Compare commits
3 Commits
adjust-seg
...
marijnh/si
Author | SHA1 | Date | |
---|---|---|---|
aa0b97de3d | |||
24a241c05a | |||
9265af9115 |
2
.github/workflows/build-apps.yml
vendored
@ -13,7 +13,7 @@ env:
|
||||
IS_NIGHTLY: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
|
10
.github/workflows/e2e-tests.yml
vendored
@ -234,16 +234,10 @@ jobs:
|
||||
shardTotal: 8
|
||||
- os: namespace-profile-macos-8-cores
|
||||
shardIndex: 1
|
||||
shardTotal: 2
|
||||
- os: namespace-profile-macos-8-cores
|
||||
shardIndex: 2
|
||||
shardTotal: 2
|
||||
shardTotal: 1
|
||||
- os: windows-latest-8-cores
|
||||
shardIndex: 1
|
||||
shardTotal: 2
|
||||
- os: windows-latest-8-cores
|
||||
shardIndex: 2
|
||||
shardTotal: 2
|
||||
shardTotal: 1
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
8
.github/workflows/static-analysis.yml
vendored
@ -213,13 +213,7 @@ jobs:
|
||||
if: ${{ github.event_name != 'release' && github.event_name != 'schedule' }}
|
||||
run: npm run playwright install chromium --with-deps
|
||||
|
||||
- name: Download internal KCL samples
|
||||
run: git clone --depth=1 https://x-access-token:${{ secrets.GH_PAT_KCL_SAMPLES_INTERNAL }}@github.com/KittyCAD/kcl-samples-internal public/kcl-samples/internal
|
||||
|
||||
- name: Regenerate KCL samples manifest
|
||||
run: cd rust/kcl-lib && EXPECTORATE=overwrite cargo test generate_manifest
|
||||
|
||||
- name: Check public and internal KCL samples
|
||||
- name: run unit tests for kcl samples
|
||||
if: ${{ github.event_name != 'release' && github.event_name != 'schedule' }}
|
||||
run: npm run test:unit:kcl-samples
|
||||
env:
|
||||
|
@ -34,7 +34,7 @@ The 3D view in Design Studio is just a video stream from our hosted geometry eng
|
||||
- WebSockets (via [KittyCAD TS client](https://github.com/KittyCAD/kittycad.ts))
|
||||
- Code Editor
|
||||
- [CodeMirror](https://codemirror.net/)
|
||||
- [Custom WASM LSP Server](https://github.com/KittyCAD/modeling-app/tree/main/rust/kcl-lib/src/lsp/kcl)
|
||||
- Custom WASM LSP Server
|
||||
- Modeling
|
||||
- [KittyCAD TypeScript client](https://github.com/KittyCAD/kittycad.ts)
|
||||
|
||||
|
@ -1,32 +0,0 @@
|
||||
---
|
||||
title: "Arrays and ranges"
|
||||
excerpt: "Documentation of the KCL language for the Zoo Design Studio."
|
||||
layout: manual
|
||||
---
|
||||
|
||||
Arrays are sequences of values.
|
||||
|
||||
Arrays can be written out as *array literals* using a sequence of expressions surrounded by square brackets, e.g., `['hello', 'world']` is an array of strings, `[x, x + 1, x + 2]` is an array of numbers (assuming `x` is a number), `[]` is an empty array, and `['hello', 42, true]` is a mixed array.
|
||||
|
||||
A value in an array can be accessed by indexing using square brackets where the index is a number, for example, `arr[0]`, `arr[42]`, `arr[i]` (where `arr` is an array and `i` is a (whole) number).
|
||||
|
||||
There are some useful functions for working with arrays in the standard library, see [std::array](/docs/kcl-std/modules/std-array) for details.
|
||||
|
||||
## Array types
|
||||
|
||||
Arrays have their own types: `[T]` where `T` is the type of the elements of the array, for example, `[string]` means an array of `string`s and `[any]` means an array of any values.
|
||||
|
||||
Array types can also include length information: `[T; n]` denotes an array of length `n` (where `n` is a number literal) and `[T; 1+]` denotes an array whose length is at least one (i.e., a non-empty array). E.g., `[string; 1+]` and `[number(mm); 3]` are valid array types.
|
||||
|
||||
## Ranges
|
||||
|
||||
Ranges are a succinct way to create an array of sequential numbers. The syntax is `[start .. end]` where `start` and `end` evaluate to whole numbers (integers). Ranges are inclusive of the start and end. The end must be greater than the start. Examples:
|
||||
|
||||
```kcl,norun
|
||||
[0..3] // [0, 1, 2, 3]
|
||||
[3..10] // [3, 4, 5, 6, 7, 8, 9, 10]
|
||||
x = 2
|
||||
[x..x+1] // [2, 3]
|
||||
```
|
||||
|
||||
The units of the start and end numbers must be the same and the result inherits those units.
|
@ -14,7 +14,6 @@ things in a more tutorial fashion. See also our documentation of the [standard l
|
||||
* [Values and types](/docs/kcl-lang/types)
|
||||
* [Numeric types and units](/docs/kcl-lang/numeric)
|
||||
* [Functions](/docs/kcl-lang/functions)
|
||||
* [Arrays and ranges](/docs/kcl-lang/arrays)
|
||||
* [Projects and modules](/docs/kcl-lang/modules)
|
||||
* [Attributes](/docs/kcl-lang/attributes)
|
||||
* [Importing geometry from other CAD systems](/docs/kcl-lang/foreign-imports)
|
||||
|
@ -19,6 +19,18 @@ myBool = false
|
||||
|
||||
Currently you cannot redeclare a constant.
|
||||
|
||||
## Arrays
|
||||
|
||||
An array is defined with `[]` braces. What is inside the brackets can
|
||||
be of any type. For example, the following is completely valid:
|
||||
|
||||
```
|
||||
myArray = ["thing", 2, false]
|
||||
```
|
||||
|
||||
If you want to get a value from an array you can use the index like so:
|
||||
`myArray[0]`.
|
||||
|
||||
|
||||
## Objects
|
||||
|
||||
@ -28,8 +40,8 @@ An object is defined with `{}` braces. Here is an example object:
|
||||
myObj = { a = 0, b = "thing" }
|
||||
```
|
||||
|
||||
To get the property of an object, you can call `myObj.a`, which in the above
|
||||
example returns 0.
|
||||
We support two different ways of getting properties from objects, you can call
|
||||
`myObj.a` or `myObj["a"]` both work.
|
||||
|
||||
## `ImportedGeometry`
|
||||
|
||||
|
@ -10,7 +10,7 @@ Apply a function to every element of a list.
|
||||
```kcl
|
||||
map(
|
||||
@array: [any],
|
||||
f: fn(any): any,
|
||||
f: Fn,
|
||||
): [any]
|
||||
```
|
||||
|
||||
@ -22,7 +22,7 @@ Given a list like `[a, b, c]`, and a function like `f`, returns
|
||||
| Name | Type | Description | Required |
|
||||
|----------|------|-------------|----------|
|
||||
| `array` | [`[any]`](/docs/kcl-std/types/std-types-any) | Input array. The output array is this input array, but every element has had the function `f` run on it. | Yes |
|
||||
| `f` | [`fn(any): any`](/docs/kcl-std/types/std-types-fn) | A function. The output array is just the input array, but `f` has been run on every item. | Yes |
|
||||
| `f` | [`Fn`](/docs/kcl-std/types/std-types-Fn) | A function. The output array is just the input array, but `f` has been run on every item. | Yes |
|
||||
|
||||
### Returns
|
||||
|
||||
|
@ -11,7 +11,7 @@ layout: manual
|
||||
reduce(
|
||||
@array: [any],
|
||||
initial: any,
|
||||
f: fn(any, accum: any): any,
|
||||
f: Fn,
|
||||
): [any]
|
||||
```
|
||||
|
||||
@ -24,7 +24,7 @@ using the previous value and the element.
|
||||
|----------|------|-------------|----------|
|
||||
| `array` | [`[any]`](/docs/kcl-std/types/std-types-any) | Each element of this array gets run through the function `f`, combined with the previous output from `f`, and then used for the next run. | Yes |
|
||||
| `initial` | [`any`](/docs/kcl-std/types/std-types-any) | The first time `f` is run, it will be called with the first item of `array` and this initial starting value. | Yes |
|
||||
| `f` | [`fn(any, accum: any): any`](/docs/kcl-std/types/std-types-fn) | Run once per item in the input `array`. This function takes an item from the array, and the previous output from `f` (or `initial` on the very first run). The final time `f` is run, its output is returned as the final output from `reduce`. | Yes |
|
||||
| `f` | [`Fn`](/docs/kcl-std/types/std-types-Fn) | Run once per item in the input `array`. This function takes an item from the array, and the previous output from `f` (or `initial` on the very first run). The final time `f` is run, its output is returned as the final output from `reduce`. | Yes |
|
||||
|
||||
### Returns
|
||||
|
||||
|
@ -140,13 +140,13 @@ See also the [types overview](/docs/kcl-lang/types)
|
||||
|
||||
* [**Primitive types**](/docs/kcl-lang/types)
|
||||
* [`End`](/docs/kcl-lang/types#End)
|
||||
* [`Fn`](/docs/kcl-std/types/std-types-Fn)
|
||||
* [`ImportedGeometry`](/docs/kcl-std/types/std-types-ImportedGeometry)
|
||||
* [`Start`](/docs/kcl-lang/types#Start)
|
||||
* [`TagDeclarator`](/docs/kcl-lang/types#TagDeclarator)
|
||||
* [`TagIdentifier`](/docs/kcl-lang/types#TagIdentifier)
|
||||
* [`any`](/docs/kcl-std/types/std-types-any)
|
||||
* [`bool`](/docs/kcl-std/types/std-types-bool)
|
||||
* [`fn`](/docs/kcl-std/types/std-types-fn)
|
||||
* [`number`](/docs/kcl-std/types/std-types-number)
|
||||
* [`string`](/docs/kcl-std/types/std-types-string)
|
||||
* [`tag`](/docs/kcl-std/types/std-types-tag)
|
||||
|
@ -17,6 +17,7 @@ Types can (optionally) be used to describe a function's arguments and returned v
|
||||
* [`Axis3d`](/docs/kcl-std/types/std-types-Axis3d)
|
||||
* [`Edge`](/docs/kcl-std/types/std-types-Edge)
|
||||
* [`Face`](/docs/kcl-std/types/std-types-Face)
|
||||
* [`Fn`](/docs/kcl-std/types/std-types-Fn)
|
||||
* [`Helix`](/docs/kcl-std/types/std-types-Helix)
|
||||
* [`ImportedGeometry`](/docs/kcl-std/types/std-types-ImportedGeometry)
|
||||
* [`Plane`](/docs/kcl-std/types/std-types-Plane)
|
||||
@ -26,7 +27,6 @@ Types can (optionally) be used to describe a function's arguments and returned v
|
||||
* [`Solid`](/docs/kcl-std/types/std-types-Solid)
|
||||
* [`any`](/docs/kcl-std/types/std-types-any)
|
||||
* [`bool`](/docs/kcl-std/types/std-types-bool)
|
||||
* [`fn`](/docs/kcl-std/types/std-types-fn)
|
||||
* [`number`](/docs/kcl-std/types/std-types-number)
|
||||
* [`string`](/docs/kcl-std/types/std-types-string)
|
||||
* [`tag`](/docs/kcl-std/types/std-types-tag)
|
||||
|
@ -122515,7 +122515,7 @@
|
||||
"deprecated": false,
|
||||
"examples": [
|
||||
[
|
||||
"// Loft a square and a triangle.\nsquareSketch = startSketchOn(XY)\n |> startProfile(at = [-100, 200])\n |> line(end = [200, 0])\n |> line(end = [0, -200])\n |> line(end = [-200, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\ntriangleSketch = startSketchOn(offsetPlane(XY, offset = 75))\n |> startProfile(at = [0, 125])\n |> line(end = [-15, -30])\n |> line(end = [30, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\nloft([triangleSketch, squareSketch])",
|
||||
"// Loft a square and a triangle.\nsquareSketch = startSketchOn(XY)\n |> startProfile(at = [-100, 200])\n |> line(end = [200, 0])\n |> line(end = [0, -200])\n |> line(end = [-200, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\ntriangleSketch = startSketchOn(offsetPlane(XY, offset = 75))\n |> startProfile(at = [0, 125])\n |> line(end = [-15, -30])\n |> line(end = [30, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\nloft([squareSketch, triangleSketch])",
|
||||
false
|
||||
],
|
||||
[
|
||||
|
@ -1,5 +1,5 @@
|
||||
---
|
||||
title: "fn"
|
||||
title: "Fn"
|
||||
subtitle: "Type in std::types"
|
||||
excerpt: "The type of any function in KCL."
|
||||
layout: manual
|
@ -155,12 +155,6 @@ export class CmdBarFixture {
|
||||
}
|
||||
}
|
||||
|
||||
closeCmdBar = async () => {
|
||||
const cmdBarCloseBtn = this.page.getByTestId('command-bar-close-button')
|
||||
await cmdBarCloseBtn.click()
|
||||
await expect(this.cmdBarElement).not.toBeVisible()
|
||||
}
|
||||
|
||||
get cmdSearchInput() {
|
||||
return this.page.getByTestId('cmd-bar-search')
|
||||
}
|
||||
@ -304,27 +298,4 @@ export class CmdBarFixture {
|
||||
`Monitoring text-to-cad API requests. Output will be saved to: ${outputPath}`
|
||||
)
|
||||
}
|
||||
|
||||
async toBeOpened() {
|
||||
// Check that the command bar is opened
|
||||
await expect(this.cmdBarElement).toBeVisible({ timeout: 10_000 })
|
||||
}
|
||||
|
||||
async expectArgValue(value: string) {
|
||||
// Check the placeholder project name exists
|
||||
const actualArgument = await this.cmdBarElement
|
||||
.getByTestId('cmd-bar-arg-value')
|
||||
.inputValue()
|
||||
const expectedArgument = value
|
||||
expect(actualArgument).toBe(expectedArgument)
|
||||
}
|
||||
|
||||
async expectCommandName(value: string) {
|
||||
// Check the placeholder project name exists
|
||||
const actual = await this.cmdBarElement
|
||||
.getByTestId('command-name')
|
||||
.textContent()
|
||||
const expected = value
|
||||
expect(actual).toBe(expected)
|
||||
}
|
||||
}
|
||||
|
@ -24,7 +24,6 @@ export class HomePageFixture {
|
||||
projectTextName!: Locator
|
||||
sortByDateBtn!: Locator
|
||||
sortByNameBtn!: Locator
|
||||
appHeader!: Locator
|
||||
tutorialBtn!: Locator
|
||||
|
||||
constructor(page: Page) {
|
||||
@ -45,7 +44,6 @@ export class HomePageFixture {
|
||||
|
||||
this.sortByDateBtn = this.page.getByTestId('home-sort-by-modified')
|
||||
this.sortByNameBtn = this.page.getByTestId('home-sort-by-name')
|
||||
this.appHeader = this.page.getByTestId('app-header')
|
||||
this.tutorialBtn = this.page.getByTestId('home-tutorial-button')
|
||||
}
|
||||
|
||||
@ -127,11 +125,4 @@ export class HomePageFixture {
|
||||
|
||||
await this.createAndGoToProject(name)
|
||||
}
|
||||
|
||||
isNativeFileMenuCreated = async () => {
|
||||
await expect(this.appHeader).toHaveAttribute(
|
||||
'data-native-file-menu',
|
||||
'true'
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -46,7 +46,6 @@ export class SceneFixture {
|
||||
public networkToggleConnected!: Locator
|
||||
public engineConnectionsSpinner!: Locator
|
||||
public startEditSketchBtn!: Locator
|
||||
public appHeader!: Locator
|
||||
|
||||
constructor(page: Page) {
|
||||
this.page = page
|
||||
@ -58,7 +57,6 @@ export class SceneFixture {
|
||||
this.startEditSketchBtn = page
|
||||
.getByRole('button', { name: 'Start Sketch' })
|
||||
.or(page.getByRole('button', { name: 'Edit Sketch' }))
|
||||
this.appHeader = this.page.getByTestId('app-header')
|
||||
}
|
||||
private _serialiseScene = async (): Promise<SceneSerialised> => {
|
||||
const camera = await this.getCameraInfo()
|
||||
@ -282,13 +280,6 @@ export class SceneFixture {
|
||||
await expect(buttonToTest).toBeVisible()
|
||||
await buttonToTest.click()
|
||||
}
|
||||
|
||||
isNativeFileMenuCreated = async () => {
|
||||
await expect(this.appHeader).toHaveAttribute(
|
||||
'data-native-file-menu',
|
||||
'true'
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
function isColourArray(
|
||||
|
@ -1818,6 +1818,7 @@ test(
|
||||
'extrude-custom-plane.kcl',
|
||||
'extrude-inside-fn-with-tags.kcl',
|
||||
'fillet-and-shell.kcl',
|
||||
'fillet_duplicate_tags.kcl',
|
||||
'focusrite_scarlett_mounting_bracket.kcl',
|
||||
'function_sketch.kcl',
|
||||
'function_sketch_with_position.kcl',
|
||||
@ -1825,6 +1826,7 @@ test(
|
||||
'helix_defaults.kcl',
|
||||
'helix_defaults_negative_extrude.kcl',
|
||||
'helix_with_length.kcl',
|
||||
'i_shape.kcl',
|
||||
'kittycad_svg.kcl',
|
||||
'lego.kcl',
|
||||
'lsystem.kcl',
|
||||
|
@ -329,10 +329,10 @@ extrude002 = extrude(profile002, length = 150)
|
||||
)
|
||||
|
||||
const websocketPromise = page.waitForEvent('websocket')
|
||||
await toolbar.closePane('code')
|
||||
await page.setBodyDimensions({ width: 1000, height: 500 })
|
||||
|
||||
await homePage.goToModelingScene()
|
||||
await toolbar.closePane('code')
|
||||
const websocket = await websocketPromise
|
||||
|
||||
await scene.connectionEstablished()
|
||||
@ -552,7 +552,7 @@ extrude002 = extrude(profile002, length = 150)
|
||||
test(
|
||||
`Network health indicator only appears in modeling view`,
|
||||
{ tag: '@electron' },
|
||||
async ({ context, page }) => {
|
||||
async ({ context, page }, testInfo) => {
|
||||
await context.folderSetupFn(async (dir) => {
|
||||
const bracketDir = path.join(dir, 'bracket')
|
||||
await fsp.mkdir(bracketDir, { recursive: true })
|
||||
@ -561,7 +561,9 @@ extrude002 = extrude(profile002, length = 150)
|
||||
path.join(bracketDir, 'main.kcl')
|
||||
)
|
||||
})
|
||||
|
||||
await page.setBodyDimensions({ width: 1200, height: 500 })
|
||||
const u = await getUtils(page)
|
||||
|
||||
// Locators
|
||||
const projectsHeading = page.getByRole('heading', {
|
||||
@ -581,8 +583,10 @@ extrude002 = extrude(profile002, length = 150)
|
||||
})
|
||||
|
||||
await test.step('Check the modeling view', async () => {
|
||||
await expect(projectsHeading).not.toBeVisible()
|
||||
await expect(networkHealthIndicator).toBeVisible()
|
||||
await expect(networkHealthIndicator).toContainText('Problem')
|
||||
await u.waitForPageLoad()
|
||||
await expect(networkHealthIndicator).toContainText('Connected')
|
||||
})
|
||||
}
|
||||
)
|
||||
|
@ -3496,73 +3496,6 @@ profile001 = startProfile(sketch001, at = [-102.72, 237.44])
|
||||
).toBeVisible()
|
||||
})
|
||||
|
||||
// Ensure feature tree is not showing previous file's content when switching to a file with KCL errors.
