<br>[1130, 1238, 0]"]
|
||||
9[Solid2d]
|
||||
2["Path<br>[496, 547, 0]"]
|
||||
3["Segment<br>[555, 606, 0]"]
|
||||
4["Segment<br>[614, 664, 0]"]
|
||||
5["Segment<br>[672, 723, 0]"]
|
||||
6["Segment<br>[731, 738, 0]"]
|
||||
7[Solid2d]
|
||||
end
|
||||
subgraph path11 [Path]
|
||||
11["Path<br>[1283, 1391, 0]"]
|
||||
12["Segment<br>[1283, 1391, 0]"]
|
||||
13["Segment<br>[1283, 1391, 0]"]
|
||||
14["Segment<br>[1283, 1391, 0]"]
|
||||
15["Segment<br>[1283, 1391, 0]"]
|
||||
16["Segment<br>[1283, 1391, 0]"]
|
||||
17["Segment<br>[1283, 1391, 0]"]
|
||||
18[Solid2d]
|
||||
subgraph path24 [Path]
|
||||
24["Path<br>[496, 547, 0]"]
|
||||
25["Segment<br>[555, 606, 0]"]
|
||||
26["Segment<br>[614, 664, 0]"]
|
||||
27["Segment<br>[672, 723, 0]"]
|
||||
28["Segment<br>[731, 738, 0]"]
|
||||
29[Solid2d]
|
||||
end
|
||||
1["Plane<br>[1107, 1124, 0]"]
|
||||
10["Plane<br>[1257, 1277, 0]"]
|
||||
19["Sweep Extrusion<br>[1437, 1480, 0]"]
|
||||
20[Wall]
|
||||
21[Wall]
|
||||
22[Wall]
|
||||
23[Wall]
|
||||
24[Wall]
|
||||
25["Cap Start"]
|
||||
26["Cap End"]
|
||||
27["SweepEdge Opposite"]
|
||||
28["SweepEdge Adjacent"]
|
||||
29["SweepEdge Opposite"]
|
||||
30["SweepEdge Adjacent"]
|
||||
31["SweepEdge Opposite"]
|
||||
32["SweepEdge Adjacent"]
|
||||
33["SweepEdge Opposite"]
|
||||
34["SweepEdge Adjacent"]
|
||||
35["SweepEdge Opposite"]
|
||||
36["SweepEdge Adjacent"]
|
||||
37["Sweep Extrusion<br>[1494, 1541, 0]"]
|
||||
38[Wall]
|
||||
39[Wall]
|
||||
40[Wall]
|
||||
41[Wall]
|
||||
42[Wall]
|
||||
43["Cap Start"]
|
||||
44["Cap End"]
|
||||
45["SweepEdge Opposite"]
|
||||
46["SweepEdge Adjacent"]
|
||||
47["SweepEdge Opposite"]
|
||||
48["SweepEdge Adjacent"]
|
||||
49["SweepEdge Opposite"]
|
||||
50["SweepEdge Adjacent"]
|
||||
51["SweepEdge Opposite"]
|
||||
52["SweepEdge Adjacent"]
|
||||
53["SweepEdge Opposite"]
|
||||
54["SweepEdge Adjacent"]
|
||||
subgraph path46 [Path]
|
||||
46["Path<br>[496, 547, 0]"]
|
||||
47["Segment<br>[555, 606, 0]"]
|
||||
48["Segment<br>[614, 664, 0]"]
|
||||
49["Segment<br>[672, 723, 0]"]
|
||||
50["Segment<br>[731, 738, 0]"]
|
||||
51[Solid2d]
|
||||
end
|
||||
subgraph path68 [Path]
|
||||
68["Path<br>[496, 547, 0]"]
|
||||
69["Segment<br>[555, 606, 0]"]
|
||||
70["Segment<br>[614, 664, 0]"]
|
||||
71["Segment<br>[672, 723, 0]"]
|
||||
72["Segment<br>[731, 738, 0]"]
|
||||
73[Solid2d]
|
||||
end
|
||||
subgraph path90 [Path]
|
||||
90["Path<br>[496, 547, 0]"]
|
||||
91["Segment<br>[555, 606, 0]"]
|
||||
92["Segment<br>[614, 664, 0]"]
|
||||
93["Segment<br>[672, 723, 0]"]
|
||||
94["Segment<br>[731, 738, 0]"]
|
||||
95[Solid2d]
|
||||
end
|
||||
subgraph path112 [Path]
|
||||
