Compare commits

..

3 Commits

625 changed files with 451173 additions and 225258 deletions

View File

@ -13,7 +13,7 @@ env:
IS_NIGHTLY: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:

View File

@ -234,16 +234,10 @@ jobs:
shardTotal: 8
- os: namespace-profile-macos-8-cores
shardIndex: 1
shardTotal: 2
- os: namespace-profile-macos-8-cores
shardIndex: 2
shardTotal: 2
shardTotal: 1
- os: windows-latest-8-cores
shardIndex: 1
shardTotal: 2
- os: windows-latest-8-cores
shardIndex: 2
shardTotal: 2
shardTotal: 1
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4

View File

@ -213,13 +213,7 @@ jobs:
if: ${{ github.event_name != 'release' && github.event_name != 'schedule' }}
run: npm run playwright install chromium --with-deps
- name: Download internal KCL samples
run: git clone --depth=1 https://x-access-token:${{ secrets.GH_PAT_KCL_SAMPLES_INTERNAL }}@github.com/KittyCAD/kcl-samples-internal public/kcl-samples/internal
- name: Regenerate KCL samples manifest
run: cd rust/kcl-lib && EXPECTORATE=overwrite cargo test generate_manifest
- name: Check public and internal KCL samples
- name: run unit tests for kcl samples
if: ${{ github.event_name != 'release' && github.event_name != 'schedule' }}
run: npm run test:unit:kcl-samples
env:

View File

@ -34,7 +34,7 @@ The 3D view in Design Studio is just a video stream from our hosted geometry eng
- WebSockets (via [KittyCAD TS client](https://github.com/KittyCAD/kittycad.ts))
- Code Editor
- [CodeMirror](https://codemirror.net/)
- [Custom WASM LSP Server](https://github.com/KittyCAD/modeling-app/tree/main/rust/kcl-lib/src/lsp/kcl)
- Custom WASM LSP Server
- Modeling
- [KittyCAD TypeScript client](https://github.com/KittyCAD/kittycad.ts)

View File

@ -1,32 +0,0 @@
---
title: "Arrays and ranges"
excerpt: "Documentation of the KCL language for the Zoo Design Studio."
layout: manual
---
Arrays are sequences of values.
Arrays can be written out as *array literals* using a sequence of expressions surrounded by square brackets, e.g., `['hello', 'world']` is an array of strings, `[x, x + 1, x + 2]` is an array of numbers (assuming `x` is a number), `[]` is an empty array, and `['hello', 42, true]` is a mixed array.
A value in an array can be accessed by indexing using square brackets where the index is a number, for example, `arr[0]`, `arr[42]`, `arr[i]` (where `arr` is an array and `i` is a (whole) number).
There are some useful functions for working with arrays in the standard library, see [std::array](/docs/kcl-std/modules/std-array) for details.
## Array types
Arrays have their own types: `[T]` where `T` is the type of the elements of the array, for example, `[string]` means an array of `string`s and `[any]` means an array of any values.
Array types can also include length information: `[T; n]` denotes an array of length `n` (where `n` is a number literal) and `[T; 1+]` denotes an array whose length is at least one (i.e., a non-empty array). E.g., `[string; 1+]` and `[number(mm); 3]` are valid array types.
## Ranges
Ranges are a succinct way to create an array of sequential numbers. The syntax is `[start .. end]` where `start` and `end` evaluate to whole numbers (integers). Ranges are inclusive of the start and end. The end must be greater than the start. Examples:
```kcl,norun
[0..3] // [0, 1, 2, 3]
[3..10] // [3, 4, 5, 6, 7, 8, 9, 10]
x = 2
[x..x+1] // [2, 3]
```
The units of the start and end numbers must be the same and the result inherits those units.