|
||||
test('Feature tree shows correct sketch count per file', async ({
|
||||
context,
|
||||
homePage,
|
||||
scene,
|
||||
toolbar,
|
||||
cmdBar,
|
||||
page,
|
||||
}) => {
|
||||
const u = await getUtils(page)
|
||||
|
||||
// Setup project with files.
|
||||
const GOOD_KCL = `sketch001 = startSketchOn(XZ)
|
||||
profile001 = startProfile(sketch001, at = [220.81, 253.8])
|
||||
|> line(end = [132.84, -151.31])
|
||||
|> line(end = [25.51, 167.15])
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
sketch002 = startSketchOn(XZ)
|
||||
profile002 = startProfile(sketch002, at = [158.35, -70.82])
|
||||
|> line(end = [73.9, -152.19])
|
||||
|> line(end = [85.33, 135.48])
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()`
|
||||
|
||||
const ERROR_KCL = `sketch001 = startSketchOn(XZ)
|
||||
profile001 = startProfile(sketch001, at = [127.56, 179.02])
|
||||
|> line(end = [132.84, -112.6])
|
||||
|> line(end = [85.33, 234.01])
|
||||
|> line(enfd = [-137.23, -54.55])`
|
||||
|
||||
await context.folderSetupFn(async (dir) => {
|
||||
const projectDir = path.join(dir, 'multi-file-sketch-test')
|
||||
await fs.mkdir(projectDir, { recursive: true })
|
||||
await Promise.all([
|
||||
fs.writeFile(path.join(projectDir, 'good.kcl'), GOOD_KCL, 'utf-8'),
|
||||
fs.writeFile(path.join(projectDir, 'error.kcl'), ERROR_KCL, 'utf-8'),
|
||||
])
|
||||
})
|
||||
|
||||
await page.setBodyDimensions({ width: 1000, height: 800 })
|
||||
|
||||
await homePage.openProject('multi-file-sketch-test')
|
||||
await scene.connectionEstablished()
|
||||
await scene.settled(cmdBar)
|
||||
|
||||
await u.closeDebugPanel()
|
||||
|
||||
await toolbar.openFeatureTreePane()
|
||||
await toolbar.openPane('files')
|
||||
|
||||
await toolbar.openFile('good.kcl')
|
||||
|
||||
await expect(
|
||||
toolbar.featureTreePane.getByRole('button', { name: 'Sketch' })
|
||||
).toHaveCount(2)
|
||||
|
||||
await toolbar.openFile('error.kcl')
|
||||
|
||||
// Ensure filetree is populated
|
||||
await scene.settled(cmdBar)
|
||||
|
||||
await expect(
|
||||
toolbar.featureTreePane.getByRole('button', { name: 'Sketch' })
|
||||
).toHaveCount(0)
|
||||
})
|
||||
|
||||
test('adding a syntax error, recovers after fixing', async ({
|
||||
page,
|
||||
homePage,
|
||||
|
Before Width: | Height: | Size: 56 KiB After Width: | Height: | Size: 56 KiB |
Before Width: | Height: | Size: 49 KiB After Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 56 KiB After Width: | Height: | Size: 56 KiB |
Before Width: | Height: | Size: 49 KiB After Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 47 KiB After Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 43 KiB After Width: | Height: | Size: 43 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 52 KiB After Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
Before Width: | Height: | Size: 30 KiB After Width: | Height: | Size: 30 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 50 KiB |
Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 116 KiB After Width: | Height: | Size: 116 KiB |
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 68 KiB |
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 67 KiB |
Before Width: | Height: | Size: 67 KiB After Width: | Height: | Size: 67 KiB |
Before Width: | Height: | Size: 63 KiB After Width: | Height: | Size: 63 KiB |
@ -21,7 +21,6 @@ export const token = process.env.token || ''
|
||||
|
||||
import type { ProjectConfiguration } from '@rust/kcl-lib/bindings/ProjectConfiguration'
|
||||
|
||||
import type { ElectronZoo } from '@e2e/playwright/fixtures/fixtureSetup'
|
||||
import { isErrorWhitelisted } from '@e2e/playwright/lib/console-error-whitelist'
|
||||
import { TEST_SETTINGS, TEST_SETTINGS_KEY } from '@e2e/playwright/storageStates'
|
||||
import { test } from '@e2e/playwright/zoo-test'
|
||||
@ -810,6 +809,8 @@ export const doExport = async (
|
||||
|
||||
await page.getByRole('button', { name: 'Submit command' }).click()
|
||||
|
||||
// This usually happens immediately after. If we're too slow we don't
|
||||
// catch it.
|
||||
await expect(page.getByText('Exported successfully')).toBeVisible()
|
||||
|
||||
if (exportFrom === 'sidebarButton' || exportFrom === 'commandBar') {
|
||||
@ -1150,77 +1151,3 @@ export function perProjectSettingsToToml(
|
||||
// eslint-disable-next-line no-restricted-syntax
|
||||
return TOML.stringify(settings as any)
|
||||
}
|
||||
|
||||
export async function clickElectronNativeMenuById(
|
||||
tronApp: ElectronZoo,
|
||||
menuId: string
|
||||
) {
|
||||
const clickWasTriggered = await tronApp.electron.evaluate(
|
||||
async ({ app }, menuId) => {
|
||||
if (!app || !app.applicationMenu) {
|
||||
return false
|
||||
}
|
||||
const menu = app.applicationMenu.getMenuItemById(menuId)
|
||||
if (!menu) return false
|
||||
menu.click()
|
||||
return true
|
||||
},
|
||||
menuId
|
||||
)
|
||||
expect(clickWasTriggered).toBe(true)
|
||||
}
|
||||
|
||||
export async function findElectronNativeMenuById(
|
||||
tronApp: ElectronZoo,
|
||||
menuId: string
|
||||
) {
|
||||
const found = await tronApp.electron.evaluate(async ({ app }, menuId) => {
|
||||
if (!app || !app.applicationMenu) {
|
||||
return false
|
||||
}
|
||||
const menu = app.applicationMenu.getMenuItemById(menuId)
|
||||
if (!menu) return false
|
||||
return true
|
||||
}, menuId)
|
||||
expect(found).toBe(true)
|
||||
}
|
||||
|
||||
export async function openSettingsExpectText(page: Page, text: string) {
|
||||
const settings = page.getByTestId('settings-dialog-panel')
|
||||
await expect(settings).toBeVisible()
|
||||
// You are viewing the user tab
|
||||
const actualText = settings.getByText(text)
|
||||
await expect(actualText).toBeVisible()
|
||||
}
|
||||
|
||||
export async function openSettingsExpectLocator(page: Page, selector: string) {
|
||||
const settings = page.getByTestId('settings-dialog-panel')
|
||||
await expect(settings).toBeVisible()
|
||||
// You are viewing the keybindings tab
|
||||
const settingsLocator = settings.locator(selector)
|
||||
await expect(settingsLocator).toBeVisible()
|
||||
}
|
||||
|
||||
/**
|
||||
* A developer helper function to make playwright send all the console logs to stdout
|
||||
* Call this within your E2E test and pass in the page or the tronApp to get as many
|
||||
* logs piped to stdout for debugging
|
||||
*/
|
||||
export async function enableConsoleLogEverything({
|
||||
page,
|
||||
tronApp,
|
||||
}: { page?: Page; tronApp?: ElectronZoo }) {
|
||||
page?.on('console', (msg) => {
|
||||
console.log(`[Page-log]: ${msg.text()}`)
|
||||
})
|
||||
|
||||
tronApp?.electron.on('window', async (electronPage) => {
|
||||
electronPage.on('console', (msg) => {
|
||||
console.log(`[Renderer] ${msg.type()}: ${msg.text()}`)
|
||||
})
|
||||
})
|
||||
|
||||
tronApp?.electron.on('console', (msg) => {
|
||||
console.log(`[Main] ${msg.type()}: ${msg.text()}`)
|
||||
})
|
||||
}
|
||||
|
@ -33,8 +33,8 @@ test.describe('Testing loading external models', () => {
|
||||
|
||||
// Locators and constants
|
||||
const newSample = {
|
||||
file: 'pillow-block-bearing' + FILE_EXT,
|
||||
title: 'Pillow Block Bearing',
|
||||
file: 'parametric-bearing-pillow-block' + FILE_EXT,
|
||||
title: 'Parametric Bearing Pillow Block',
|
||||
}
|
||||
const commandBarButton = page.getByRole('button', { name: 'Commands' })
|
||||
const samplesCommandOption = page.getByRole('option', {
|
||||
@ -100,9 +100,9 @@ test.describe('Testing loading external models', () => {
|
||||
|
||||
// Locators and constants
|
||||
const sampleOne = {
|
||||
file: 'ball-bearing' + FILE_EXT,
|
||||
title: 'Ball Bearing',
|
||||
file1: 'ball-bearing-1' + FILE_EXT,
|
||||
file: 'parametric-bearing-pillow-block' + FILE_EXT,
|
||||
title: 'Parametric Bearing Pillow Block',
|
||||
file1: 'parametric-bearing-pillow-block-1' + FILE_EXT,
|
||||
}
|
||||
const projectCard = page.getByRole('link', { name: 'bracket' })
|
||||
const overwriteWarning = page.getByText(
|
||||
|
@ -237,7 +237,7 @@ test.describe('Testing segment overlays', () => {
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
await page.waitForTimeout(500)
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
|
||||
|
||||
const clickUnconstrained = _clickUnconstrained(page, editor)
|
||||
const clickConstrained = _clickConstrained(page, editor)
|
||||
@ -402,7 +402,7 @@ test.describe('Testing segment overlays', () => {
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
await page.waitForTimeout(500)
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(9)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(8)
|
||||
|
||||
const clickUnconstrained = _clickUnconstrained(page, editor)
|
||||
|
||||
@ -482,7 +482,7 @@ test.describe('Testing segment overlays', () => {
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
await page.waitForTimeout(500)
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
|
||||
|
||||
const clickUnconstrained = _clickUnconstrained(page, editor)
|
||||
const clickConstrained = _clickConstrained(page, editor)
|
||||
@ -602,7 +602,7 @@ test.describe('Testing segment overlays', () => {
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
await page.waitForTimeout(500)
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
|
||||
|
||||
const clickUnconstrained = _clickUnconstrained(page, editor)
|
||||
const clickConstrained = _clickConstrained(page, editor)
|
||||
@ -808,7 +808,7 @@ profile001 = startProfile(sketch001, at = [56.37, 120.33])
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
await page.waitForTimeout(500)
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(6)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(5)
|
||||
|
||||
const clickUnconstrained = _clickUnconstrained(page, editor)
|
||||
const clickConstrained = _clickConstrained(page, editor)
|
||||
@ -1307,7 +1307,7 @@ part001 = startSketchOn(XZ)
|
||||
.toBe(true)
|
||||
await page.getByRole('button', { name: 'Edit Sketch' }).click()
|
||||
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(4)
|
||||
await expect(page.getByTestId('segment-overlay')).toHaveCount(3)
|
||||
const segmentToDelete = await u.getBoundingBox(
|
||||
`[data-overlay-index="0"]`
|
||||
)
|
||||
|
@ -905,7 +905,7 @@ test.describe('Mocked Text-to-CAD API tests', { tag: ['@skipWin'] }, () => {
|
||||
await page.keyboard.press('Enter')
|
||||
|
||||
// Go into the project that was created from Text to CAD
|
||||
await homePage.openProject(projectName)
|
||||
await page.getByText(projectName).click()
|
||||
|
||||
await expect(page.getByTestId('app-header-project-name')).toBeVisible()
|
||||
await expect(page.getByTestId('app-header-project-name')).toContainText(
|
||||
@ -951,7 +951,7 @@ test.describe('Mocked Text-to-CAD API tests', { tag: ['@skipWin'] }, () => {
|
||||
await page.keyboard.press('Enter')
|
||||
|
||||
// Go into the project that was created from Text to CAD
|
||||
await homePage.openProject(projectName)
|
||||
await page.getByText(projectName).click()
|
||||
|
||||
await page.getByRole('button', { name: 'Accept' }).click()
|
||||
|
||||
|
@ -74,7 +74,7 @@
|
||||
LIBCLANG_PATH = "${pkgs.libclang.lib}/lib";
|
||||
ELECTRON_OVERRIDE_DIST_PATH =
|
||||
if pkgs.stdenv.isDarwin
|
||||
then "${pkgs.electron}/Applications/Electron.app/Contents/MacOS/"
|
||||
then "${pkgs.electron}/Applications"
|
||||
else "${pkgs.electron}/bin";
|
||||
PLAYWRIGHT_SKIP_VALIDATE_HOST_REQUIREMENTS = true;
|
||||
PLAYWRIGHT_CHROMIUM_EXECUTABLE_PATH = "${pkgs.playwright-driver.browsers}/chromium-1091/chrome-linux/chrome";
|
||||
|
@ -15,10 +15,6 @@ export default function lspGoToDefinitionExt(
|
||||
{
|
||||
key: 'F12',
|
||||
run: (view) => {
|
||||
if (!plugin) {
|
||||
return false
|
||||
}
|
||||
|
||||
const value = view.plugin(plugin)
|
||||
if (!value) return false
|
||||
|
||||
|
@ -47,7 +47,7 @@ import {
|
||||
import { isArray } from '../lib/utils'
|
||||
import lspGoToDefinitionExt from './go-to-definition'
|
||||
import lspRenameExt from './rename'
|
||||
import lspSignatureHelpExt from './signature-help'
|
||||
import { lspSignatureHelpExt, setSignatureTooltip } from './signature-help'
|
||||
|
||||
const useLast = (values: readonly any[]) => values.reduce((_, v) => v, '')
|
||||
export const docPathFacet = Facet.define<string, string>({
|
||||
@ -695,6 +695,8 @@ export class LanguageServerPlugin implements PluginValue {
|
||||
|
||||
// Create the tooltip container
|
||||
const dom = this.createTooltipContainer()
|
||||
dom.className =
|
||||
'documentation hover-tooltip cm-tooltip cm-signature-tooltip'
|
||||
|
||||
// Get active signature
|
||||
const activeSignatureIndex = result.activeSignature ?? 0
|
||||
@ -769,42 +771,7 @@ export class LanguageServerPlugin implements PluginValue {
|
||||
)
|
||||
|
||||
if (tooltip) {
|
||||
// Create and show the tooltip manually
|
||||
const { pos: tooltipPos, create } = tooltip
|
||||
const tooltipView = create(view)
|
||||
|
||||
const tooltipElement = document.createElement('div')
|
||||
tooltipElement.className =
|
||||
'documentation hover-tooltip cm-tooltip cm-signature-tooltip'
|
||||
tooltipElement.style.position = 'absolute'
|
||||
tooltipElement.style.zIndex = '99999999'
|
||||
|
||||
tooltipElement.appendChild(tooltipView.dom)
|
||||
|
||||
// Position the tooltip
|
||||
const coords = view.coordsAtPos(tooltipPos)
|
||||
if (coords) {
|
||||
tooltipElement.style.left = `${coords.left}px`
|
||||
tooltipElement.style.top = `${coords.bottom + 5}px`
|
||||
|
||||
// Add to DOM
|
||||
document.body.appendChild(tooltipElement)
|
||||
|
||||
// Remove after a delay or on editor changes
|
||||
setTimeout(() => {
|
||||
removeTooltip() // Use the function that also cleans up event listeners
|
||||
}, 10000) // Show for 10 seconds
|
||||
|
||||
// Also remove on any user input
|
||||
const removeTooltip = () => {
|
||||
tooltipElement.remove()
|
||||
view.dom.removeEventListener('keydown', removeTooltip)
|
||||
view.dom.removeEventListener('mousedown', removeTooltip)
|
||||
}
|
||||
|
||||
view.dom.addEventListener('keydown', removeTooltip)
|
||||
view.dom.addEventListener('mousedown', removeTooltip)
|
||||
}
|
||||
view.dispatch({ effects: setSignatureTooltip.of(tooltip) })
|
||||
}
|
||||
}
|
||||
|
||||
@ -1034,15 +1001,8 @@ export class LanguageServerPlugin implements PluginValue {
|
||||
continue
|
||||
}
|
||||
|
||||
// Sort edits in reverse order to avoid position shifts
|
||||
const sortedEdits = docChange.edits.sort((a, b) => {
|
||||
const posA = posToOffset(view.state.doc, a.range.start)
|
||||
const posB = posToOffset(view.state.doc, b.range.start)
|
||||
return (posB ?? 0) - (posA ?? 0)
|
||||
})
|
||||
|
||||
// Create a single transaction with all changes
|
||||
const changes = sortedEdits.map((edit) => ({
|
||||
const changes = docChange.edits.map((edit) => ({
|
||||
from: posToOffset(view.state.doc, edit.range.start) ?? 0,
|
||||
to: posToOffset(view.state.doc, edit.range.end) ?? 0,
|
||||
insert: edit.newText,
|
||||
@ -1070,15 +1030,8 @@ export class LanguageServerPlugin implements PluginValue {