112["Path<br>[496, 547, 0]"]
|
||||
113["Segment<br>[555, 606, 0]"]
|
||||
114["Segment<br>[614, 664, 0]"]
|
||||
115["Segment<br>[672, 723, 0]"]
|
||||
116["Segment<br>[731, 738, 0]"]
|
||||
117[Solid2d]
|
||||
end
|
||||
subgraph path134 [Path]
|
||||
134["Path<br>[496, 547, 0]"]
|
||||
135["Segment<br>[555, 606, 0]"]
|
||||
136["Segment<br>[614, 664, 0]"]
|
||||
137["Segment<br>[672, 723, 0]"]
|
||||
138["Segment<br>[731, 738, 0]"]
|
||||
139[Solid2d]
|
||||
end
|
||||
subgraph path156 [Path]
|
||||
156["Path<br>[496, 547, 0]"]
|
||||
157["Segment<br>[555, 606, 0]"]
|
||||
158["Segment<br>[614, 664, 0]"]
|
||||
159["Segment<br>[672, 723, 0]"]
|
||||
160["Segment<br>[731, 738, 0]"]
|
||||
161[Solid2d]
|
||||
end
|
||||
subgraph path178 [Path]
|
||||
178["Path<br>[496, 547, 0]"]
|
||||
179["Segment<br>[555, 606, 0]"]
|
||||
180["Segment<br>[614, 664, 0]"]
|
||||
181["Segment<br>[672, 723, 0]"]
|
||||
182["Segment<br>[731, 738, 0]"]
|
||||
183[Solid2d]
|
||||
end
|
||||
subgraph path200 [Path]
|
||||
200["Path<br>[496, 547, 0]"]
|
||||
201["Segment<br>[555, 606, 0]"]
|
||||
202["Segment<br>[614, 664, 0]"]
|
||||
203["Segment<br>[672, 723, 0]"]
|
||||
204["Segment<br>[731, 738, 0]"]
|
||||
205[Solid2d]
|
||||
end
|
||||
subgraph path222 [Path]
|
||||
222["Path<br>[496, 547, 0]"]
|
||||
223["Segment<br>[555, 606, 0]"]
|
||||
224["Segment<br>[614, 664, 0]"]
|
||||
225["Segment<br>[672, 723, 0]"]
|
||||
226["Segment<br>[731, 738, 0]"]
|
||||
227[Solid2d]
|
||||
end
|
||||
subgraph path244 [Path]
|
||||
244["Path<br>[496, 547, 0]"]
|
||||
245["Segment<br>[555, 606, 0]"]
|
||||
246["Segment<br>[614, 664, 0]"]
|
||||
247["Segment<br>[672, 723, 0]"]
|
||||
248["Segment<br>[731, 738, 0]"]
|
||||
249[Solid2d]
|
||||
end
|
||||
1["Plane<br>[471, 488, 0]"]
|
||||
8["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
9[Wall]
|
||||
10[Wall]
|
||||
11[Wall]
|
||||
12[Wall]
|
||||
13["Cap Start"]
|
||||
14["Cap End"]
|
||||
15["SweepEdge Opposite"]
|
||||
16["SweepEdge Adjacent"]
|
||||
17["SweepEdge Opposite"]
|
||||
18["SweepEdge Adjacent"]
|
||||
19["SweepEdge Opposite"]
|
||||
20["SweepEdge Adjacent"]
|
||||
21["SweepEdge Opposite"]
|
||||
22["SweepEdge Adjacent"]
|
||||
23["Plane<br>[471, 488, 0]"]
|
||||
30["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
31[Wall]
|
||||
32[Wall]
|
||||
33[Wall]
|
||||
34[Wall]
|
||||
35["Cap Start"]
|
||||
36["Cap End"]
|
||||
37["SweepEdge Opposite"]
|
||||
38["SweepEdge Adjacent"]
|
||||
39["SweepEdge Opposite"]
|
||||
40["SweepEdge Adjacent"]
|
||||
41["SweepEdge Opposite"]
|
||||
42["SweepEdge Adjacent"]
|
||||
43["SweepEdge Opposite"]
|
||||
44["SweepEdge Adjacent"]
|
||||
45["Plane<br>[471, 488, 0]"]