View File

@ -14,7 +14,6 @@ things in a more tutorial fashion. See also our documentation of the [standard l
* [Values and types](/docs/kcl-lang/types)
* [Numeric types and units](/docs/kcl-lang/numeric)
* [Functions](/docs/kcl-lang/functions)
* [Arrays and ranges](/docs/kcl-lang/arrays)
* [Projects and modules](/docs/kcl-lang/modules)
* [Attributes](/docs/kcl-lang/attributes)
* [Importing geometry from other CAD systems](/docs/kcl-lang/foreign-imports)

View File

@ -19,6 +19,18 @@ myBool = false
Currently you cannot redeclare a constant.
## Arrays
An array is defined with `[]` braces. What is inside the brackets can
be of any type. For example, the following is completely valid:
```
myArray = ["thing", 2, false]
```
If you want to get a value from an array you can use the index like so:
`myArray[0]`.
## Objects
@ -28,8 +40,8 @@ An object is defined with `{}` braces. Here is an example object:
myObj = { a = 0, b = "thing" }
```
To get the property of an object, you can call `myObj.a`, which in the above
example returns 0.
We support two different ways of getting properties from objects, you can call
`myObj.a` or `myObj["a"]` both work.
## `ImportedGeometry`

File diff suppressed because one or more lines are too long

View File

@ -10,7 +10,7 @@ Apply a function to every element of a list.
```kcl
map(
@array: [any],
f: fn(any): any,
f: Fn,
): [any]
```
@ -22,7 +22,7 @@ Given a list like `[a, b, c]`, and a function like `f`, returns
| Name | Type | Description | Required |
|----------|------|-------------|----------|
| `array` | [`[any]`](/docs/kcl-std/types/std-types-any) | Input array. The output array is this input array, but every element has had the function `f` run on it. | Yes |
| `f` | [`fn(any): any`](/docs/kcl-std/types/std-types-fn) | A function. The output array is just the input array, but `f` has been run on every item. | Yes |
| `f` | [`Fn`](/docs/kcl-std/types/std-types-Fn) | A function. The output array is just the input array, but `f` has been run on every item. | Yes |
### Returns

View File

@ -11,7 +11,7 @@ layout: manual
reduce(
@array: [any],
initial: any,
f: fn(any, accum: any): any,
f: Fn,
): [any]
```
@ -24,7 +24,7 @@ using the previous value and the element.
|----------|------|-------------|----------|
| `array` | [`[any]`](/docs/kcl-std/types/std-types-any) | Each element of this array gets run through the function `f`, combined with the previous output from `f`, and then used for the next run. | Yes |
| `initial` | [`any`](/docs/kcl-std/types/std-types-any) | The first time `f` is run, it will be called with the first item of `array` and this initial starting value. | Yes |
| `f` | [`fn(any, accum: any): any`](/docs/kcl-std/types/std-types-fn) | Run once per item in the input `array`. This function takes an item from the array, and the previous output from `f` (or `initial` on the very first run). The final time `f` is run, its output is returned as the final output from `reduce`. | Yes |
| `f` | [`Fn`](/docs/kcl-std/types/std-types-Fn) | Run once per item in the input `array`. This function takes an item from the array, and the previous output from `f` (or `initial` on the very first run). The final time `f` is run, its output is returned as the final output from `reduce`. | Yes |
### Returns

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -140,13 +140,13 @@ See also the [types overview](/docs/kcl-lang/types)
* [**Primitive types**](/docs/kcl-lang/types)
* [`End`](/docs/kcl-lang/types#End)
* [`Fn`](/docs/kcl-std/types/std-types-Fn)
* [`ImportedGeometry`](/docs/kcl-std/types/std-types-ImportedGeometry)
* [`Start`](/docs/kcl-lang/types#Start)
* [`TagDeclarator`](/docs/kcl-lang/types#TagDeclarator)
* [`TagIdentifier`](/docs/kcl-lang/types#TagIdentifier)
* [`any`](/docs/kcl-std/types/std-types-any)
* [`bool`](/docs/kcl-std/types/std-types-bool)
* [`fn`](/docs/kcl-std/types/std-types-fn)
* [`number`](/docs/kcl-std/types/std-types-number)
* [`string`](/docs/kcl-std/types/std-types-string)
* [`tag`](/docs/kcl-std/types/std-types-tag)