|
||||
continue
|
||||
}
|
||||
|
||||
// Sort changes in reverse order to avoid position shifts
|
||||
const sortedChanges = changes.sort((a, b) => {
|
||||
const posA = posToOffset(view.state.doc, a.range.start)
|
||||
const posB = posToOffset(view.state.doc, b.range.start)
|
||||
return (posB ?? 0) - (posA ?? 0)
|
||||
})
|
||||
|
||||
// Create a single transaction with all changes
|
||||
const changeSpecs = sortedChanges.map((change) => ({
|
||||
const changeSpecs = changes.map((change) => ({
|
||||
from: posToOffset(view.state.doc, change.range.start) ?? 0,
|
||||
to: posToOffset(view.state.doc, change.range.end) ?? 0,
|
||||
insert: change.newText,
|
||||
|
@ -15,8 +15,6 @@ export default function lspRenameExt(
|
||||
{
|
||||
key: 'F2',
|
||||
run: (view) => {
|
||||
if (!plugin) return false
|
||||
|
||||
const value = view.plugin(plugin)
|
||||
if (!value) return false
|
||||
|
||||
|
@ -1,12 +1,68 @@
|
||||
import type { Extension } from '@codemirror/state'
|
||||
import { Prec } from '@codemirror/state'
|
||||
import type { ViewPlugin } from '@codemirror/view'
|
||||
import { EditorView } from '@codemirror/view'
|
||||
import { keymap } from '@codemirror/view'
|
||||
import {
|
||||
type EditorState,
|
||||
type Extension,
|
||||
Prec,
|
||||
StateEffect,
|
||||
StateField,
|
||||
} from '@codemirror/state'
|
||||
import type { Tooltip } from '@codemirror/view'
|
||||
import { type ViewPlugin, showTooltip } from '@codemirror/view'
|
||||
import { EditorView, keymap } from '@codemirror/view'
|
||||
import { syntaxTree } from '@codemirror/language'
|
||||
import { type SyntaxNode } from '@lezer/common'
|
||||
|
||||
import type { LanguageServerPlugin } from './lsp'
|
||||
|
||||
export default function lspSignatureHelpExt(
|
||||
export const setSignatureTooltip = StateEffect.define<Tooltip | null>()
|
||||
|
||||
function findParenthesized(
|
||||
state: EditorState,
|
||||
pos: number,
|
||||
side: 1 | 0 | -1 = 0
|
||||
) {
|
||||
let context: SyntaxNode | null = syntaxTree(state).resolveInner(pos, side)
|
||||
while (context) {
|
||||
const open = context.firstChild
|
||||
if (
|
||||
open &&
|
||||
open.from == context.from &&
|
||||
open.to == context.from + 1 &&
|
||||
state.doc.sliceString(open.from, open.to) == '('
|
||||
)
|
||||
break
|
||||
context = context.parent
|
||||
}
|
||||
return context
|
||||
}
|
||||
|
||||
const signatureTooltip = StateField.define<Tooltip | null>({
|
||||
create: () => null,
|
||||
update(value, tr) {
|
||||
for (let effect of tr.effects) {
|
||||
if (effect.is(setSignatureTooltip)) return effect.value
|
||||
}
|
||||
if (!value) return null
|
||||
if (tr.selection) {
|
||||
let parens = findParenthesized(tr.state, tr.selection.main.head)
|
||||
if (!parens || parens.from != value.pos) return null
|
||||
}
|
||||
return tr.docChanged
|
||||
? { ...value, pos: tr.changes.mapPos(value.pos) }
|
||||
: value
|
||||
},
|
||||
provide: (f) => [
|
||||
showTooltip.from(f),
|
||||
EditorView.domEventHandlers({
|
||||
blur: (_, view) => {
|
||||
if (view.state.field(f)) {
|
||||
view.dispatch({ effects: setSignatureTooltip.of(null) })
|
||||
}
|
||||
},
|
||||
}),
|
||||
],
|
||||
})
|
||||
|
||||
export function lspSignatureHelpExt(
|
||||
plugin: ViewPlugin<LanguageServerPlugin>
|
||||
): Extension {
|
||||
return [
|
||||
@ -15,16 +71,16 @@ export default function lspSignatureHelpExt(
|
||||
{
|
||||
key: 'Mod-Shift-Space',
|
||||
run: (view) => {
|
||||
if (!plugin) {
|
||||
return false
|
||||
}
|
||||
|
||||
const value = view.plugin(plugin)
|
||||
if (!value) return false
|
||||
|
||||
const pos = view.state.selection.main.head
|
||||
const parens = findParenthesized(
|
||||
view.state,
|
||||
view.state.selection.main.head
|
||||
)
|
||||
if (!parens) return false
|
||||
// eslint-disable-next-line @typescript-eslint/no-floating-promises
|
||||
value.showSignatureHelpTooltip(view, pos)
|
||||
value.showSignatureHelpTooltip(view, parens.from)
|
||||
return true
|
||||
},
|
||||
},
|
||||
@ -32,17 +88,10 @@ export default function lspSignatureHelpExt(
|
||||
),
|
||||
// eslint-disable-next-line @typescript-eslint/no-misused-promises
|
||||
EditorView.updateListener.of(async (update) => {
|
||||
if (!(plugin && update.docChanged)) return
|
||||
if (!update.docChanged) return
|
||||
|
||||
// Make sure this is a valid user typing event.
|
||||
let isRelevant = false
|
||||
for (const tr of update.transactions) {
|
||||
if (tr.isUserEvent('input')) {
|
||||
isRelevant = true
|
||||
}
|
||||
}
|
||||
|
||||
if (!isRelevant) {
|
||||
if (!update.transactions.some((tr) => tr.isUserEvent('input'))) {
|
||||
// We only want signature help on user events.
|
||||
return
|
||||
}
|
||||
@ -59,18 +108,16 @@ export default function lspSignatureHelpExt(
|
||||
|
||||
// Check if changes include trigger characters
|
||||
const changes = update.changes
|
||||
let shouldTrigger = false
|
||||
let triggerPos = -1
|
||||
|
||||
changes.iterChanges((_fromA, _toA, _fromB, toB, inserted) => {
|
||||
if (shouldTrigger) return // Skip if already found a trigger
|
||||
if (triggerPos >= 0) return // Skip if already found a trigger
|
||||
|
||||
const text = inserted.toString()
|
||||
if (!text) return
|
||||
|
||||
for (const char of triggerChars) {
|
||||
if (text.includes(char)) {
|
||||
shouldTrigger = true
|
||||
triggerPos = toB
|
||||
triggerCharacter = char
|
||||
break
|
||||
@ -78,13 +125,17 @@ export default function lspSignatureHelpExt(
|
||||
}
|
||||
})
|
||||
|
||||
if (shouldTrigger && triggerPos >= 0) {
|
||||
await value.showSignatureHelpTooltip(
|
||||
update.view,
|
||||
triggerPos,
|
||||
triggerCharacter
|
||||
)
|
||||
if (triggerPos >= 0) {
|
||||
const parens = findParenthesized(update.view.state, triggerPos, -1)
|
||||
if (parens) {
|
||||
await value.showSignatureHelpTooltip(
|
||||
update.view,
|
||||
parens.from,
|
||||
triggerCharacter
|
||||
)
|
||||
}
|
||||
}
|
||||
}),
|
||||
signatureTooltip,
|
||||
]
|
||||
}
|
||||
|
@ -31,24 +31,14 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](ball-bearing/main.kcl)
|
||||
#### [bench](bench/main.kcl) ([screenshot](screenshots/bench.png))
|
||||
[](bench/main.kcl)
|
||||
#### [bone-plate](bone-plate/main.kcl) ([screenshot](screenshots/bone-plate.png))
|
||||
[](bone-plate/main.kcl)
|
||||
#### [bottle](bottle/main.kcl) ([screenshot](screenshots/bottle.png))
|
||||
[](bottle/main.kcl)
|
||||
#### [bracket](bracket/main.kcl) ([screenshot](screenshots/bracket.png))
|
||||
[](bracket/main.kcl)
|
||||
#### [car-wheel-assembly](car-wheel-assembly/main.kcl) ([screenshot](screenshots/car-wheel-assembly.png))
|
||||
[](car-wheel-assembly/main.kcl)
|
||||
#### [cold-plate](cold-plate/main.kcl) ([screenshot](screenshots/cold-plate.png))
|
||||
[](cold-plate/main.kcl)
|
||||
#### [color-cube](color-cube/main.kcl) ([screenshot](screenshots/color-cube.png))
|
||||
[](color-cube/main.kcl)
|
||||
#### [counterdrilled-weldment](counterdrilled-weldment/main.kcl) ([screenshot](screenshots/counterdrilled-weldment.png))
|
||||
[](counterdrilled-weldment/main.kcl)
|
||||
#### [countersunk-plate](countersunk-plate/main.kcl) ([screenshot](screenshots/countersunk-plate.png))
|
||||
[](countersunk-plate/main.kcl)
|
||||
#### [cpu-cooler](cpu-cooler/main.kcl) ([screenshot](screenshots/cpu-cooler.png))
|
||||
[](cpu-cooler/main.kcl)
|
||||
#### [cycloidal-gear](cycloidal-gear/main.kcl) ([screenshot](screenshots/cycloidal-gear.png))
|
||||
[](cycloidal-gear/main.kcl)
|
||||
#### [dodecahedron](dodecahedron/main.kcl) ([screenshot](screenshots/dodecahedron.png))
|
||||
@ -65,6 +55,8 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](food-service-spatula/main.kcl)
|
||||
#### [french-press](french-press/main.kcl) ([screenshot](screenshots/french-press.png))
|
||||
[](french-press/main.kcl)
|
||||
#### [gear](gear/main.kcl) ([screenshot](screenshots/gear.png))
|
||||
[](gear/main.kcl)
|
||||
#### [gear-rack](gear-rack/main.kcl) ([screenshot](screenshots/gear-rack.png))
|
||||
[](gear-rack/main.kcl)
|
||||
#### [gridfinity-baseplate](gridfinity-baseplate/main.kcl) ([screenshot](screenshots/gridfinity-baseplate.png))
|
||||
@ -75,18 +67,6 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](gridfinity-bins/main.kcl)
|
||||
#### [gridfinity-bins-stacking-lip](gridfinity-bins-stacking-lip/main.kcl) ([screenshot](screenshots/gridfinity-bins-stacking-lip.png))
|
||||
[](gridfinity-bins-stacking-lip/main.kcl)
|
||||
#### [hammer](hammer/main.kcl) ([screenshot](screenshots/hammer.png))
|
||||
[](hammer/main.kcl)
|
||||
#### [helical-gear](helical-gear/main.kcl) ([screenshot](screenshots/helical-gear.png))
|
||||
[](helical-gear/main.kcl)
|
||||
#### [helical-planetary-gearset](helical-planetary-gearset/main.kcl) ([screenshot](screenshots/helical-planetary-gearset.png))
|
||||
[](helical-planetary-gearset/main.kcl)
|
||||
#### [helium-tank](helium-tank/main.kcl) ([screenshot](screenshots/helium-tank.png))
|
||||
[](helium-tank/main.kcl)
|
||||
#### [herringbone-gear](herringbone-gear/main.kcl) ([screenshot](screenshots/herringbone-gear.png))
|
||||
[](herringbone-gear/main.kcl)
|
||||
#### [herringbone-planetary-gearset](herringbone-planetary-gearset/main.kcl) ([screenshot](screenshots/herringbone-planetary-gearset.png))
|
||||
[](herringbone-planetary-gearset/main.kcl)
|
||||
#### [hex-nut](hex-nut/main.kcl) ([screenshot](screenshots/hex-nut.png))
|
||||
[](hex-nut/main.kcl)
|
||||
#### [i-beam](i-beam/main.kcl) ([screenshot](screenshots/i-beam.png))
|
||||
@ -103,8 +83,8 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](mounting-plate/main.kcl)
|
||||
#### [multi-axis-robot](multi-axis-robot/main.kcl) ([screenshot](screenshots/multi-axis-robot.png))
|
||||
[](multi-axis-robot/main.kcl)
|
||||
#### [pillow-block-bearing](pillow-block-bearing/main.kcl) ([screenshot](screenshots/pillow-block-bearing.png))
|
||||
[](pillow-block-bearing/main.kcl)
|
||||
#### [parametric-bearing-pillow-block](parametric-bearing-pillow-block/main.kcl) ([screenshot](screenshots/parametric-bearing-pillow-block.png))
|
||||
[](parametric-bearing-pillow-block/main.kcl)
|
||||
#### [pipe](pipe/main.kcl) ([screenshot](screenshots/pipe.png))
|
||||
[](pipe/main.kcl)
|
||||
#### [pipe-flange-assembly](pipe-flange-assembly/main.kcl) ([screenshot](screenshots/pipe-flange-assembly.png))
|
||||
@ -113,8 +93,6 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](pipe-with-bend/main.kcl)
|
||||
#### [poopy-shoe](poopy-shoe/main.kcl) ([screenshot](screenshots/poopy-shoe.png))
|
||||
[](poopy-shoe/main.kcl)
|
||||
#### [prosthetic-hip](prosthetic-hip/main.kcl) ([screenshot](screenshots/prosthetic-hip.png))
|
||||
[](prosthetic-hip/main.kcl)
|
||||
#### [router-template-cross-bar](router-template-cross-bar/main.kcl) ([screenshot](screenshots/router-template-cross-bar.png))
|
||||
[](router-template-cross-bar/main.kcl)
|
||||
#### [router-template-slate](router-template-slate/main.kcl) ([screenshot](screenshots/router-template-slate.png))
|
||||
@ -123,20 +101,10 @@ When you submit a PR to add or modify KCL samples, images will be generated and
|
||||
[](sheet-metal-bracket/main.kcl)
|
||||
#### [socket-head-cap-screw](socket-head-cap-screw/main.kcl) ([screenshot](screenshots/socket-head-cap-screw.png))
|
||||
[](socket-head-cap-screw/main.kcl)
|
||||
#### [spur-gear](spur-gear/main.kcl) ([screenshot](screenshots/spur-gear.png))
|
||||
[](spur-gear/main.kcl)
|
||||
#### [spur-reduction-gearset](spur-reduction-gearset/main.kcl) ([screenshot](screenshots/spur-reduction-gearset.png))
|
||||
[](spur-reduction-gearset/main.kcl)
|
||||
#### [surgical-drill-guide](surgical-drill-guide/main.kcl) ([screenshot](screenshots/surgical-drill-guide.png))
|
||||
[](surgical-drill-guide/main.kcl)
|
||||
#### [tooling-nest-block](tooling-nest-block/main.kcl) ([screenshot](screenshots/tooling-nest-block.png))
|
||||
[](tooling-nest-block/main.kcl)
|
||||
#### [utility-sink](utility-sink/main.kcl) ([screenshot](screenshots/utility-sink.png))
|
||||
[](utility-sink/main.kcl)
|
||||
#### [walkie-talkie](walkie-talkie/main.kcl) ([screenshot](screenshots/walkie-talkie.png))
|
||||
[](walkie-talkie/main.kcl)
|
||||
#### [washer](washer/main.kcl) ([screenshot](screenshots/washer.png))
|
||||
[](washer/main.kcl)
|
||||
#### [wing-spar](wing-spar/main.kcl) ([screenshot](screenshots/wing-spar.png))
|
||||
[](wing-spar/main.kcl)
|
||||
|
||||
|
@ -1,55 +0,0 @@
|
||||
// Bone Plate
|
||||
// A bone plate is a medical device used in orthopedics to stabilize and fix bone fractures during the healing process. They are typically made of stainless steel or titanium and are secured to the bone with screws. Bone plates come in various types, including locking, compression, and bridge plates, each with specific applications
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define parameters
|
||||
boltSize = 4.5
|
||||
|
||||
// Revolve the profile of a compression plate designed to fit a bone
|
||||
plateRevolve = startSketchOn(YZ)
|
||||
|> startProfile(at = [22.9, 0])
|
||||
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|
||||
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|
||||
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|
||||
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|
||||
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|
||||
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|
||||
|> arc(angleStart = 180, angleEnd = 174, radius = 170)
|
||||
|> tangentialArc(endAbsolute = [41.8, 91.88])
|
||||
|> tangentialArc(endAbsolute = [56.92, 117.08], tag = $seg01)
|
||||
|> angledLine(angle = tangentToEnd(seg01), length = 23.16)
|
||||
|> tangentialArc(endAbsolute = [60.93, 140.44], tag = $seg02)
|
||||
|> angledLine(angle = tangentToEnd(seg02), length = 25.65)
|
||||
|> tangentialArc(endAbsolute = [48.35, 85.53])
|
||||
|> tangentialArc(endAbsolute = [35.2, 67.73], tag = $seg03)
|
||||
|> angledLine(angle = tangentToEnd(seg03), length = 49.06)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(axis = Y, angle = 65, symmetric = true)
|
||||
|
||||
// Create a hole sketch with the size and location of each bolt hole
|
||||
holeSketch = startSketchOn(XZ)
|
||||
hole01 = circle(holeSketch, center = [0, 12.25], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole02 = circle(holeSketch, center = [0, 29.5], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole03 = circle(holeSketch, center = [0, 46.25], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole04 = circle(holeSketch, center = [0, 77], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole05 = circle(holeSketch, center = [0, 100], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole06 = circle(holeSketch, center = [0, 130], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole07 = circle(holeSketch, center = [-20, 130], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
hole08 = circle(holeSketch, center = [20, 130], radius = boltSize / 2)
|
||||
|> extrude(length = -100)
|
||||
|
||||
// Cut each guiding clearance hole from the bone plate