|
||||
52["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
53[Wall]
|
||||
54[Wall]
|
||||
55[Wall]
|
||||
56[Wall]
|
||||
57["Cap Start"]
|
||||
58["Cap End"]
|
||||
59["SweepEdge Opposite"]
|
||||
60["SweepEdge Adjacent"]
|
||||
61["SweepEdge Opposite"]
|
||||
62["SweepEdge Adjacent"]
|
||||
63["SweepEdge Opposite"]
|
||||
64["SweepEdge Adjacent"]
|
||||
65["SweepEdge Opposite"]
|
||||
66["SweepEdge Adjacent"]
|
||||
67["Plane<br>[471, 488, 0]"]
|
||||
74["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
75[Wall]
|
||||
76[Wall]
|
||||
77[Wall]
|
||||
78[Wall]
|
||||
79["Cap Start"]
|
||||
80["Cap End"]
|
||||
81["SweepEdge Opposite"]
|
||||
82["SweepEdge Adjacent"]
|
||||
83["SweepEdge Opposite"]
|
||||
84["SweepEdge Adjacent"]
|
||||
85["SweepEdge Opposite"]
|
||||
86["SweepEdge Adjacent"]
|
||||
87["SweepEdge Opposite"]
|
||||
88["SweepEdge Adjacent"]
|
||||
89["Plane<br>[471, 488, 0]"]
|
||||
96["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
97[Wall]
|
||||
98[Wall]
|
||||
99[Wall]
|
||||
100[Wall]
|
||||
101["Cap Start"]
|
||||
102["Cap End"]
|
||||
103["SweepEdge Opposite"]
|
||||
104["SweepEdge Adjacent"]
|
||||
105["SweepEdge Opposite"]
|
||||
106["SweepEdge Adjacent"]
|
||||
107["SweepEdge Opposite"]
|
||||
108["SweepEdge Adjacent"]
|
||||
109["SweepEdge Opposite"]
|
||||
110["SweepEdge Adjacent"]
|
||||
111["Plane<br>[471, 488, 0]"]
|
||||
118["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
119[Wall]
|
||||
120[Wall]
|
||||
121[Wall]
|
||||
122[Wall]
|
||||
123["Cap Start"]
|
||||
124["Cap End"]
|
||||
125["SweepEdge Opposite"]
|
||||
126["SweepEdge Adjacent"]
|
||||
127["SweepEdge Opposite"]
|
||||
128["SweepEdge Adjacent"]
|
||||
129["SweepEdge Opposite"]
|
||||
130["SweepEdge Adjacent"]
|
||||
131["SweepEdge Opposite"]
|
||||
132["SweepEdge Adjacent"]
|
||||
133["Plane<br>[471, 488, 0]"]
|
||||
140["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
141[Wall]
|
||||
142[Wall]
|
||||
143[Wall]
|
||||
144[Wall]
|
||||
145["Cap Start"]
|
||||
146["Cap End"]
|
||||
147["SweepEdge Opposite"]
|
||||
148["SweepEdge Adjacent"]
|
||||
149["SweepEdge Opposite"]
|
||||
150["SweepEdge Adjacent"]
|
||||
151["SweepEdge Opposite"]
|
||||
152["SweepEdge Adjacent"]
|
||||
153["SweepEdge Opposite"]
|
||||
154["SweepEdge Adjacent"]
|
||||
155["Plane<br>[471, 488, 0]"]
|
||||
162["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
163[Wall]
|
||||
164[Wall]
|
||||
165[Wall]
|
||||
166[Wall]
|
||||
167["Cap Start"]
|
||||
168["Cap End"]
|
||||
169["SweepEdge Opposite"]
|
||||
170["SweepEdge Adjacent"]
|
||||
171["SweepEdge Opposite"]
|
||||
172["SweepEdge Adjacent"]
|
||||
173["SweepEdge Opposite"]
|