File diff suppressed because one or more lines are too long

View File

@ -17,6 +17,7 @@ Types can (optionally) be used to describe a function's arguments and returned v
* [`Axis3d`](/docs/kcl-std/types/std-types-Axis3d)
* [`Edge`](/docs/kcl-std/types/std-types-Edge)
* [`Face`](/docs/kcl-std/types/std-types-Face)
* [`Fn`](/docs/kcl-std/types/std-types-Fn)
* [`Helix`](/docs/kcl-std/types/std-types-Helix)
* [`ImportedGeometry`](/docs/kcl-std/types/std-types-ImportedGeometry)
* [`Plane`](/docs/kcl-std/types/std-types-Plane)
@ -26,7 +27,6 @@ Types can (optionally) be used to describe a function's arguments and returned v
* [`Solid`](/docs/kcl-std/types/std-types-Solid)
* [`any`](/docs/kcl-std/types/std-types-any)
* [`bool`](/docs/kcl-std/types/std-types-bool)
* [`fn`](/docs/kcl-std/types/std-types-fn)
* [`number`](/docs/kcl-std/types/std-types-number)
* [`string`](/docs/kcl-std/types/std-types-string)
* [`tag`](/docs/kcl-std/types/std-types-tag)

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -122515,7 +122515,7 @@
"deprecated": false,
"examples": [
[
"// Loft a square and a triangle.\nsquareSketch = startSketchOn(XY)\n |> startProfile(at = [-100, 200])\n |> line(end = [200, 0])\n |> line(end = [0, -200])\n |> line(end = [-200, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\ntriangleSketch = startSketchOn(offsetPlane(XY, offset = 75))\n |> startProfile(at = [0, 125])\n |> line(end = [-15, -30])\n |> line(end = [30, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\nloft([triangleSketch, squareSketch])",
"// Loft a square and a triangle.\nsquareSketch = startSketchOn(XY)\n |> startProfile(at = [-100, 200])\n |> line(end = [200, 0])\n |> line(end = [0, -200])\n |> line(end = [-200, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\ntriangleSketch = startSketchOn(offsetPlane(XY, offset = 75))\n |> startProfile(at = [0, 125])\n |> line(end = [-15, -30])\n |> line(end = [30, 0])\n |> line(endAbsolute = [profileStartX(%), profileStartY(%)])\n |> close()\n\nloft([squareSketch, triangleSketch])",
false
],
[

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,5 +1,5 @@
---
title: "fn"
title: "Fn"
subtitle: "Type in std::types"
excerpt: "The type of any function in KCL."
layout: manual

View File

@ -155,12 +155,6 @@ export class CmdBarFixture {
}
}
closeCmdBar = async () => {
const cmdBarCloseBtn = this.page.getByTestId('command-bar-close-button')
await cmdBarCloseBtn.click()
await expect(this.cmdBarElement).not.toBeVisible()
}
get cmdSearchInput() {
return this.page.getByTestId('cmd-bar-search')
}
@ -304,27 +298,4 @@ export class CmdBarFixture {
`Monitoring text-to-cad API requests. Output will be saved to: ${outputPath}`
)
}
async toBeOpened() {
// Check that the command bar is opened
await expect(this.cmdBarElement).toBeVisible({ timeout: 10_000 })
}
async expectArgValue(value: string) {
// Check the placeholder project name exists
const actualArgument = await this.cmdBarElement
.getByTestId('cmd-bar-arg-value')
.inputValue()
const expectedArgument = value
expect(actualArgument).toBe(expectedArgument)
}
async expectCommandName(value: string) {
// Check the placeholder project name exists
const actual = await this.cmdBarElement
.getByTestId('command-name')
.textContent()
const expected = value
expect(actual).toBe(expected)
}
}

View File

@ -24,7 +24,6 @@ export class HomePageFixture {
projectTextName!: Locator
sortByDateBtn!: Locator
sortByNameBtn!: Locator
appHeader!: Locator
tutorialBtn!: Locator
constructor(page: Page) {
@ -45,7 +44,6 @@ export class HomePageFixture {
this.sortByDateBtn = this.page.getByTestId('home-sort-by-modified')
this.sortByNameBtn = this.page.getByTestId('home-sort-by-name')
this.appHeader = this.page.getByTestId('app-header')
this.tutorialBtn = this.page.getByTestId('home-tutorial-button')
}
@ -127,11 +125,4 @@ export class HomePageFixture {
await this.createAndGoToProject(name)
}
isNativeFileMenuCreated = async () => {
await expect(this.appHeader).toHaveAttribute(
'data-native-file-menu',
'true'
)
}
}