|
||||
solid001 = subtract([plateRevolve], tools = union([hole01, hole02]))
|
||||
solid002 = subtract([solid001], tools = union([hole03, hole04]))
|
||||
solid003 = subtract([solid002], tools = union([hole05, hole06]))
|
||||
solid004 = subtract([solid003], tools = union([hole07, hole08]))
|
@ -1,67 +0,0 @@
|
||||
// Cold Plate
|
||||
// A cold plate is a thermal management device used to remove heat from a device or component, typically by transferring heat to a liquid coolant that flows through the plate. It's a conductive cooling solution, commonly made of materials like aluminum or copper, with internal channels or tubes for the coolant
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Define parameters
|
||||
tubeDiameter = 5 / 8
|
||||
wallThickness = 0.080
|
||||
bendRadius = 1
|
||||
|
||||
// Create the cold plate with indentions to secure each pass of the brazed copper tube
|
||||
coldPlate = startSketchOn(YZ)
|
||||
|> startProfile(at = [0, tubeDiameter * 2])
|
||||
|> xLine(length = bendRadius - (tubeDiameter / 2))
|
||||
|> yLine(length = -tubeDiameter)
|
||||
|> tangentialArc(angle = 180, radius = tubeDiameter / 2)
|
||||
|> yLine(length = tubeDiameter)
|
||||
|> xLine(length = bendRadius * 2 - tubeDiameter, tag = $seg07)
|
||||
|> yLine(length = -tubeDiameter, tag = $seg09)
|
||||
|> tangentialArc(angle = 180, radius = tubeDiameter / 2)
|
||||
|> yLine(length = tubeDiameter, tag = $seg08)
|
||||
|> xLine(length = bendRadius - (tubeDiameter / 2))
|
||||
|> angledLine(angle = -77, length = tubeDiameter / 3)
|
||||
|> tangentialArc(angle = 77, radius = tubeDiameter, tag = $seg01)
|
||||
|> angledLine(angle = tangentToEnd(seg01), length = 1)
|
||||
|> yLine(endAbsolute = 0)
|
||||
|> xLine(endAbsolute = 0)
|
||||
|> mirror2d(axis = Y)
|
||||
|> close()
|
||||
|> extrude(length = 10, symmetric = true)
|
||||
|
||||
// Sketch the path for the copper tube to follow
|
||||
copperTubePath = startSketchOn(offsetPlane(XY, offset = tubeDiameter))
|
||||
|> startProfile(at = [-7.35, -bendRadius * 3])
|
||||
|> xLine(length = 14.13, tag = $seg05)
|
||||
|> tangentialArc(angle = 180, radius = bendRadius, tag = $seg02)
|
||||
|> angledLine(angle = tangentToEnd(seg02), length = 13.02, tag = $seg06)
|
||||
|> tangentialArc(angle = -180, radius = bendRadius, tag = $seg03)
|
||||
|> angledLine(angle = tangentToEnd(seg03), length = segLen(seg06))
|
||||
|> tangentialArc(angle = 180, radius = bendRadius, tag = $seg04)
|
||||
|> angledLine(angle = tangentToEnd(seg04), length = segLen(seg05))
|
||||
|
||||
// Create the profile for the inner and outer diameter of the hollow copper tube
|
||||
tubeWall = startSketchOn(offsetPlane(YZ, offset = -7.35))
|
||||
|> circle(center = [-bendRadius * 3, tubeDiameter], radius = tubeDiameter / 2)
|
||||
|> subtract2d(%, tool = circle(center = [-bendRadius * 3, tubeDiameter], radius = tubeDiameter / 2 - wallThickness))
|
||||
|> sweep(path = copperTubePath)
|
||||
|> appearance(color = "#b81b0a")
|
||||
|
||||
// Model a brazed cap to cover each tube. Constrain the caps using the walls of the plate
|
||||
brazedCap = startSketchOn(YZ)
|
||||
|> startProfile(at = segEnd(seg07))
|
||||
|> arc(interiorAbsolute = [bendRadius * 3, tubeDiameter * 1.85], endAbsolute = segEnd(seg08))
|
||||
|> yLine(endAbsolute = segStartY(seg08))
|
||||
|> arc(
|
||||
interiorAbsolute = [
|
||||
bendRadius * 3,
|
||||
segEndY(seg09) + tubeDiameter / 2
|
||||
],
|
||||
endAbsolute = segEnd(seg09),
|
||||
)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> extrude(length = 10, symmetric = true)
|
||||
|> patternLinear3d(instances = 4, distance = bendRadius * 2, axis = [0, -1, 0])
|
||||
|> appearance(color = "#6b261e")
|
@ -1,120 +0,0 @@
|
||||
// Counterdrilled Weldment
|
||||
// A metal weldment consisting of a counterdrilled plate, a centrally mounted housing tube, and four structural support fins.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Define parameters
|
||||
boltSpacingX = 5
|
||||
boltSpacingY = 3
|
||||
boltDiameter = 1 / 4
|
||||
counterdrillDiameter = 7 / 16
|
||||
counterdrillDepth = 3 / 16
|
||||
tubeInnerDiameter = 1 + 1 / 4
|
||||
tubeThickness = 0.115
|
||||
tubeHeight = 2
|
||||
stockThickness = .5
|
||||
|
||||
// Calculate the dimensions of the block using the specified bolt spacing. The size of the block can be defined by adding a multiple of the counterdrill diameter to the bolt spacing
|
||||
blockLength = boltSpacingX + boltDiameter * 6
|
||||
blockWidth = boltSpacingY + boltDiameter * 6
|
||||
|
||||
// Draw the base plate
|
||||
plateSketch = startSketchOn(XY)
|
||||
|> startProfile(at = [-blockLength / 2, -blockWidth / 2])
|
||||
|> angledLine(angle = 0, length = blockLength, tag = $rectangleSegmentA001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = blockWidth, tag = $rectangleSegmentB001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|
||||
|> close()
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = tubeInnerDiameter / 2))
|
||||
plateBody = extrude(plateSketch, length = stockThickness)
|
||||
|> chamfer(
|
||||
length = boltDiameter * 2,
|
||||
tags = [
|
||||
getNextAdjacentEdge(rectangleSegmentB001),
|
||||
getNextAdjacentEdge(rectangleSegmentA001),
|
||||
getNextAdjacentEdge(rectangleSegmentC001),
|
||||
getNextAdjacentEdge(rectangleSegmentD001)
|
||||
],
|
||||
)
|
||||
|
||||
// Define hole positions
|
||||
holePositions = [
|
||||
[-boltSpacingX / 2, -boltSpacingY / 2],
|
||||
[-boltSpacingX / 2, boltSpacingY / 2],
|
||||
[boltSpacingX / 2, -boltSpacingY / 2],
|
||||
[boltSpacingX / 2, boltSpacingY / 2]
|
||||
]
|
||||
|
||||
// Function to create a counterdrilled hole
|
||||
fn counterdrill(@holePosition) {
|
||||
cbdrill = startSketchOn(plateBody, face = END)
|
||||
|> circle(center = holePosition, radius = counterdrillDiameter / 2)
|
||||
|> extrude(length = -counterdrillDepth)
|
||||
cbBolt = startSketchOn(cbdrill, face = START)
|
||||
|> circle(center = holePosition, radius = boltDiameter / 2, tag = $hole01)
|
||||
|> extrude(length = -stockThickness + counterdrillDepth)
|
||||
// Use a chamfer to create a 90-degree counterdrill edge
|
||||
|> chamfer(length = (counterdrillDiameter - boltDiameter) / 2 * sqrt(2), tags = [hole01])
|
||||
return { }
|
||||
}
|
||||
|
||||
// Place a counterdrilled hole at each bolt hole position
|
||||
map(holePositions, f = counterdrill)
|
||||
|
||||
// Drill a small pin hole in the side of the tube
|
||||
pinhole = startSketchOn(YZ)
|
||||
|> circle(center = [0, 2.2], radius = 0.125)
|
||||
|> extrude(length = -10)
|
||||
|
||||
// Model the central tube and subtract the pin hole
|
||||
centralTube = startSketchOn(offsetPlane(XY, offset = stockThickness))
|
||||
|> circle(center = [0, 0], radius = tubeInnerDiameter / 2 + tubeThickness)
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = tubeInnerDiameter / 2))
|
||||
|> extrude(length = tubeHeight)
|
||||
|> subtract(tools = [pinhole])
|
||||
|
||||
// Create a function to create a fin which spans from the central tube to the bolt hole
|
||||
fn fin(@i) {
|
||||
diagPlane = {
|
||||
origin = [0.0, 0.0, 0.0],
|
||||
xAxis = [
|
||||
boltSpacingX / 2 * i,
|
||||
boltSpacingY / 2,
|
||||
0.0
|
||||
],
|
||||
yAxis = [0.0, 0.0, 1.0]
|
||||
}
|
||||
|
||||
finSketch = startSketchOn(diagPlane)
|
||||
|> startProfile(at = [
|
||||
tubeInnerDiameter / 2 + tubeThickness,
|
||||
stockThickness
|
||||
])
|
||||
|> xLine(endAbsolute = sqrt((boltSpacingX / 2) ^ 2 + (boltSpacingY / 2) ^ 2) - counterdrillDiameter)
|
||||
|> yLine(length = 0.15)
|
||||
|> line(endAbsolute = [
|
||||
profileStartX(%) + 0.15,
|
||||
stockThickness + tubeHeight * .8
|
||||
])
|
||||
|> xLine(length = -0.15)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> extrude(length = tubeThickness, symmetric = true)
|
||||
|
||||
// Use a circular pattern to create an identical fin on the opposite side
|
||||
otherFin = patternCircular3d(
|
||||
finSketch,
|
||||
instances = 2,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
return { }
|
||||
}
|
||||
|
||||
// Place a pair of support fins along each diagonal axis of the bolt pattern
|
||||
fin(1)
|
||||
fin(-1)
|
@ -1,50 +0,0 @@
|
||||
// Plate with countersunk holes
|
||||
// A small mounting plate with a countersunk hole at each end
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Define parameters
|
||||
boltSpacing = 5
|
||||
boltDiameter = 1 / 4
|
||||
centerHoleDiameter = 1 + 3 / 4
|
||||
plateThickness = 0.375
|
||||
|
||||
// Check that the plate is thick enough to countersink a hole
|
||||
// assertGreaterThan(plateThickness, boltDiameter, "This plate is not thick enough for the necessary countersink dimensions")
|
||||
|
||||
// A bit of math to calculate the tangent line between the two diameters
|
||||
r1 = centerHoleDiameter / 2 * 1.5 + .35
|
||||
r2 = boltDiameter * 2 + .25
|
||||
d = boltSpacing / 2
|
||||
tangentAngle = asin((r1 - r2) / d)
|
||||
tangentLength = (r1 - r2) / tan(tangentAngle)
|
||||
|
||||
plateBody = startSketchOn(XY)
|
||||
// Use polar coordinates to start the sketch at the tangent point of the larger radius
|
||||
|> startProfile(at = polar(angle = 90 - tangentAngle, length = r1))
|
||||
|> angledLine(angle = -tangentAngle, length = tangentLength)
|
||||
|> tangentialArc(radius = r2, angle = (tangentAngle - 90) * 2)
|
||||
|> angledLine(angle = tangentAngle, length = -tangentLength)
|
||||
|> tangentialArc(radius = r1, angle = -tangentAngle * 2)
|
||||
|> angledLine(angle = -tangentAngle, length = -tangentLength)
|
||||
|> tangentialArc(radius = r2, angle = (tangentAngle - 90) * 2)
|
||||
|> angledLine(angle = tangentAngle, length = tangentLength)
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = centerHoleDiameter / 2 * 1.5))
|
||||
|> extrude(%, length = plateThickness)
|
||||
|
||||
// Function to create a countersunk hole
|
||||
fn countersink(@holePosition) {
|
||||
startSketchOn(plateBody, face = END)
|
||||
|> circle(center = [holePosition, 0], radius = boltDiameter / 2, tag = $hole01)
|
||||
|> extrude(length = -plateThickness)
|
||||
// Use a chamfer to create a 90-degree countersink
|
||||
|> chamfer(length = boltDiameter, tags = [hole01])
|
||||
return { }
|
||||
}
|
||||
|
||||
// Place a countersunk hole at each bolt hole position
|
||||
countersink(-boltSpacing / 2)
|
||||
countersink(boltSpacing / 2)
|
@ -1,153 +0,0 @@
|
||||
// Fan Housing
|
||||
// The plastic housing that contains the fan and the motor
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Model the housing which holds the motor, the fan, and the mounting provisions
|
||||
// Bottom mounting face
|
||||
bottomFaceSketch = startSketchOn(YZ)
|
||||
|> startProfile(at = [-fanSize / 2, -fanSize / 2])
|
||||
|> angledLine(angle = 0, length = fanSize, tag = $rectangleSegmentA001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = fanSize, tag = $rectangleSegmentB001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|
||||
|> close()
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
mountingHoleSpacing / 2,
|
||||
mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
-mountingHoleSpacing / 2,
|
||||
mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
mountingHoleSpacing / 2,
|
||||
-mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
-mountingHoleSpacing / 2,
|
||||
-mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> extrude(length = 4)
|
||||
|
||||
// Add large openings to the bottom face to allow airflow through the fan
|
||||
airflowPattern = startSketchOn(bottomFaceSketch, face = END)
|
||||
|> startProfile(at = [fanSize * 7 / 25, -fanSize * 9 / 25])
|
||||
|> angledLine(angle = 140, length = fanSize * 12 / 25, tag = $seg01)
|
||||
|> tangentialArc(radius = fanSize * 1 / 50, angle = 90)
|
||||
|> angledLine(angle = -130, length = fanSize * 8 / 25)
|
||||
|> tangentialArc(radius = fanSize * 1 / 50, angle = 90)
|
||||
|> angledLine(angle = segAng(seg01) + 180, length = fanSize * 2 / 25)
|
||||
|> tangentialArc(radius = fanSize * 8 / 25, angle = 40)
|
||||
|> xLine(length = fanSize * 3 / 25)
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> patternCircular2d(
|
||||
instances = 4,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> extrude(length = -4)
|
||||
|
||||
// Create the middle segment of the fan housing body
|
||||
housingMiddleLength = fanSize / 3
|
||||
housingMiddleRadius = fanSize / 3 - 1
|
||||
bodyMiddle = startSketchOn(bottomFaceSketch, face = END)
|
||||
|> startProfile(at = [
|
||||
housingMiddleLength / 2,
|
||||
-housingMiddleLength / 2 - housingMiddleRadius
|
||||
])
|
||||
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|
||||
|> yLine(length = housingMiddleLength)
|
||||
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|
||||
|> xLine(length = -housingMiddleLength)
|
||||
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|
||||
|> yLine(length = -housingMiddleLength)
|
||||
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> extrude(length = fanHeight - 4 - 4)
|
||||
|
||||
// Cut a hole in the body to accommodate the fan
|
||||
bodyFanHole = startSketchOn(bodyMiddle, face = END)
|
||||
|> circle(center = [0, 0], radius = fanSize * 23 / 50)
|
||||
|> extrude(length = -(fanHeight - 4 - 4))
|
||||
|
||||
// Top mounting face. Cut a hole in the face to accommodate the fan
|
||||
topFaceSketch = startSketchOn(bodyMiddle, face = END)
|
||||
topHoles = startProfile(topFaceSketch, at = [-fanSize / 2, -fanSize / 2])
|
||||
|> angledLine(angle = 0, length = fanSize, tag = $rectangleSegmentA002)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA002) + 90, length = fanSize, tag = $rectangleSegmentB002)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA002), length = -segLen(rectangleSegmentA002), tag = $rectangleSegmentC002)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD002)
|
||||
|> close()
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = fanSize * 23 / 50))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
mountingHoleSpacing / 2,
|
||||
mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
-mountingHoleSpacing / 2,
|
||||
mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
mountingHoleSpacing / 2,
|
||||
-mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> subtract2d(tool = circle(
|
||||
center = [
|
||||
-mountingHoleSpacing / 2,
|
||||
-mountingHoleSpacing / 2
|
||||
],
|
||||
radius = mountingHoleSize / 2,
|
||||
))
|
||||
|> extrude(length = 4)
|
||||
|
||||
// Create a housing for the electric motor to sit
|
||||
motorHousing = startSketchOn(bottomFaceSketch, face = END)
|
||||
|> circle(center = [0, 0], radius = 11.2)
|
||||
|> extrude(length = 16)
|
||||
|
||||
startSketchOn(motorHousing, face = END)
|
||||
|> circle(center = [0, 0], radius = 10)
|
||||
|> extrude(length = -16)
|
||||
|> appearance(color = "#a55e2c")
|
||||
|> fillet(
|
||||
radius = abs(fanSize - mountingHoleSpacing) / 2,
|
||||
tags = [
|
||||
getNextAdjacentEdge(rectangleSegmentA001),
|
||||
getNextAdjacentEdge(rectangleSegmentB001),
|
||||
getNextAdjacentEdge(rectangleSegmentC001),