||||
174["SweepEdge Adjacent"]
|
||||
175["SweepEdge Opposite"]
|
||||
176["SweepEdge Adjacent"]
|
||||
177["Plane<br>[471, 488, 0]"]
|
||||
184["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
185[Wall]
|
||||
186[Wall]
|
||||
187[Wall]
|
||||
188[Wall]
|
||||
189["Cap Start"]
|
||||
190["Cap End"]
|
||||
191["SweepEdge Opposite"]
|
||||
192["SweepEdge Adjacent"]
|
||||
193["SweepEdge Opposite"]
|
||||
194["SweepEdge Adjacent"]
|
||||
195["SweepEdge Opposite"]
|
||||
196["SweepEdge Adjacent"]
|
||||
197["SweepEdge Opposite"]
|
||||
198["SweepEdge Adjacent"]
|
||||
199["Plane<br>[471, 488, 0]"]
|
||||
206["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
207[Wall]
|
||||
208[Wall]
|
||||
209[Wall]
|
||||
210[Wall]
|
||||
211["Cap Start"]
|
||||
212["Cap End"]
|
||||
213["SweepEdge Opposite"]
|
||||
214["SweepEdge Adjacent"]
|
||||
215["SweepEdge Opposite"]
|
||||
216["SweepEdge Adjacent"]
|
||||
217["SweepEdge Opposite"]
|
||||
218["SweepEdge Adjacent"]
|
||||
219["SweepEdge Opposite"]
|
||||
220["SweepEdge Adjacent"]
|
||||
221["Plane<br>[471, 488, 0]"]
|
||||
228["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
229[Wall]
|
||||
230[Wall]
|
||||
231[Wall]
|
||||
232[Wall]
|
||||
233["Cap Start"]
|
||||
234["Cap End"]
|
||||
235["SweepEdge Opposite"]
|
||||
236["SweepEdge Adjacent"]
|
||||
237["SweepEdge Opposite"]
|
||||
238["SweepEdge Adjacent"]
|
||||
239["SweepEdge Opposite"]
|
||||
240["SweepEdge Adjacent"]
|
||||
241["SweepEdge Opposite"]
|
||||
242["SweepEdge Adjacent"]
|
||||
243["Plane<br>[471, 488, 0]"]
|
||||
250["Sweep Extrusion<br>[752, 802, 0]"]
|
||||
251[Wall]
|
||||
252[Wall]
|
||||
253[Wall]
|
||||
254[Wall]
|
||||
255["Cap Start"]
|
||||
256["Cap End"]
|
||||
257["SweepEdge Opposite"]
|
||||
258["SweepEdge Adjacent"]
|
||||
259["SweepEdge Opposite"]
|
||||
260["SweepEdge Adjacent"]
|
||||
261["SweepEdge Opposite"]
|
||||
262["SweepEdge Adjacent"]
|
||||
263["SweepEdge Opposite"]
|
||||
264["SweepEdge Adjacent"]
|
||||
265["CompositeSolid Intersect<br>[1935, 1965, 0]"]
|
||||
1 --- 2
|
||||
2 --- 3
|
||||
2 --- 4
|
||||
2 --- 5
|
||||
2 --- 6
|
||||
2 ---- 8
|
||||
2 --- 7
|
||||
2 --- 8
|
||||
2 ---- 19
|
||||
2 --- 9
|
||||
3 --- 20
|
||||
3 --- 27
|
||||
3 --- 28
|
||||
4 --- 21
|
||||
4 --- 29
|
||||
4 --- 30
|
||||
5 --- 22
|
||||
5 --- 31
|
||||
5 --- 32
|
||||
6 --- 23
|
||||
6 --- 33
|
||||
6 --- 34
|
||||
7 --- 24
|
||||
7 --- 35
|
||||
7 --- 36
|
||||
10 --- 11
|
||||
11 --- 12
|
||||
11 --- 13
|
||||
11 --- 14
|
||||
11 --- 15
|
||||
11 --- 16
|
||||
11 --- 17
|
||||
11 ---- 37
|
||||
11 --- 18
|
||||
12 --- 42
|
||||
12 --- 53
|
||||
12 --- 54
|
||||
13 --- 41
|
||||
13 --- 51
|