|
||||
getNextAdjacentEdge(rectangleSegmentD001),
|
||||
getNextAdjacentEdge(rectangleSegmentA002),
|
||||
getNextAdjacentEdge(rectangleSegmentB002),
|
||||
getNextAdjacentEdge(rectangleSegmentC002),
|
||||
getNextAdjacentEdge(rectangleSegmentD002)
|
||||
],
|
||||
)
|
@ -1,71 +0,0 @@
|
||||
// Fan
|
||||
// Spinning axial fan that moves airflow
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Model the center of the fan
|
||||
fanCenter = startSketchOn(YZ)
|
||||
|> circle(center = [0, 0], radius = fanHeight / 2, tag = $centerBend)
|
||||
|> extrude(%, length = fanHeight)
|
||||
|> fillet(radius = 1.5, tags = [getOppositeEdge(centerBend)])
|
||||
|
||||
// Create a function for a lofted fan blade cross section that rotates about the center hub of the fan
|
||||
fn fanBlade(offsetHeight, startAngle) {
|
||||
fanBlade = startSketchOn(offsetPlane(YZ, offset = offsetHeight))
|
||||
|> startProfile(at = [
|
||||
15 * cos(startAngle),
|
||||
15 * sin(startAngle)
|
||||
])
|
||||
|> arc(angleStart = startAngle, angleEnd = startAngle + 14, radius = 15)
|
||||
|> arc(
|
||||
endAbsolute = [
|
||||
fanSize * 22 / 50 * cos(startAngle - 20),
|
||||
fanSize * 22 / 50 * sin(startAngle - 20)
|
||||
],
|
||||
interiorAbsolute = [
|
||||
fanSize * 11 / 50 * cos(startAngle + 3),
|
||||
fanSize * 11 / 50 * sin(startAngle + 3)
|
||||
],
|
||||
)
|
||||
|> arc(
|
||||
endAbsolute = [
|
||||
fanSize * 22 / 50 * cos(startAngle - 24),
|
||||
fanSize * 22 / 50 * sin(startAngle - 24)
|
||||
],
|
||||
interiorAbsolute = [
|
||||
fanSize * 22 / 50 * cos(startAngle - 22),
|
||||
fanSize * 22 / 50 * sin(startAngle - 22)
|
||||
],
|
||||
)
|
||||
|> arc(
|
||||
endAbsolute = [profileStartX(%), profileStartY(%)],
|
||||
interiorAbsolute = [
|
||||
fanSize * 11 / 50 * cos(startAngle - 5),
|
||||
fanSize * 11 / 50 * sin(startAngle - 5)
|
||||
],
|
||||
)
|
||||
|> close()
|
||||
return fanBlade
|
||||
}
|
||||
|
||||
// Loft the fan blade cross sections into a single blade, then pattern them about the fan center
|
||||
crossSections = [
|
||||
fanBlade(offsetHeight = 4.5, startAngle = 50),
|
||||
fanBlade(offsetHeight = (fanHeight - 2 - 4) / 2, startAngle = 30),
|
||||
fanBlade(offsetHeight = fanHeight - 2, startAngle = 0)
|
||||
]
|
||||
bladeLoft = loft(crossSections)
|
||||
|> patternCircular3d(
|
||||
instances = 9,
|
||||
axis = [1, 0, 0],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
[fanCenter, bladeLoft]
|
||||
|> appearance(color = "#110803")
|
@ -1,171 +0,0 @@
|
||||
// Heat Sink
|
||||
// Conductive metal device made from brazed tubes and fins
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Draw the sweep path for the outermost tubes
|
||||
endTubePath = startSketchOn(offsetPlane(YZ, offset = -20))
|
||||
|> startProfile(at = [fanSize / 4, fanSize + 38])
|
||||
|> yLine(endAbsolute = bendRadius + 10, tag = $seg01)
|
||||
|> tangentialArc(radius = bendRadius, angle = -90)
|
||||
|> xLine(endAbsolute = 0, tag = $seg02)
|
||||
|> xLine(length = -segLen(seg02))
|
||||
|> tangentialArc(radius = bendRadius, angle = -90)
|
||||
|> yLine(length = segLen(seg01))
|
||||
|
||||
// Sweep and translate the outermost tube on each end
|
||||
endTube = startSketchOn(offsetPlane(XY, offset = fanSize + 38))
|
||||
|> circle(center = [-20, fanSize / 4], radius = 3)
|
||||
|> subtract2d(tool = circle(center = [-20, fanSize / 4], radius = 2.5))
|
||||
|> sweep(path = endTubePath)
|
||||
|> patternCircular3d(
|
||||
%,
|
||||
instances = 2,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = false,
|
||||
)
|
||||
|
||||
// Draw the sweep path for the 4 interior tubes
|
||||
centerTubePath = startSketchOn(offsetPlane(YZ, offset = -4))
|
||||
|> startProfile(at = [fanSize / 2.67, fanSize + 38])
|
||||
|> yLine(endAbsolute = bendRadius + 15 + 10)
|
||||
|> tangentialArc(radius = bendRadius, angle = -45)
|
||||
|> angledLine(angle = -135, lengthY = 15)
|
||||
|> tangentialArc(radius = bendRadius, angle = -45)
|
||||
|> xLine(endAbsolute = 0, tag = $seg03)
|
||||
|> xLine(length = -segLen(seg03))
|
||||
|> tangentialArc(radius = bendRadius, angle = -155)
|
||||
|> tangentialArc(radius = bendRadius, angle = 65)
|
||||
|> yLine(endAbsolute = fanSize + 38)
|
||||
|
||||
// Draw the profile and sweep the 4 interior tubes
|
||||
centerTube = startSketchOn(offsetPlane(XY, offset = fanSize + 38))
|
||||
|> circle(center = [-4, fanSize / 2.67], radius = 3)
|
||||
|> subtract2d(tool = circle(center = [-4, fanSize / 2.67], radius = 2.5))
|
||||
|> sweep(path = centerTubePath)
|
||||
|> patternCircular3d(
|
||||
%,
|
||||
instances = 2,
|
||||
axis = [0, 0, 1],
|
||||
center = [-4 * 2, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> patternLinear3d(
|
||||
%,
|
||||
instances = 2,
|
||||
distance = 4 * 4,
|
||||
axis = [1, 0, 0],
|
||||
)
|
||||
|
||||
// Draw a heat fin with built-in clips to secure the mounting wire. Pattern the fin upwards by the height of the fan
|
||||
heatFins = startSketchOn(offsetPlane(XY, offset = 45))
|
||||
|> startProfile(at = [0, -fanSize / 2])
|
||||
|> xLine(length = 9)
|
||||
|> angledLine(angle = -60, length = 2.5, tag = $seg04)
|
||||
|> xLine(length = 0.75)
|
||||
|> arc(interiorAbsolute = [lastSegX(%) + 1, lastSegY(%) + 1.2], endAbsolute = [lastSegX(%) + 2, lastSegY(%)])
|
||||
|> xLine(length = 0.75)
|
||||
|> angledLine(angle = 60, length = segLen(seg04))
|
||||
|> xLine(endAbsolute = heatSinkDepth / 2 - 3)
|
||||
|> tangentialArc(angle = 90, radius = 3)
|
||||
|> yLine(endAbsolute = 0)
|
||||
|> mirror2d(axis = X)
|
||||
|> mirror2d(axis = Y)
|
||||
|> close()
|
||||
|> extrude(length = 1)
|
||||
|> patternLinear3d(
|
||||
%,
|
||||
instances = 31,
|
||||
distance = (fanSize - 10) / 30,
|
||||
axis = [0, 0, 1],
|
||||
)
|
||||
|
||||
// Create the mounting base for the CPU cooler. The base should consist of two pieces that secure around each of the tubes at the bottom
|
||||
coolerBase = startSketchOn(-XZ)
|
||||
baseLower = startProfile(coolerBase, at = [0, 10])
|
||||
|> xLine(length = -0.9)
|
||||
|> arc(angleStart = 0, angleEnd = -180, radius = 3.1)
|
||||
|> xLine(length = -1.8)
|
||||
|> arc(angleStart = 0, angleEnd = -180, radius = 3)
|
||||
|> xLine(length = -1.8)
|
||||
|> arc(angleStart = 0, angleEnd = -180, radius = 3)
|
||||
|> xLine(length = -1.8)
|
||||
|> xLine(length = -2)
|
||||
|> yLine(length = -10)
|
||||
|> xLine(endAbsolute = 0)
|
||||
|> mirror2d(axis = Y)
|
||||
|> extrude(length = 2 * segLen(seg02), symmetric = true)
|
||||
|
||||
baseUpper = startProfile(coolerBase, at = [0, 10])
|
||||
|> xLine(length = -0.9)
|
||||
|> arc(angleStart = 0, angleEnd = 180, radius = 3.1)
|
||||
|> xLine(length = -1.8)
|
||||
|> arc(angleStart = 0, angleEnd = 180, radius = 3)
|
||||
|> xLine(length = -1.8)
|
||||
|> arc(angleStart = 0, angleEnd = 180, radius = 3)
|
||||
|> xLine(length = -1.8)
|
||||
|> xLine(length = -1)
|
||||
|> yLine(length = 4)
|
||||
|> tangentialArc(angle = -90, radius = 2)
|
||||
|> xLine(endAbsolute = 0)
|
||||
|> mirror2d(axis = Y)
|
||||
|> extrude(length = 2 * segLen(seg02) * 3 / 4, symmetric = true)
|
||||
|
||||
// Create a flexible mounting bracket to secure the heat sink to the motherboard once adhered
|
||||
mountingBracket = startSketchOn(XZ)
|
||||
|> startProfile(at = [-10, 16])
|
||||
|> xLine(length = -20)
|
||||
|> tangentialArc(angle = 20, radius = bendRadius)
|
||||
|> angledLine(angle = -160, length = 14, tag = $seg09)
|
||||
|> tangentialArc(angle = -30, radius = bendRadius + sheetThickness)
|
||||
|> angledLine(angle = 170, length = 21.5, tag = $seg04Q)
|
||||
|> angledLine(angle = 170 - 90, length = sheetThickness, tag = $seg08)
|
||||
|> angledLine(angle = segAng(seg04Q) + 180, length = segLen(seg04Q), tag = $seg05E)
|
||||
|> tangentialArc(angle = 30, radius = bendRadius)
|
||||
|> angledLine(angle = segAng(seg09) + 180, length = segLen(seg09))
|
||||
|> tangentialArc(angle = -20, radius = bendRadius + sheetThickness)
|
||||
|> xLine(endAbsolute = profileStartX(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $seg07)
|
||||
|> close()
|
||||
|> extrude(
|
||||
length = 16,
|
||||
symmetric = true,
|
||||
tagEnd = $capEnd001,
|
||||
tagStart = $capStart001,
|
||||
)
|
||||
|> fillet(
|
||||
radius = 2,
|
||||
tags = [
|
||||
getCommonEdge(faces = [seg07, capEnd001]),
|
||||
getCommonEdge(faces = [seg08, capEnd001]),
|
||||
getCommonEdge(faces = [seg08, capStart001]),
|
||||
getCommonEdge(faces = [seg07, capStart001])
|
||||
],
|
||||
)
|
||||
|
||||
// Create a clearance hole in the bracket for an M3 screw and countersink the hole
|
||||
thruHole = startSketchOn(mountingBracket, face = seg05E)
|
||||
|> circle(center = [70, 0], radius = 3.4 / 2, tag = $seg06E)
|
||||
|> extrude(length = -sheetThickness)
|
||||
|> chamfer(
|
||||
length = sheetThickness * 0.75,
|
||||
tags = [
|
||||
getCommonEdge(faces = [seg05E, seg06E])
|
||||
],
|
||||
)
|
||||
|
||||
// Duplicate the bracket to the other side of the heat sink base
|
||||
|> patternCircular3d(
|
||||
instances = 2,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
@ -1,51 +0,0 @@
|
||||
// CPU Cooler
|
||||
// A CPU cooler is a device designed to dissipate heat generated by the CPU of a computer. They consist of a brazed heat sink made from aluminum or copper alloys, and one or two axial fans to move airflow across the heat sink.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import all parts and parameters into assembly file
|
||||
import * from "parameters.kcl"
|
||||
import "fan-housing.kcl" as fanHousing
|
||||
import "motor.kcl" as motor
|
||||
import "fan.kcl" as fan
|
||||
import "heat-sink.kcl" as heatSink
|
||||
import "mounting-wire.kcl" as mountingWire
|
||||
import "removable-sticker.kcl" as removableSticker
|
||||
|
||||
// Produce the model for each imported part
|
||||
heatSink
|
||||
|
||||
fn translatePart(part) {
|
||||
part
|
||||
|> translate(x = heatSinkDepth / 2, z = 40 + fanSize / 2)
|
||||
|> patternLinear3d(
|
||||
%,
|
||||
instances = 2,
|
||||
distance = heatSinkDepth + fanHeight,
|
||||
axis = [-1, 0, 0],
|
||||
)
|
||||
return { }
|
||||
}
|
||||
translatePart(part = fanHousing)
|
||||
translatePart(part = motor)
|
||||
translatePart(part = fan)
|
||||
|
||||
mountingWire
|
||||
|> patternCircular3d(
|
||||
%,
|
||||
instances = 2,
|
||||
axis = [0, 1, 0],
|
||||
center = [0, 0, 40 + fanSize / 2],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> patternCircular3d(
|
||||
%,
|
||||
instances = 2,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
removableSticker
|
@ -1,21 +0,0 @@
|
||||
// Motor
|
||||
// A small electric motor to power the fan
|
||||
|
||||
// Set Units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import Parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Model the motor body and stem
|
||||
startPlane = offsetPlane(YZ, offset = 4)
|
||||
motorBody = startSketchOn(startPlane)
|
||||
|> circle(center = [0, 0], radius = 10, tag = $seg04)
|
||||
|> extrude(length = 17)
|
||||
|> fillet(radius = 2, tags = [getOppositeEdge(seg04), seg04])
|
||||
|> appearance(color = "#021b55")
|
||||
motorStem = startSketchOn(offsetPlane(YZ, offset = 21))
|
||||
|> circle(center = [0, 0], radius = 1)
|
||||
|> extrude(length = 3.8)
|
||||
|> appearance(color = "#cbcccd")
|
||||
[motorBody, motorStem]
|
@ -1,79 +0,0 @@
|
||||
// Mounting Wire
|
||||
// The flexible metal wire used to clip the fans onto the heat sink
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Import parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Draw the XZ component of the mounting wire path
|
||||
upperArm = startSketchOn(offsetPlane(XZ, offset = fanSize / 2 + 2))
|
||||
|> startProfile(at = [-12, 40 + fanSize / 2])
|
||||
|> yLine(length = 7)
|
||||
|> tangentialArc(radius = 2, angle = 90)
|
||||
|> xLine(length = -9)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> yLine(length = 14)
|
||||
|> tangentialArc(radius = 2, angle = 90)
|
||||
|> xLine(length = -9)
|
||||
|> tangentialArc(radius = 2, angle = -80)
|
||||
|> angledLine(angle = 100, endAbsoluteY = 40 + fanSize / 2 + mountingHoleSpacing / 2 - 1.5)
|
||||
|> tangentialArc(radius = 2, angle = 80, tag = $seg07)
|
||||
|
||||
// Draw the XZ component of the mounting wire path
|
||||
lowerArm = startSketchOn(offsetPlane(XZ, offset = fanSize / 2 + 2))
|
||||
|> startProfile(at = [-12, 40 + fanSize / 2])
|
||||
|> yLine(length = -7)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> xLine(length = -9)
|
||||
|> tangentialArc(radius = 2, angle = 90)
|
||||
|> yLine(length = -14)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> xLine(length = -9)
|
||||
|> tangentialArc(radius = 2, angle = 80)
|
||||
|> angledLine(angle = -100, endAbsoluteY = 40 + fanSize / 2 - (mountingHoleSpacing / 2) + 1.5)
|
||||
|> tangentialArc(radius = 2, angle = -80, tag = $seg08)
|
||||
|
||||
// Create the profile of the mounting wire and sweep along the XZ path
|
||||
wireProfile = startSketchOn(offsetPlane(XY, offset = 40 + fanSize / 2))
|
||||
sweepUpperArm = circle(wireProfile, center = [-12, -fanSize / 2 - 2], radius = 1)
|
||||
|> sweep(%, path = upperArm)
|
||||
|
||||
sweepLowerArm = circle(wireProfile, center = [-12, -fanSize / 2 - 2], radius = 1)
|
||||
|> sweep(%, path = lowerArm)
|
||||
|
||||
// Draw the XY components of the mounting wire path
|
||||
upperHook = startSketchOn(offsetPlane(XY, offset = segEndY(seg07)))
|
||||
|> startProfile(at = [segEndX(seg07), -fanSize / 2 - 2])
|
||||
|> xLine(endAbsolute = -heatSinkDepth / 2 - fanHeight)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> yLine(endAbsolute = -mountingHoleSpacing / 2 - 2)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> xLine(length = fanHeight / 3)
|
||||
|
||||
// Draw the XY components of the mounting wire path
|
||||
lowerHook = startSketchOn(offsetPlane(XY, offset = segEndY(seg08)))
|
||||
|> startProfile(at = [segEndX(seg07), -fanSize / 2 - 2])
|
||||
|> xLine(endAbsolute = -heatSinkDepth / 2 - fanHeight)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> yLine(endAbsolute = -mountingHoleSpacing / 2 - 2)
|
||||
|> tangentialArc(radius = 2, angle = -90)
|
||||
|> xLine(length = fanHeight / 3)
|
||||
|
||||
// Sweep the wire profile around the hook-shaped segments of the mounting wire
|
||||
hookProfile = startSketchOn(offsetPlane(YZ, offset = segEndX(seg07)))
|
||||
sweepUpperHook = circle(hookProfile, center = [-fanSize / 2 - 2, segEndY(seg07)], radius = 1)
|
||||
|> sweep(%, path = upperHook)
|
||||
|
||||
sweepLowerHook = circle(hookProfile, center = [-fanSize / 2 - 2, segEndY(seg08)], radius = 1)
|
||||
|> sweep(%, path = lowerHook)
|
||||
|
||||
// Union each piece of the wire into a single continuous sweep
|
||||
[
|
||||
sweepLowerArm,
|
||||
sweepLowerHook,
|
||||
sweepUpperArm,
|
||||
sweepUpperHook
|
||||
]
|
||||
|> appearance(color = "#0d0d0d")
|
@ -1,13 +0,0 @@
|
||||
// Global parameters for the CPU cooler
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define Parameters
|
||||
export fanSize = 120
|
||||
export fanHeight = 25
|
||||