||||
13 --- 52
|
||||
14 --- 40
|
||||
14 --- 49
|
||||
14 --- 50
|
||||
15 --- 39
|
||||
15 --- 47
|
||||
15 --- 48
|
||||
16 --- 38
|
||||
16 --- 45
|
||||
16 --- 46
|
||||
19 --- 20
|
||||
19 --- 21
|
||||
19 --- 22
|
||||
19 --- 23
|
||||
19 --- 24
|
||||
19 --- 25
|
||||
19 --- 26
|
||||
19 --- 27
|
||||
19 --- 28
|
||||
19 --- 29
|
||||
19 --- 30
|
||||
19 --- 31
|
||||
19 --- 32
|
||||
19 --- 33
|
||||
19 --- 34
|
||||
19 --- 35
|
||||
19 --- 36
|
||||
37 --- 38
|
||||
37 --- 39
|
||||
37 --- 40
|
||||
37 --- 41
|
||||
37 --- 42
|
||||
37 --- 43
|
||||
37 --- 44
|
||||
37 --- 45
|
||||
37 --- 46
|
||||
37 --- 47
|
||||
37 --- 48
|
||||
37 --- 49
|
||||
37 --- 50
|
||||
37 --- 51
|
||||
37 --- 52
|
||||
37 --- 53
|
||||
37 --- 54
|
||||
3 --- 9
|
||||
3 --- 15
|
||||
3 --- 16
|
||||
4 --- 10
|
||||
4 --- 17
|
||||
4 --- 18
|
||||
5 --- 11
|
||||
5 --- 19
|
||||
5 --- 20
|
||||
6 --- 12
|
||||
6 --- 21
|
||||
6 --- 22
|
||||
8 --- 9
|
||||
8 --- 10
|
||||
8 --- 11
|
||||
8 --- 12
|
||||
8 --- 13
|
||||
8 --- 14
|
||||
8 --- 15
|
||||
8 --- 16
|
||||
8 --- 17
|
||||
8 --- 18
|
||||
8 --- 19
|
||||
8 --- 20
|
||||
8 --- 21
|
||||
8 --- 22
|
||||
23 --- 24
|
||||
24 --- 25
|
||||
24 --- 26
|
||||
24 --- 27
|
||||
24 --- 28
|
||||
24 ---- 30
|
||||
24 --- 29
|
||||
25 --- 31
|
||||
25 --- 37
|
||||
25 --- 38
|
||||
26 --- 32
|
||||
26 --- 39
|
||||
26 --- 40
|
||||
27 --- 33
|
||||
27 --- 41
|
||||
27 --- 42
|
||||
28 --- 34
|
||||
28 --- 43
|
||||
28 --- 44
|
||||
30 --- 31
|
||||
30 --- 32
|
||||
30 --- 33
|
||||
30 --- 34
|
||||
30 --- 35
|
||||
30 --- 36
|
||||
30 --- 37
|
||||
30 --- 38
|
||||
30 --- 39
|
||||
30 --- 40
|
||||
30 --- 41
|
||||
30 --- 42
|
||||
30 --- 43
|
||||
30 --- 44
|
||||
45 --- 46
|
||||
46 --- 47
|
||||
46 --- 48
|
||||
46 --- 49
|
||||
46 --- 50
|
||||
46 ---- 52
|
||||
46 --- 51
|
||||
47 --- 53
|
||||
47 --- 59
|
||||
47 --- 60
|
||||
48 --- 54
|
||||
48 --- 61
|
||||
48 --- 62
|
||||
49 --- 55
|
||||
49 --- 63
|
||||
49 --- 64
|
||||
50 --- 56
|
||||
50 --- 65
|
||||
50 --- 66
|
||||
52 --- 53
|
||||
52 --- 54
|
||||
52 --- 55
|
||||
52 --- 56
|
||||
52 --- 57
|
||||
52 --- 58
|
||||
52 --- 59
|
||||
52 --- 60
|
||||
52 --- 61
|
||||
52 --- 62
|
||||
52 --- 63
|
||||
52 --- 64
|
||||
52 --- 65
|
||||
52 --- 66
|
||||
67 --- 68
|
||||
68 --- 69
|
||||
68 --- 70
|
||||
68 --- 71
|
||||
68 --- 72
|
||||
68 ---- 74
|
||||
68 --- 73
|
||||
69 --- 75
|
||||
69 --- 81
|
||||
69 --- 82
|
||||
70 --- 76
|
||||
70 --- 83
|
||||
70 --- 84
|
||||
71 --- 77
|
||||
71 --- 85
|
||||
71 --- 86
|
||||
72 --- 78
|
||||
72 --- 87
|
||||
72 --- 88
|
||||
74 --- 75
|
||||
74 --- 76
|
||||
74 --- 77
|
||||
74 --- 78