export mountingHoleSpacing = 105
|
||||
export mountingHoleSize = 4.5
|
||||
export bendRadius = 15
|
||||
export sheetThickness = 2.125
|
||||
export heatSinkDepth = 55
|
@ -1,25 +0,0 @@
|
||||
// Removable Sticker
|
||||
// Protective sticker to be removed before adhering the heat sink to the CPU
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Create a simple body to represent the removable warning sticker. Brightly color the sticker so that the user will not forget to remove it before installing the device
|
||||
removableSticker = startSketchOn(-XY)
|
||||
|> startProfile(at = [-12, -12])
|
||||
|> angledLine(angle = 0, length = 24, tag = $rectangleSegmentA001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = 24, tag = $rectangleSegmentB001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|
||||
|> close()
|
||||
|> extrude(length = .3)
|
||||
|> appearance(color = "#021b55")
|
||||
|> chamfer(
|
||||
length = 3,
|
||||
tags = [
|
||||
getNextAdjacentEdge(rectangleSegmentA001),
|
||||
getNextAdjacentEdge(rectangleSegmentB001),
|
||||
getNextAdjacentEdge(rectangleSegmentC001),
|
||||
getNextAdjacentEdge(rectangleSegmentD001)
|
||||
],
|
||||
)
|
112
public/kcl-samples/gear/main.kcl
Normal file
@ -0,0 +1,112 @@
|
||||
// Spur Gear
|
||||
// A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in, kclVersion = 1.0)
|
||||
|
||||
// Define parameters
|
||||
nTeeth = 21
|
||||
module = 0.5
|
||||
pitchDiameter = module * nTeeth
|
||||
pressureAngle = 20
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
gearHeight = 3
|
||||
|
||||
// Interpolate points along the involute curve
|
||||
cmo = 101
|
||||
rs = map(
|
||||
[0..cmo],
|
||||
f = fn(@i) {
|
||||
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
|
||||
},
|
||||
)
|
||||
|
||||
// Calculate operating pressure angle
|
||||
angles = map(
|
||||
rs,
|
||||
f = fn(@r) {
|
||||
return units::toDegrees(acos(baseDiameter / 2 / r))
|
||||
},
|
||||
)
|
||||
|
||||
// Calculate the involute function
|
||||
invas = map(
|
||||
angles,
|
||||
f = fn(@a) {
|
||||
return tan(a) - units::toRadians(a)
|
||||
},
|
||||
)
|
||||
|
||||
// Map the involute curve
|
||||
xs = map(
|
||||
[0..cmo],
|
||||
f = fn(@i) {
|
||||
return rs[i] * cos(invas[i]: number(rad))
|
||||
},
|
||||
)
|
||||
|
||||
ys = map(
|
||||
[0..cmo],
|
||||
f = fn(@i) {
|
||||
return rs[i] * sin(invas[i]: number(rad))
|
||||
},
|
||||
)
|
||||
|
||||
// Extrude the gear body
|
||||
body = startSketchOn(XY)
|
||||
|> circle(center = [0, 0], radius = baseDiameter / 2)
|
||||
|> extrude(length = gearHeight)
|
||||
|
||||
toothAngle = 360 / nTeeth / 1.5
|
||||
|
||||
// Plot the involute curve
|
||||
fn leftInvolute(@i, accum) {
|
||||
j = 100 - i // iterate backwards
|
||||
return line(accum, endAbsolute = [xs[j], ys[j]])
|
||||
}
|
||||
|
||||
fn rightInvolute(@i, accum) {
|
||||
x = rs[i] * cos(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
|
||||
y = -rs[i] * sin(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
|
||||
return line(accum, endAbsolute = [x, y])
|
||||
}
|
||||
|
||||
// Draw gear teeth
|
||||
start = startSketchOn(XY)
|
||||
|> startProfile(at = [xs[101], ys[101]])
|
||||
teeth = reduce([0..100], initial = start, f = leftInvolute)
|
||||
|> arc(angleStart = 0, angleEnd = toothAngle, radius = baseDiameter / 2)
|
||||
|> reduce([1..101], initial = %, f = rightInvolute)
|
||||
|> close()
|
||||
|> extrude(length = gearHeight)
|
||||
|> patternCircular3d(
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
instances = nTeeth,
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
// Define the constants of the keyway and the bore hole
|
||||
keywayWidth = 0.250
|
||||
keywayDepth = keywayWidth / 2
|
||||
holeDiam = 2
|
||||
holeRadius = 1
|
||||
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||||
|
||||
// Sketch the keyway and center hole and extrude
|
||||
keyWay = startSketchOn(body, face = END)
|
||||
|> startProfile(at = [
|
||||
holeRadius * cos(startAngle),
|
||||
holeRadius * sin(startAngle)
|
||||
])
|
||||
|> xLine(length = keywayDepth)
|
||||
|> yLine(length = -keywayWidth)
|
||||
|> xLine(length = -keywayDepth)
|
||||
|> arc(angleStart = -1 * units::toDegrees(startAngle) + 360, angleEnd = 180, radius = holeRadius)
|
||||
|> arc(angleStart = 180, angleEnd = units::toDegrees(startAngle), radius = holeRadius)
|
||||
|> close()
|
||||
|> extrude(length = -gearHeight)
|
@ -1,118 +0,0 @@
|
||||
// Claw Hammer
|
||||
// Often used in construction, a claw hammer is a levered metal hand tool that is used to strike and extract nails
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Sketch the side profile of the hammer head
|
||||
headSideProfile = startSketchOn(XZ)
|
||||
|> startProfile(at = [0.33, 11.26])
|
||||
|> yLine(length = 0.1)
|
||||
|> tangentialArc(endAbsolute = [0.95, 11.92])
|
||||
|> tangentialArc(endAbsolute = [2.72, 11.26], tag = $seg01)
|
||||
|> angledLine(angle = tangentToEnd(seg01) + 90, length = .2)
|
||||
|> angledLine(angle = tangentToEnd(seg01) - 10, length = -0.5)
|
||||
|> tangentialArc(endAbsolute = [-0.91, 12.78], tag = $seg03)
|
||||
|> tangentialArc(endAbsolute = [-1.67, 12.85])
|
||||
|> xLine(length = -.25)
|
||||
|> tangentialArc(angle = 90, radius = .05)
|
||||
|> yLine(length = -1.125, tag = $seg02)
|
||||
|> tangentialArc(angle = 90, radius = .05)
|
||||
|> xLine(length = .25, tag = $seg04)
|
||||
|> angledLine(angle = 23, length = 0.1)
|
||||
|> tangentialArc(endAbsolute = [-0.33, profileStartY(%)])
|
||||
|> xLine(endAbsolute = profileStartX(%))
|
||||
|> close()
|
||||
|> extrude(length = 3, symmetric = true)
|
||||
|
||||
// Sketch the top profile of the hammer head
|
||||
headTopProfile = startSketchOn(offsetPlane(XY, offset = 13))
|
||||
leftSideCut = startProfile(headTopProfile, at = [-4, -1.6])
|
||||
|> line(endAbsolute = [segEndX(seg02), -segLen(seg02) / 2])
|
||||
|> arc(
|
||||
%,
|
||||
angleStart = 180,
|
||||
angleEnd = 270,
|
||||
radius = .05,
|
||||
)
|
||||
|> xLine(endAbsolute = segEndX(seg04))
|
||||
|> arc(interiorAbsolute = [segEndX(seg03) - .1, lastSegY(%) + .03], endAbsolute = [segEndX(seg03), lastSegY(%)])
|
||||
|> tangentialArc(endAbsolute = [3.39, -1.15])
|
||||
|> yLine(endAbsolute = profileStartY(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> extrude(length = -14)
|
||||
|
||||
rearCut = startProfile(headTopProfile, at = [3.39, -0.56])
|
||||
|> angledLine(angle = 177, length = 0.1)
|
||||
|> tangentialArc(endAbsolute = [1.86, -0.37])
|
||||
|> tangentialArc(endAbsolute = [lastSegX(%), -lastSegY(%)])
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), -profileStartY(%)])
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> extrude(length = -14)
|
||||
|
||||
rightSideCut = startProfile(headTopProfile, at = [-4, 1.6])
|
||||
|> line(endAbsolute = [segEndX(seg02), segLen(seg02) / 2])
|
||||
|> arc(
|
||||
%,
|
||||
angleStart = -180,
|
||||
angleEnd = -270,
|
||||
radius = .05,
|
||||
)
|
||||
|> xLine(endAbsolute = segEndX(seg04))
|
||||
|> arc(interiorAbsolute = [segEndX(seg03) - .1, lastSegY(%) - .03], endAbsolute = [segEndX(seg03), lastSegY(%)])
|
||||
|> tangentialArc(endAbsolute = [3.39, 1.15])
|
||||
|> yLine(endAbsolute = profileStartY(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> extrude(length = -14)
|
||||
|
||||
// Subtract the top profiles from the side profile to create a CSG hammer shape
|
||||
firstProfiles = subtract(
|
||||
[headSideProfile],
|
||||
tools = [
|
||||
union([
|
||||
leftSideCut,
|
||||
union([rearCut, rightSideCut])
|
||||
])
|
||||
],
|
||||
)
|
||||
|
||||
// Extrude a polygon through the center of the hammer head to create the mounting hole for the handle
|
||||
handleHole = startSketchOn(XY)
|
||||
|> polygon(
|
||||
%,
|
||||
radius = .28,
|
||||
numSides = 10,
|
||||
center = [0, 0],
|
||||
)
|
||||
|> extrude(length = 14)
|
||||
|
||||
// Add an additional fillet feature to support the handle, and union it to the rest of the head
|
||||
baseSupport = startSketchOn(offsetPlane(XY, offset = 11.5))
|
||||
|> circle(center = [0, 0], radius = .45, tag = $seg05)
|
||||
|> extrude(length = 1, tagStart = $capStart001)
|
||||
|> fillet(
|
||||
radius = .05,
|
||||
tags = [
|
||||
getCommonEdge(faces = [seg05, capStart001])
|
||||
],
|
||||
)
|
||||
|
||||
// Union all pieces into a single solid, then cut the handle hole
|
||||
hammerHead = union([firstProfiles, baseSupport])
|
||||
|> subtract(tools = [handleHole])
|
||||
|
||||
// Draw a profile for the handle, then revolve around the center axis
|
||||
handleSketch = startSketchOn(XZ)
|
||||
|> startProfile(at = [0.01, 0])
|
||||
|> xLine(length = 1.125 / 2)
|
||||
|> tangentialArc(angle = 90, radius = 0.05)
|
||||
|> tangentialArc(endAbsolute = [0.38, 12.8 / 1.612])
|
||||
|> tangentialArc(endAbsolute = [0.28, 12.8])
|
||||
|> xLine(endAbsolute = profileStartX(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
handle = revolve(handleSketch, angle = 360, axis = Y)
|
||||
|> appearance(color = "#f14f04")
|
@ -1,99 +0,0 @@
|
||||
// Helical Gear
|
||||
// A helical gear is a type of cylindrical gear where the teeth are slanted at an angle relative to the axis of rotation. This greatly reduces noise and wear when transmitting torque across meshed spinning gears
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define a function to create a helical gear
|
||||
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define the constants of the keyway and the bore hole
|
||||
keywayWidth = 2
|
||||
keywayDepth = keywayWidth / 2
|
||||
holeDiam = 7
|
||||
holeRadius = holeDiam / 2
|
||||
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||||
|
||||
// Sketch the keyway and center hole
|
||||
holeWithKeyway = startSketchOn(XY)
|
||||
|> startProfile(at = [
|
||||
holeRadius * cos(startAngle),
|
||||
holeRadius * sin(startAngle)
|
||||
])
|
||||
|> xLine(length = keywayDepth)
|
||||
|> yLine(length = -keywayWidth)
|
||||
|> xLine(length = -keywayDepth)
|
||||
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|
||||
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|
||||
|> close()
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn helicalGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
|> subtract2d(tool = holeWithKeyway)
|
||||
return helicalGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = helicalGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a rotated gear sketch on a middle interstitial plane
|
||||
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a rotated gear sketch at the gear height offset plane
|
||||
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a helical gear
|
||||
helicalGear = loft([
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
])
|
||||
|
||||
return helicalGear
|
||||
}
|
||||
|
||||
helicalGear(
|
||||
nTeeth = 21,
|
||||
module = 2,
|
||||
pressureAngle = 20,
|
||||
helixAngle = 35,
|
||||
gearHeight = 7,
|
||||
)
|
@ -1,197 +0,0 @@
|
||||
// Helical Planetary Gearset
|
||||
// A helical planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are helical rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define a function to create a helical gear
|
||||
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define the constants of the keyway and the bore hole
|
||||
keywayWidth = 1
|
||||
keywayDepth = keywayWidth / 2
|
||||
holeDiam = 7
|
||||
holeRadius = holeDiam / 2
|
||||
startAngle = asin(keywayWidth / 2 / holeRadius)
|
||||
|
||||
// Sketch the keyway and center hole
|
||||
holeWithKeyway = startSketchOn(XY)
|
||||
|> startProfile(at = [
|
||||
holeRadius * cos(startAngle),
|
||||
holeRadius * sin(startAngle)
|
||||
])
|
||||
|> xLine(length = keywayDepth)
|
||||
|> yLine(length = -keywayWidth)
|
||||
|> xLine(length = -keywayDepth)
|
||||
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|
||||
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|
||||
|> close()
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn helicalGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
|> subtract2d(tool = holeWithKeyway)
|
||||
return helicalGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = helicalGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a rotated gear sketch on a middle interstitial plane
|
||||
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a rotated gear sketch at the gear height offset plane
|
||||
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a helical gear
|
||||
helicalGear = loft([
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
])
|
||||
|
||||
return helicalGear
|
||||
}
|
||||
|
||||
// Define a function to create a ring gear
|
||||
fn ringGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn ringGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
ringTeeth = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 200 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
|
||||
// Create a circular body that is larger than the tip diameter of the gear, then subtract the gear profile from the body
|
||||
ringGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> circle(center = [0, 0], radius = tipDiameter / 1.85)
|
||||
|> subtract2d(tool = ringTeeth)
|
||||
return ringGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = ringGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a rotated gear sketch on a middle interstitial plane
|
||||
gearSketch002 = ringGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a rotated gear sketch at the gear height offset plane
|
||||
gearSketch003 = ringGearSketch(offsetHeight = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a ring gear
|
||||
ringGear = loft([
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
])
|
||||
|
||||
return ringGear
|
||||
}
|
||||
|
||||
// Create the outer ring gear for the planetary gearset
|
||||
ringGear(
|
||||
nTeeth = 42,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = -25,
|
||||
gearHeight = 5,
|
||||
)
|
||||
|
||||
// Create a central sun gear using a small helical gear
|
||||
helicalGear(
|
||||
nTeeth = 12,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = 25,
|
||||
gearHeight = 5,
|
||||
)
|
||||
|
||||
// Create the helical planet gears
|
||||
numPlanetGears = 3
|
||||
helicalGear(
|
||||
nTeeth = 12,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = -25,
|
||||
gearHeight = 5,
|
||||
)
|
||||
|> translate(y = (12 + 12) / 2 * 1.5 + 2.7)
|
||||
|> patternCircular3d(
|
||||
instances = numPlanetGears,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = false,
|
||||
)
|
@ -1,123 +0,0 @@
|
||||
// Helium Tank
|
||||
// A helium tank is a portable pressure vessel used to store and dispense helium gas for a variety of commercial and entertainment purposes
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Define parameters
|
||||
tankHeight = 2.5ft
|
||||
tankDiameter = 9
|
||||
wallThickness = 0.125
|
||||
portDiameter = 1.25
|
||||
bracketThickness = 0.090
|
||||
boltSize = 1 / 4
|
||||
|
||||
// Sketch the perimeter of the gas tank- inside and out, then revolve around the vertical axis.