|
||||
74 --- 79
|
||||
74 --- 80
|
||||
74 --- 81
|
||||
74 --- 82
|
||||
74 --- 83
|
||||
74 --- 84
|
||||
74 --- 85
|
||||
74 --- 86
|
||||
74 --- 87
|
||||
74 --- 88
|
||||
89 --- 90
|
||||
90 --- 91
|
||||
90 --- 92
|
||||
90 --- 93
|
||||
90 --- 94
|
||||
90 ---- 96
|
||||
90 --- 95
|
||||
91 --- 97
|
||||
91 --- 103
|
||||
91 --- 104
|
||||
92 --- 98
|
||||
92 --- 105
|
||||
92 --- 106
|
||||
93 --- 99
|
||||
93 --- 107
|
||||
93 --- 108
|
||||
94 --- 100
|
||||
94 --- 109
|
||||
94 --- 110
|
||||
96 --- 97
|
||||
96 --- 98
|
||||
96 --- 99
|
||||
96 --- 100
|
||||
96 --- 101
|
||||
96 --- 102
|
||||
96 --- 103
|
||||
96 --- 104
|
||||
96 --- 105
|
||||
96 --- 106
|
||||
96 --- 107
|
||||
96 --- 108
|
||||
96 --- 109
|
||||
96 --- 110
|
||||
111 --- 112
|
||||
112 --- 113
|
||||
112 --- 114
|
||||
112 --- 115
|
||||
112 --- 116
|
||||
112 ---- 118
|
||||
112 --- 117
|
||||
113 --- 119
|
||||
113 --- 125
|
||||
113 --- 126
|
||||
114 --- 120
|
||||
114 --- 127
|
||||
114 --- 128
|
||||
115 --- 121
|
||||
115 --- 129
|
||||
115 --- 130
|
||||
116 --- 122
|
||||
116 --- 131
|
||||
116 --- 132
|
||||
118 --- 119
|
||||
118 --- 120
|
||||
118 --- 121
|
||||
118 --- 122
|
||||
118 --- 123
|
||||
118 --- 124
|
||||
118 --- 125
|
||||
118 --- 126
|
||||
118 --- 127
|
||||
118 --- 128
|
||||
118 --- 129
|
||||
118 --- 130
|
||||
118 --- 131
|
||||
118 --- 132
|
||||
133 --- 134
|
||||
134 --- 135
|
||||
134 --- 136
|
||||
134 --- 137
|
||||
134 --- 138
|
||||
134 ---- 140
|
||||
134 --- 139
|
||||
135 --- 141
|
||||
135 --- 147
|
||||
135 --- 148
|
||||
136 --- 142
|
||||
136 --- 149
|
||||
136 --- 150
|
||||
137 --- 143
|
||||
137 --- 151
|
||||
137 --- 152
|
||||
138 --- 144
|
||||
138 --- 153
|
||||
138 --- 154
|
||||
140 --- 141
|
||||
140 --- 142
|
||||
140 --- 143
|
||||
140 --- 144
|
||||
140 --- 145
|
||||
140 --- 146
|
||||
140 --- 147
|
||||
140 --- 148
|
||||
140 --- 149
|
||||
140 --- 150
|
||||
140 --- 151
|
||||
140 --- 152
|
||||
140 --- 153
|
||||
140 --- 154
|
||||
155 --- 156
|
||||
156 --- 157
|
||||
156 --- 158
|
||||
156 --- 159
|
||||
156 --- 160
|
||||
156 ---- 162
|
||||
156 --- 161
|
||||
157 --- 163
|
||||
157 --- 169
|
||||
157 --- 170
|
||||
158 --- 164
|
||||
158 --- 171
|
||||
158 --- 172
|
||||
159 --- 165
|
||||
159 --- 173
|
||||
159 --- 174
|
||||
160 --- 166
|
||||
160 --- 175
|
||||
160 --- 176
|
||||
162 --- 163
|
||||
162 --- 164
|
||||
162 --- 165
|
||||
162 --- 166
|
||||
162 --- 167
|
||||
162 --- 168
|
||||
162 --- 169
|
||||
162 --- 170
|
||||
162 --- 171
|
||||
162 --- 172
|
||||
162 --- 173
|
||||
162 --- 174
|
||||
162 --- 175
|
||||
162 --- 176
|
||||
177 --- 178
|
||||
178 --- 179
|