|
||||
tankSketch = startSketchOn(YZ)
|
||||
|> startProfile(at = [portDiameter / 2, tankHeight])
|
||||
|> yLine(length = -0.6)
|
||||
|> xLine(length = 0.1)
|
||||
|> tangentialArc(angle = -110, radius = 0.1)
|
||||
|> tangentialArc(angle = 40, radius = 0.6)
|
||||
|> tangentialArc(angle = -110, radius = 0.1)
|
||||
|> tangentialArc(angle = 180, radius = 0.1)
|
||||
|> tangentialArc(angle = -90, radius = tankDiameter / 2 - lastSegX(%), tag = $seg01)
|
||||
|> angledLine(angle = tangentToEnd(seg01), endAbsoluteY = 1.5, tag = $seg09)
|
||||
|> tangentialArc(angle = -90, radius = 2, tag = $seg02)
|
||||
|> angledLine(angle = tangentToEnd(seg02), endAbsoluteX = 0.001, tag = $seg08)
|
||||
|> yLine(length = wallThickness)
|
||||
|> xLine(length = segLen(seg08))
|
||||
|> tangentialArc(angle = 90, radius = 2 - wallThickness)
|
||||
|> yLine(length = segLen(seg09))
|
||||
|> tangentialArc(angle = 90, radius = tankDiameter / 2 - wallThickness - 1.3)
|
||||
|> xLine(endAbsolute = profileStartX(%) - .1)
|
||||
|> yLine(endAbsolute = profileStartY(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Only revolving to 220deg so that the interior of the tank is visible. It should ultimately be closed at 360deg
|
||||
tankRevolve = revolve(tankSketch, angle = 220, axis = Y)
|
||||
|
||||
// Model the brass valve on top of the tank port
|
||||
valveBody = startSketchOn(offsetPlane(XY, offset = tankHeight - 0.5))
|
||||
|> circle(center = [0, 0], radius = portDiameter / 1.9, tag = $seg03)
|
||||
|> extrude(length = 1.5, tagEnd = $capEnd001)
|
||||
|> fillet(
|
||||
radius = 0.1,
|
||||
tags = [
|
||||
getCommonEdge(faces = [seg03, capEnd001])
|
||||
],
|
||||
)
|
||||
|
||||
// Model the outlet port of the valve, then union it all together
|
||||
valvePort = startSketchOn(YZ)
|
||||
|> circle(center = [0, tankHeight + 0.3], radius = portDiameter / 3)
|
||||
|> subtract2d(tool = circle(center = [0, tankHeight + 0.3], radius = portDiameter / 3.25))
|
||||
|> extrude(length = 1.3)
|
||||
valve = union([valveBody, valvePort])
|
||||
|> appearance(color = "#9a4618")
|
||||
|
||||
// Sketch the offset profile of the mounting bracket
|
||||
bracketOffsetProfile = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|
||||
|> startProfile(at = [0, tankDiameter / 2 + wallThickness])
|
||||
|> xLine(length = -0.1)
|
||||
|> tangentialArc(angle = 35, radius = tankDiameter / 2 + wallThickness)
|
||||
|> tangentialArc(angle = -135, radius = 0.25 - wallThickness, tag = $seg06)
|
||||
|> angledLine(angle = tangentToEnd(seg06), length = tankDiameter / 7)
|
||||
|> tangentialArc(angle = -80, radius = 0.25 - wallThickness, tag = $seg07)
|
||||
|> angledLine(angle = tangentToEnd(seg07), endAbsoluteX = 0)
|
||||
|> mirror2d(axis = Y)
|
||||
|> close()
|
||||
|
||||
// Sketch the outer perimeter of the offset bracket, then subtract the inner offset to create a constant thickness sheet metal hoop
|
||||
bracketProfile = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|
||||
|> startProfile(at = [0, tankDiameter / 2])
|
||||
|> xLine(length = -0.1)
|
||||
|> tangentialArc(angle = 35, radius = tankDiameter / 2)
|
||||
|> tangentialArc(angle = -135, radius = 0.25, tag = $seg04)
|
||||
|> angledLine(angle = tangentToEnd(seg04), length = tankDiameter / 7)
|
||||
|> tangentialArc(angle = -80, radius = 0.25, tag = $seg05)
|
||||
|> angledLine(angle = tangentToEnd(seg05), endAbsoluteX = 0)
|
||||
|> mirror2d(axis = Y)
|
||||
|> close()
|
||||
|> subtract2d(tool = bracketOffsetProfile)
|
||||
|> extrude(length = 1, symmetric = true)
|
||||
|
||||
// Cut holes in the bracket for a mounting strap
|
||||
strapSleeve = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|
||||
|> circle(center = [0, .125 / 2], radius = 4.75)
|
||||
|> subtract2d(tool = circle(center = [0, .125 / 2], radius = 4.65))
|
||||
|> extrude(length = .8, symmetric = true)
|
||||
bracketSleeve = subtract([bracketProfile], tools = [strapSleeve])
|
||||
|
||||
// Create holes in the bracket for anchor mounts to secure the bracket to a wall
|
||||
mountingHoles = startSketchOn(offsetPlane(XZ, offset = -tankDiameter / 1.9))
|
||||
|> circle(center = [tankDiameter / 4.5, tankHeight * 0.67], radius = boltSize / 2)
|
||||
|> extrude(length = -5)
|
||||
|
||||
bracket = subtract(
|
||||
[bracketSleeve],
|
||||
tools = union(patternLinear3d(
|
||||
mountingHoles,
|
||||
instances = 2,
|
||||
distance = tankDiameter / 2.25,
|
||||
axis = [-1, 0, 0],
|
||||
)),
|
||||
)
|
||||
|> appearance(color = "#cd0404")
|
||||
|
||||
// Model a circular strap to secure the tank to the bracket
|
||||
mountingStrap = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|
||||
|> circle(center = [0, .155 / 2], radius = tankDiameter / 1.9)
|
||||
|> subtract2d(tool = circle(center = [0, .155 / 2], radius = tankDiameter / 1.9 - 0.1))
|
||||
|> extrude(length = .75, symmetric = true)
|
||||
|> appearance(color = "#210d03")
|
||||
|
||||
// Create a second instance of the bracket and strap at a lower point on the tank
|
||||
[bracket, mountingStrap]
|
||||
|> patternLinear3d(
|
||||
%,
|
||||
instances = 2,
|
||||
distance = tankHeight * 0.33,
|
||||
axis = [0, 0, -1],
|
||||
)
|
@ -1,84 +0,0 @@
|
||||
// Herringbone Gear
|
||||
// A herringbone, or double-helical gear, is a cylindrical gear type with angled teeth in opposing directions. This allows the quietness and smoothness of a helical gear, without applying a directional load while turning
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define a function to create a herringbone gear
|
||||
fn herringboneGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn herringboneGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
herringboneGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
// Create a center hole with an 8mm diameter
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
|
||||
return herringboneGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = herringboneGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a gear sketch that has been rotated by the helix angle
|
||||
gearSketch002 = herringboneGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a gear sketch at the total gear height that reverses the angle direction
|
||||
gearSketch003 = clone(gearSketch001)
|
||||
|> translate(z = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a herringbone gear
|
||||
herringboneGear = loft(
|
||||
[
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
],
|
||||
vDegree = 1,
|
||||
)
|
||||
|
||||
return herringboneGear
|
||||
}
|
||||
|
||||
herringboneGear(
|
||||
nTeeth = 25,
|
||||
module = 1,
|
||||
pressureAngle = 14,
|
||||
helixAngle = 40,
|
||||
gearHeight = 8,
|
||||
)
|
@ -1,186 +0,0 @@
|
||||
// Herringbone Planetary Gearset
|
||||
// A herringbone planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are herringbone rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Define a function to create a herringbone gear
|
||||
fn herringboneGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn herringboneGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
herringboneGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
// Create a center hole with an 8mm diameter
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
|
||||
return herringboneGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = herringboneGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a gear sketch that has been rotated by the helix angle
|
||||
gearSketch002 = herringboneGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a gear sketch at the total gear height that reverses the angle direction
|
||||
gearSketch003 = clone(gearSketch001)
|
||||
|> translate(z = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a herringbone gear
|
||||
herringboneGear = loft(
|
||||
[
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
],
|
||||
vDegree = 1,
|
||||
)
|
||||
|
||||
return herringboneGear
|
||||
}
|
||||
|
||||
// Define a function to create a ring gear
|
||||
fn ringGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
|
||||
// Calculate gear parameters
|
||||
pitchDiameter = module * nTeeth
|
||||
addendum = module
|
||||
deddendum = 1.25 * module
|
||||
baseDiameter = pitchDiameter * cos(pressureAngle)
|
||||
tipDiameter = pitchDiameter + 2 * module
|
||||
|
||||
// Define a function to create a rotated gear sketch on an offset plane
|
||||
fn ringGearSketch(offsetHeight) {
|
||||
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
|
||||
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
|
||||
|
||||
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
|
||||
ringTeeth = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = helixCalc,
|
||||
tag = $seg01,
|
||||
)
|
||||
|> line(endAbsolute = polar(angle = 220 / nTeeth + helixCalc, length = tipDiameter / 2))
|
||||
|> involuteCircular(
|
||||
startRadius = baseDiameter / 2,
|
||||
endRadius = tipDiameter / 2,
|
||||
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
|
||||
reverse = true,
|
||||
)
|
||||
|
||||
// Position the end line of the sketch at the start of the next tooth
|
||||
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
|
||||
|
||||
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|
||||
|> patternCircular2d(
|
||||
%,
|
||||
instances = nTeeth,
|
||||
center = [0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|> close()
|
||||
|
||||
// Create a circular body that is larger than the tip diameter of the gear, then subtract the gear profile from the body
|
||||
ringGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|
||||
|> circle(center = [0, 0], radius = tipDiameter / 1.8)
|
||||
|> subtract2d(tool = ringTeeth)
|
||||
return ringGearSketch
|
||||
}
|
||||
|
||||
// Draw a gear sketch on the base plane
|
||||
gearSketch001 = ringGearSketch(offsetHeight = 0)
|
||||
|
||||
// Draw a rotated gear sketch on a middle interstitial plane
|
||||
gearSketch002 = ringGearSketch(offsetHeight = gearHeight / 2)
|
||||
|
||||
// Draw a gear sketch at the total gear height that reverses the angle direction
|
||||
gearSketch003 = clone(gearSketch001)
|
||||
|> translate(z = gearHeight)
|
||||
|
||||
// Loft each rotated gear sketch together to form a ring gear
|
||||
ringGear = loft(
|
||||
[
|
||||
gearSketch001,
|
||||
gearSketch002,
|
||||
gearSketch003
|
||||
],
|
||||
vDegree = 1,
|
||||
)
|
||||
|
||||
return ringGear
|
||||
}
|
||||
|
||||
// Create the outer ring gear for the planetary gearset
|
||||
ringGear(
|
||||
nTeeth = 58,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = -35,
|
||||
gearHeight = 8,
|
||||
)
|
||||
|
||||
// Create a central sun gear using a small herringbone gear
|
||||
herringboneGear(
|
||||
nTeeth = 18,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = 35,
|
||||
gearHeight = 8,
|
||||
)
|
||||
|
||||
// Create the herringbone planet gears
|
||||
numPlanetGears = 4
|
||||
herringboneGear(
|
||||
nTeeth = 18,
|
||||
module = 1.5,
|
||||
pressureAngle = 14,
|
||||
helixAngle = -35,
|
||||
gearHeight = 8,
|
||||
)
|
||||
|> translate(y = 18 * 1.5 + 1.95)
|
||||
|> patternCircular3d(
|
||||
instances = numPlanetGears,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
arcDegrees = 360,
|
||||
rotateDuplicates = false,
|
||||
)
|
@ -44,16 +44,6 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "bone-plate/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Bone Plate",
|
||||
"description": "A bone plate is a medical device used in orthopedics to stabilize and fix bone fractures during the healing process. They are typically made of stainless steel or titanium and are secured to the bone with screws. Bone plates come in various types, including locking, compression, and bridge plates, each with specific applications",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "bottle/main.kcl",
|
||||
@ -90,16 +80,6 @@
|
||||
"parameters.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "cold-plate/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Cold Plate",
|
||||
"description": "A cold plate is a thermal management device used to remove heat from a device or component, typically by transferring heat to a liquid coolant that flows through the plate. It's a conductive cooling solution, commonly made of materials like aluminum or copper, with internal channels or tubes for the coolant",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "color-cube/main.kcl",
|
||||
@ -110,43 +90,6 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "counterdrilled-weldment/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Counterdrilled Weldment",
|
||||
"description": "A metal weldment consisting of a counterdrilled plate, a centrally mounted housing tube, and four structural support fins.",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "countersunk-plate/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Plate with countersunk holes",
|
||||
"description": "A small mounting plate with a countersunk hole at each end",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "cpu-cooler/main.kcl",
|
||||
"multipleFiles": true,
|
||||
"title": "CPU Cooler",
|
||||
"description": "A CPU cooler is a device designed to dissipate heat generated by the CPU of a computer. They consist of a brazed heat sink made from aluminum or copper alloys, and one or two axial fans to move airflow across the heat sink.",
|
||||
"files": [
|
||||
"fan-housing.kcl",
|
||||
"fan.kcl",
|
||||
"heat-sink.kcl",
|
||||
"main.kcl",
|
||||
"motor.kcl",
|
||||
"mounting-wire.kcl",
|
||||
"parameters.kcl",
|
||||
"removable-sticker.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "cycloidal-gear/main.kcl",
|
||||
@ -227,6 +170,16 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "gear/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Spur Gear",
|
||||
"description": "A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "gear-rack/main.kcl",
|
||||
@ -277,66 +230,6 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "hammer/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Claw Hammer",
|
||||
"description": "Often used in construction, a claw hammer is a levered metal hand tool that is used to strike and extract nails",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "helical-gear/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Helical Gear",
|
||||
"description": "A helical gear is a type of cylindrical gear where the teeth are slanted at an angle relative to the axis of rotation. This greatly reduces noise and wear when transmitting torque across meshed spinning gears",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "helical-planetary-gearset/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Helical Planetary Gearset",
|
||||
"description": "A helical planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are helical rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "helium-tank/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Helium Tank",
|
||||
"description": "A helium tank is a portable pressure vessel used to store and dispense helium gas for a variety of commercial and entertainment purposes",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "herringbone-gear/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Herringbone Gear",
|
||||
"description": "A herringbone, or double-helical gear, is a cylindrical gear type with angled teeth in opposing directions. This allows the quietness and smoothness of a helical gear, without applying a directional load while turning",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "herringbone-planetary-gearset/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Herringbone Planetary Gearset",
|
||||
"description": "A herringbone planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are herringbone rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "hex-nut/main.kcl",
|
||||
@ -424,15 +317,12 @@
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "pillow-block-bearing/main.kcl",
|
||||
"multipleFiles": true,
|
||||
"title": "Pillow Block Bearing",
|
||||
"pathFromProjectDirectoryToFirstFile": "parametric-bearing-pillow-block/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Parametric Bearing Pillow Block",
|
||||
"description": "A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.",
|
||||
"files": [
|
||||
"ball-bearing.kcl",
|
||||
"block.kcl",
|
||||
"main.kcl",
|
||||
"parameters.kcl"
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -482,16 +372,6 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "prosthetic-hip/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Prosthetic Hip",
|
||||
"description": "A prosthetic hip is a surgically implanted ball-and-socket intended to replace a damaged or worn hip joint",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "router-template-cross-bar/main.kcl",
|
||||
@ -532,46 +412,6 @@
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "spur-gear/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Spur Gear",
|
||||