||||
178 --- 180
|
||||
178 --- 181
|
||||
178 --- 182
|
||||
178 ---- 184
|
||||
178 --- 183
|
||||
179 --- 185
|
||||
179 --- 191
|
||||
179 --- 192
|
||||
180 --- 186
|
||||
180 --- 193
|
||||
180 --- 194
|
||||
181 --- 187
|
||||
181 --- 195
|
||||
181 --- 196
|
||||
182 --- 188
|
||||
182 --- 197
|
||||
182 --- 198
|
||||
184 --- 185
|
||||
184 --- 186
|
||||
184 --- 187
|
||||
184 --- 188
|
||||
184 --- 189
|
||||
184 --- 190
|
||||
184 --- 191
|
||||
184 --- 192
|
||||
184 --- 193
|
||||
184 --- 194
|
||||
184 --- 195
|
||||
184 --- 196
|
||||
184 --- 197
|
||||
184 --- 198
|
||||
199 --- 200
|
||||
200 --- 201
|
||||
200 --- 202
|
||||
200 --- 203
|
||||
200 --- 204
|
||||
200 ---- 206
|
||||
200 --- 205
|
||||
201 --- 207
|
||||
201 --- 213
|
||||
201 --- 214
|
||||
202 --- 208
|
||||
202 --- 215
|
||||
202 --- 216
|
||||
203 --- 209
|
||||
203 --- 217
|
||||
203 --- 218
|
||||
204 --- 210
|
||||
204 --- 219
|
||||
204 --- 220
|
||||
206 --- 207
|
||||
206 --- 208
|
||||
206 --- 209
|
||||
206 --- 210
|
||||
206 --- 211
|
||||
206 --- 212
|
||||
206 --- 213
|
||||
206 --- 214
|
||||
206 --- 215
|
||||
206 --- 216
|
||||
206 --- 217
|
||||
206 --- 218
|
||||
206 --- 219
|
||||
206 --- 220
|
||||
221 --- 222
|
||||
222 --- 223
|
||||
222 --- 224
|
||||
222 --- 225
|
||||
222 --- 226
|
||||
222 ---- 228
|
||||
222 --- 227
|
||||
223 --- 229
|
||||
223 --- 235
|
||||
223 --- 236
|
||||
224 --- 230
|
||||
224 --- 237
|
||||
224 --- 238
|
||||
225 --- 231
|
||||
225 --- 239
|
||||
225 --- 240
|
||||
226 --- 232
|
||||
226 --- 241
|
||||
226 --- 242
|
||||
228 --- 229
|
||||
228 --- 230
|
||||
228 --- 231
|
||||
228 --- 232
|
||||
228 --- 233
|
||||
228 --- 234
|
||||
228 --- 235
|
||||
228 --- 236
|
||||
228 --- 237
|
||||
228 --- 238
|
||||
228 --- 239
|
||||
228 --- 240
|
||||
228 --- 241
|
||||
228 --- 242
|
||||
243 --- 244
|
||||
244 --- 245
|
||||
244 --- 246
|
||||
244 --- 247
|
||||
244 --- 248
|
||||
244 ---- 250
|
||||
244 --- 249
|
||||
245 --- 251
|
||||
245 --- 257
|
||||
245 --- 258
|
||||
246 --- 252
|
||||
246 --- 259
|
||||
246 --- 260
|
||||
247 --- 253
|
||||
247 --- 261
|
||||
247 --- 262
|
||||
248 --- 254
|
||||
248 --- 263
|
||||
248 --- 264
|
||||
250 --- 251
|
||||
250 --- 252
|
||||
250 --- 253
|
||||
250 --- 254
|
||||
250 --- 255
|
||||
250 --- 256
|
||||
250 --- 257
|
||||
250 --- 258
|
||||
250 --- 259
|
||||
250 --- 260
|
||||
250 --- 261
|
||||
250 --- 262
|
||||
250 --- 263
|
||||
250 --- 264
|
||||
2 <--x 265
|
||||
244 <--x 265
|
||||
```
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
|
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 68 KiB |
Reference in New Issue
Block a user