"description": "A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "spur-reduction-gearset/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Spur Reduction Gearset",
|
||||
"description": "A pair of spur gears meshed together, with an equal module and different number of teeth",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "surgical-drill-guide/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Surgical Drill Guide",
|
||||
"description": "A surgical drill guide is a tool used in medical procedures to assist in drilling holes to a desired depth, ensuring proper orientation and minimizing intraosseal pressure",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "tooling-nest-block/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Tooling Nest Block",
|
||||
"description": "A tooling nest block is a block-shaped tool made from high-carbon steel. It features an assortment of conical or hemispherical indentions, which are used to form or shape metal, particularly in crafting bells or jewelry",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "utility-sink/main.kcl",
|
||||
@ -609,15 +449,5 @@
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
},
|
||||
{
|
||||
"file": "main.kcl",
|
||||
"pathFromProjectDirectoryToFirstFile": "wing-spar/main.kcl",
|
||||
"multipleFiles": false,
|
||||
"title": "Wing Spar",
|
||||
"description": "In a fixed-wing aircraft, the spar is often the main structural member of the wing, running spanwise at right angles (or thereabouts depending on wing sweep) to the fuselage. The spar carries flight loads and the weight of the wings while on the ground. Other structural and forming members such as ribs may be attached to the spars",
|
||||
"files": [
|
||||
"main.kcl"
|
||||
]
|
||||
}
|
||||
]
|
51
public/kcl-samples/parametric-bearing-pillow-block/main.kcl
Normal file
@ -0,0 +1,51 @@
|
||||
// Parametric Bearing Pillow Block
|
||||
// A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in, kclVersion = 1.0)
|
||||
|
||||
// Define parameters
|
||||
length = 6
|
||||
width = 4
|
||||
height = 1
|
||||
cbDepth = .25
|
||||
cbDia = .7
|
||||
holeDia = .375
|
||||
padding = 1.5
|
||||
bearingDia = 3
|
||||
|
||||
// Sketch the block body
|
||||
body = startSketchOn(XY)
|
||||
|> startProfile(at = [-width / 2, -length / 2])
|
||||
|> line(endAbsolute = [width / 2, -length / 2])
|
||||
|> line(endAbsolute = [width / 2, length / 2])
|
||||
|> line(endAbsolute = [-width / 2, length / 2])
|
||||
|> close()
|
||||
|> extrude(length = height)
|
||||
counterBoreHoles = startSketchOn(body, face = END)
|
||||
|> circle(
|
||||
center = [
|
||||
-(width / 2 - (padding / 2)),
|
||||
-(length / 2 - (padding / 2))
|
||||
],
|
||||
radius = cbDia / 2,
|
||||
)
|
||||
|> patternLinear2d(instances = 2, distance = length - padding, axis = [0, 1])
|
||||
|> patternLinear2d(instances = 2, distance = width - padding, axis = [1, 0])
|
||||
|> extrude(%, length = -cbDepth)
|
||||
|
||||
boltHoles = startSketchOn(body, face = START)
|
||||
|> circle(
|
||||
center = [
|
||||
-(width / 2 - (padding / 2)),
|
||||
-(length / 2 - (padding / 2))
|
||||
],
|
||||
radius = holeDia / 2,
|
||||
)
|
||||
|> patternLinear2d(instances = 2, distance = length - padding, axis = [0, 1])
|
||||
|> patternLinear2d(instances = 2, distance = width - padding, axis = [1, 0])
|
||||
|> extrude(length = -height + cbDepth)
|
||||
|
||||
centerHole = startSketchOn(body, face = END)
|
||||
|> circle(center = [0, 0], radius = bearingDia / 2)
|
||||
|> extrude(length = -height)
|
@ -1,101 +0,0 @@
|
||||
// Pillow Block Bearing
|
||||
// The ball bearing for the pillow block bearing assembly
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Import Parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Create the sketch of one of the balls. The ball diameter is sized as a fraction of the difference between inner and outer radius of the bearing
|
||||
ballsSketch = startSketchOn(offsetPlane(XY, offset = stockThickness / 2))
|
||||
|> startProfile(at = [bearingBoreDiameter / 2 + 0.1, 0.001])
|
||||
|> arc(angleEnd = 0, angleStart = 180, radius = sphereDia / 2)
|
||||
|> close()
|
||||
|
||||
// Revolve the ball to make a sphere and pattern around the inside wall
|
||||
balls = revolve(ballsSketch, axis = X)
|
||||
|> patternCircular3d(
|
||||
arcDegrees = 360,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
instances = 16,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
// Create the sketch for the chain around the balls
|
||||
chainSketch = startSketchOn(offsetPlane(XY, offset = stockThickness / 2))
|
||||
|> startProfile(at = [
|
||||
bearingBoreDiameter / 2 + 0.1 + sphereDia / 2 - (chainWidth / 2),
|
||||
0.125 * sin(60deg)
|
||||
])
|
||||
|> arc(angleEnd = 60, angleStart = 120, radius = sphereDia / 2)
|
||||
|> line(end = [0, chainThickness])
|
||||
|> line(end = [-chainWidth, 0])
|
||||
|> close()
|
||||
|
||||
// Revolve the chain sketch
|
||||
chainHead = revolve(chainSketch, axis = X)
|
||||
|> patternCircular3d(
|
||||
arcDegrees = 360,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
instances = 16,
|
||||
rotateDuplicates = true,
|
||||
)
|
||||
|
||||
// Create the sketch for the links in between the chains
|
||||
linkSketch = startSketchOn(XZ)
|
||||
|> circle(
|
||||
center = [
|
||||
bearingBoreDiameter / 2 + 0.1 + sphereDia / 2,
|
||||
stockThickness / 2
|
||||
],
|
||||
radius = linkDiameter / 2,
|
||||
)
|
||||
|
||||
// Create the walls of the bearing
|
||||
bearingBody = startSketchOn(XZ)
|
||||
bearingUpper = startProfile(
|
||||
bearingBody,
|
||||
at = [
|
||||
bearingOuterDiameter / 2 - .07,
|
||||
stockThickness
|
||||
],
|
||||
)
|
||||
|> angledLine(angle = -91, length = 0.05)
|
||||
|> xLine(length = -(bearingOuterDiameter / 2 - (bearingBoreDiameter / 2)) + .145)
|
||||
|> yLine(endAbsolute = 0.105)
|
||||
|> xLine(length = -0.025)
|
||||
|> angledLine(angle = 91, endAbsoluteY = profileStartY(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(angle = 360, axis = Y)
|
||||
|> appearance(%, color = "#121212")
|
||||
|
||||
bearingLower = startProfile(bearingBody, at = [bearingBoreDiameter / 2, 0.025])
|
||||
|> xLine(length = 0.05)
|
||||
|> angledLine(angle = 75, length = 0.04, tag = $seg01)
|
||||
|> xLine(length = 0.05)
|
||||
|> angledLine(angle = -75, length = segLen(seg01))
|
||||
|> xLine(endAbsolute = bearingOuterDiameter / 2)
|
||||
|> yLine(length = stockThickness)
|
||||
|> xLine(length = -0.07)
|
||||
|> angledLine(angle = -91, endAbsoluteY = profileStartY(%) + .075)
|
||||
|> xLine(endAbsolute = profileStartX(%) + .05)
|
||||
|> angledLine(angle = 91, endAbsoluteY = stockThickness * 1.25)
|
||||
|> xLine(endAbsolute = profileStartX(%))
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(angle = 360, axis = Y)
|
||||
|> appearance(%, color = "#f0f0f0")
|
||||
|
||||
// Revolve the link sketch
|
||||
revolve(linkSketch, axis = Y, angle = 360 / 16)
|
||||
|> patternCircular3d(
|
||||
arcDegrees = 360,
|
||||
axis = [0, 0, 1],
|
||||
center = [0, 0, 0],
|
||||
instances = 16,
|
||||
rotateDuplicates = true,
|
||||
)
|
@ -1,56 +0,0 @@
|
||||
// Pillow Block Bearing
|
||||
// The machined block for the pillow block bearing assembly. The block is dimensioned using the bolt pattern spacing, and each bolt hole includes a counterbore
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Import Parameters
|
||||
import * from "parameters.kcl"
|
||||
|
||||
// Calculate the dimensions of the block using the specified bolt spacing. The size of the block can be defined by adding a multiple of the counterbore diameter to the bolt spacing
|
||||
blockLength = boltSpacingX + counterboreDiameter + boltDiameter
|
||||
blockWidth = boltSpacingY + counterboreDiameter + boltDiameter
|
||||
|
||||
// Draw the base plate
|
||||
plateSketch = startSketchOn(XY)
|
||||
|> startProfile(at = [-blockLength / 2, -blockWidth / 2])
|
||||
|> angledLine(angle = 0, length = blockLength, tag = $rectangleSegmentA001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = blockWidth, tag = $rectangleSegmentB001)
|
||||
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|
||||
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|
||||
|> close()
|
||||
|> subtract2d(tool = circle(center = [0, 0], radius = bearingOuterDiameter / 2))
|
||||
plateBody = extrude(plateSketch, length = stockThickness)
|
||||
|> appearance(%, color = "#1e62eb")
|
||||
|> fillet(
|
||||
radius = boltDiameter * 1 / 3,
|
||||
tags = [
|
||||
getNextAdjacentEdge(rectangleSegmentB001),
|
||||
getNextAdjacentEdge(rectangleSegmentA001),
|
||||
getNextAdjacentEdge(rectangleSegmentC001),
|
||||
getNextAdjacentEdge(rectangleSegmentD001)
|
||||
],
|
||||
)
|
||||
|
||||
// Define hole positions
|
||||
holePositions = [
|
||||
[-boltSpacingX / 2, -boltSpacingY / 2],
|
||||
[-boltSpacingX / 2, boltSpacingY / 2],
|
||||
[boltSpacingX / 2, -boltSpacingY / 2],
|
||||
[boltSpacingX / 2, boltSpacingY / 2]
|
||||
]
|
||||
|
||||
// Function to create a counterbored hole
|
||||
fn counterbore(@holePosition) {
|
||||
cbBore = startSketchOn(plateBody, face = END)
|
||||
|> circle(center = holePosition, radius = counterboreDiameter / 2)
|
||||
|> extrude(length = -counterboreDepth)
|
||||
cbBolt = startSketchOn(cbBore, face = START)
|
||||
|> circle(center = holePosition, radius = boltDiameter / 2, tag = $hole01)
|
||||
|> extrude(length = -stockThickness + counterboreDepth)
|
||||
|
||||
return { }
|
||||
}
|
||||
|
||||
// Place a counterbored hole at each bolt hole position
|
||||
map(holePositions, f = counterbore)
|
@ -1,14 +0,0 @@
|
||||
// Pillow Block Bearing
|
||||
// A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Import parts and parameters
|
||||
import * from "parameters.kcl"
|
||||
import "ball-bearing.kcl" as ballBearing
|
||||
import "block.kcl" as block
|
||||
|
||||
// Render each part
|
||||
ballBearing
|
||||
block
|
@ -1,18 +0,0 @@
|
||||
// Global parameters for the pillow block bearing
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = in)
|
||||
|
||||
// Export parameters
|
||||
export boltSpacingX = 5
|
||||
export boltSpacingY = 3
|
||||
export boltDiameter = 3 / 8
|
||||
export counterboreDiameter = 3 / 4
|
||||
export counterboreDepth = 3 / 16
|
||||
export stockThickness = .5
|
||||
export bearingBoreDiameter = 1 + 3 / 4
|
||||
export bearingOuterDiameter = bearingBoreDiameter * 1.5
|
||||
export sphereDia = (bearingOuterDiameter - bearingBoreDiameter) / 4
|
||||
export chainWidth = sphereDia / 2
|
||||
export chainThickness = sphereDia / 8
|
||||
export linkDiameter = sphereDia / 4
|
@ -1,176 +0,0 @@
|
||||
// Prosthetic Hip
|
||||
// A prosthetic hip is a surgically implanted ball-and-socket intended to replace a damaged or worn hip joint
|
||||
|
||||
// Set units
|
||||
@settings(defaultLengthUnit = mm)
|
||||
|
||||
// Create the femur using a series of lofts. Draw the profile for the first loft on the XY plane.
|
||||
l1 = 1
|
||||
r1 = 3
|
||||
stemLoftProfile1 = startSketchOn(XY)
|
||||
|> startProfile(at = [-3, -l1 / 2])
|
||||
|> yLine(length = l1, tag = $seg01)
|
||||
|> tangentialArc(angle = -120, radius = r1)
|
||||
|> angledLine(angle = -30, length = segLen(seg01))
|
||||
|> tangentialArc(angle = -120, radius = r1)
|
||||
|> angledLine(angle = 30, length = -segLen(seg01))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the second profile for the lofted femur
|
||||
l2 = 19
|
||||
r2 = 3
|
||||
stemLoftProfile2 = startSketchOn(offsetPlane(XY, offset = 75))
|
||||
|> startProfile(at = [-8, -l2 / 2])
|
||||
|> yLine(length = l2, tag = $seg02)
|
||||
|> tangentialArc(angle = -120, radius = r2)
|
||||
|> angledLine(angle = -30, length = segLen(seg02))
|
||||
|> tangentialArc(angle = -120, radius = r2)
|
||||
|> angledLine(angle = 30, length = -segLen(seg02))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the third profile for the lofted femur
|
||||
p3Z = 110
|
||||
p3A = 25
|
||||
plane003 = {
|
||||
origin = [0, 0.0, p3Z],
|
||||
xAxis = [cos(p3A), 0, sin(p3A)],
|
||||
yAxis = [0.0, 1.0, 0.0]
|
||||
}
|
||||
l3 = 32
|
||||
r3 = 4
|
||||
stemLoftProfile3 = startSketchOn(plane003)
|
||||
|> startProfile(at = [-15.5, -l3 / 2])
|
||||
|> yLine(length = l3, tag = $seg03)
|
||||
|> tangentialArc(angle = -120, radius = r3)
|
||||
|> angledLine(angle = -30, length = segLen(seg03))
|
||||
|> tangentialArc(angle = -120, radius = r3)
|
||||
|> angledLine(angle = 30, length = -segLen(seg03))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the fourth profile for the lofted femur
|
||||
p4Z = 130
|
||||
p4A = 36.5
|
||||
plane004 = {
|
||||
origin = [0, 0.0, p4Z],
|
||||
xAxis = [cos(p4A), 0, sin(p4A)],
|
||||
yAxis = [0.0, 1.0, 0.0]
|
||||
}
|
||||
l4 = 16
|
||||
r4 = 5
|
||||
stemLoftProfile4 = startSketchOn(plane004)
|
||||
|> startProfile(at = [-23, -l4 / 2])
|
||||
|> yLine(length = l4, tag = $seg04)
|
||||
|> tangentialArc(angle = -120, radius = r4)
|
||||
|> angledLine(angle = -30, length = segLen(seg04))
|
||||
|> tangentialArc(angle = -120, radius = r4)
|
||||
|> angledLine(angle = 30, length = -segLen(seg04))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the first profile for the femoral stem
|
||||
p5Z = 140
|
||||
p5A = 36.5
|
||||
plane005 = {
|
||||
origin = [0, 0.0, p5Z],
|
||||
xAxis = [cos(p5A), 0, sin(p5A)],
|
||||
yAxis = [0.0, 1.0, 0.0]
|
||||
}
|
||||
l5 = 1.6
|
||||
r5 = 1.6
|
||||
stemLoftProfile5 = startSketchOn(plane005)
|
||||
|> startProfile(at = [-19.5, -l5 / 2])
|
||||
|> yLine(length = l5, tag = $seg05)
|
||||
|> tangentialArc(angle = -120, radius = r5)
|
||||
|> angledLine(angle = -30, length = segLen(seg05))
|
||||
|> tangentialArc(angle = -120, radius = r5)
|
||||
|> angledLine(angle = 30, length = -segLen(seg05))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the second profile for the femoral stem
|
||||
p6Z = 145
|
||||
p6A = 36.5
|
||||
plane006 = {
|
||||
origin = [0, 0.0, p6Z],
|
||||
xAxis = [cos(p6A), 0, sin(p6A)],
|
||||
yAxis = [0.0, 1.0, 0.0]
|
||||
}
|
||||
l6 = 1
|
||||
r6 = 3
|
||||
stemLoftProfile6 = startSketchOn(plane006)
|
||||
|> startProfile(at = [-23.4, -l6 / 2])
|
||||
|> yLine(length = l6, tag = $seg06)
|
||||
|> tangentialArc(angle = -120, radius = r6)
|
||||
|> angledLine(angle = -30, length = segLen(seg06))
|
||||
|> tangentialArc(angle = -120, radius = r6)
|
||||
|> angledLine(angle = 30, length = -segLen(seg06))
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|
||||
// Draw the third profile for the femoral stem
|
||||
stemTab = clone(stemLoftProfile6)
|
||||
|> extrude(%, length = 6)
|
||||
|
||||
// Loft the femur using all profiles in sequence
|
||||
|
||||
femur = loft([
|
||||
stemLoftProfile1,
|
||||
stemLoftProfile2,
|
||||
stemLoftProfile3,
|
||||
stemLoftProfile4
|
||||
])
|
||||
|
||||
// Loft the femoral stem
|
||||
femoralStem = loft([
|
||||
clone(stemLoftProfile4),
|
||||
stemLoftProfile5,
|
||||
stemLoftProfile6
|
||||
])
|
||||
|
||||
// Revolve a hollow socket to represent the femoral head
|
||||
femoralHead = startSketchOn(XZ)
|
||||
|> startProfile(at = [4, 0])
|
||||
|> xLine(length = 1.1)
|
||||
|> tangentialArc(angle = 90, radius = 3)
|
||||
|> tangentialArc(angle = 90, radius = 8)
|
||||
|> yLine(length = -1)
|
||||
|> tangentialArc(angle = 90, radius = .1)
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(angle = 360, axis = Y)
|
||||
|> translate(x = -16.1, z = 133)
|
||||
|> rotate(pitch = -36.5)
|
||||
|> appearance(color = "#d64398")
|
||||
|
||||
// Place a polyethylene cap over the femoral head
|
||||
polyethyleneInsert = startSketchOn(XZ)
|
||||
|> startProfile(at = [8.36, 3])
|
||||
|> xLine(length = 0.5)
|
||||
|> yLine(length = .1)
|
||||
|> tangentialArc(endAbsolute = [0.1, 12.55])
|
||||
|> yLine(length = -0.85)
|
||||
|> xLine(length = 0.58)
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(angle = 360, axis = Y)
|
||||
|> translate(x = -16.1, z = 133)
|
||||
|> rotate(pitch = -36.5)
|
||||
|> appearance(color = "#3cadd3")
|
||||
|
||||
// Place a ceramic or metal shell over the cap
|
||||
acetabularShell = startSketchOn(XZ)
|
||||
|> startProfile(at = [8.84, 4.7])
|
||||
|> xLine(length = 1)
|
||||
|> yLine(length = .5)
|
||||
|> tangentialArc(endAbsolute = [0.1, 14])
|
||||
|> yLine(endAbsolute = 12.56)
|
||||
|> xLine(length = 0.1)
|
||||
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|
||||
|> close()
|
||||
|> revolve(angle = 360, axis = Y)
|
||||
|> translate(x = -16.1, z = 133)
|
||||
|> rotate(pitch = -36.5)
|
||||
|> appearance(color = "#a55e2c")
|
Before Width: | Height: | Size: 126 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 94 KiB |
Before Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 113 KiB |
Before Width: | Height: | Size: 118 KiB After Width: | Height: | Size: 118 KiB |
Before Width: | Height: | Size: 54 KiB |
Before Width: | Height: | Size: 101 KiB |
Before Width: | Height: | Size: 139 KiB |
Before Width: | Height: | Size: 76 KiB |
Before Width: | Height: | Size: 147 KiB |
Before Width: | Height: | Size: 157 KiB |