View File

@ -46,7 +46,6 @@ export class SceneFixture {
public networkToggleConnected!: Locator
public engineConnectionsSpinner!: Locator
public startEditSketchBtn!: Locator
public appHeader!: Locator
constructor(page: Page) {
this.page = page
@ -58,7 +57,6 @@ export class SceneFixture {
this.startEditSketchBtn = page
.getByRole('button', { name: 'Start Sketch' })
.or(page.getByRole('button', { name: 'Edit Sketch' }))
this.appHeader = this.page.getByTestId('app-header')
}
private _serialiseScene = async (): Promise<SceneSerialised> => {
const camera = await this.getCameraInfo()
@ -282,13 +280,6 @@ export class SceneFixture {
await expect(buttonToTest).toBeVisible()
await buttonToTest.click()
}
isNativeFileMenuCreated = async () => {
await expect(this.appHeader).toHaveAttribute(
'data-native-file-menu',
'true'
)
}
}
function isColourArray(

File diff suppressed because it is too large Load Diff

View File

@ -1818,6 +1818,7 @@ test(
'extrude-custom-plane.kcl',
'extrude-inside-fn-with-tags.kcl',
'fillet-and-shell.kcl',
'fillet_duplicate_tags.kcl',
'focusrite_scarlett_mounting_bracket.kcl',
'function_sketch.kcl',
'function_sketch_with_position.kcl',
@ -1825,6 +1826,7 @@ test(
'helix_defaults.kcl',
'helix_defaults_negative_extrude.kcl',
'helix_with_length.kcl',
'i_shape.kcl',
'kittycad_svg.kcl',
'lego.kcl',
'lsystem.kcl',

View File

@ -329,10 +329,10 @@ extrude002 = extrude(profile002, length = 150)
)
const websocketPromise = page.waitForEvent('websocket')
await toolbar.closePane('code')
await page.setBodyDimensions({ width: 1000, height: 500 })
await homePage.goToModelingScene()
await toolbar.closePane('code')
const websocket = await websocketPromise
await scene.connectionEstablished()
@ -552,7 +552,7 @@ extrude002 = extrude(profile002, length = 150)
test(
`Network health indicator only appears in modeling view`,
{ tag: '@electron' },
async ({ context, page }) => {
async ({ context, page }, testInfo) => {
await context.folderSetupFn(async (dir) => {
const bracketDir = path.join(dir, 'bracket')
await fsp.mkdir(bracketDir, { recursive: true })
@ -561,7 +561,9 @@ extrude002 = extrude(profile002, length = 150)
path.join(bracketDir, 'main.kcl')
)
})
await page.setBodyDimensions({ width: 1200, height: 500 })
const u = await getUtils(page)
// Locators
const projectsHeading = page.getByRole('heading', {
@ -581,8 +583,10 @@ extrude002 = extrude(profile002, length = 150)
})
await test.step('Check the modeling view', async () => {
await expect(projectsHeading).not.toBeVisible()
await expect(networkHealthIndicator).toBeVisible()
await expect(networkHealthIndicator).toContainText('Problem')
await u.waitForPageLoad()
await expect(networkHealthIndicator).toContainText('Connected')
})
}
)

View File

@ -3496,73 +3496,6 @@ profile001 = startProfile(sketch001, at = [-102.72, 237.44])
).toBeVisible()
})
// Ensure feature tree is not showing previous file's content when switching to a file with KCL errors.
test('Feature tree shows correct sketch count per file', async ({
context,
homePage,
scene,
toolbar,
cmdBar,
page,
}) => {
const u = await getUtils(page)
// Setup project with files.
const GOOD_KCL = `sketch001 = startSketchOn(XZ)
profile001 = startProfile(sketch001, at = [220.81, 253.8])
|> line(end = [132.84, -151.31])
|> line(end = [25.51, 167.15])
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
sketch002 = startSketchOn(XZ)
profile002 = startProfile(sketch002, at = [158.35, -70.82])
|> line(end = [73.9, -152.19])
|> line(end = [85.33, 135.48])
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()`
const ERROR_KCL = `sketch001 = startSketchOn(XZ)
profile001 = startProfile(sketch001, at = [127.56, 179.02])
|> line(end = [132.84, -112.6])
|> line(end = [85.33, 234.01])
|> line(enfd = [-137.23, -54.55])`
await context.folderSetupFn(async (dir) => {
const projectDir = path.join(dir, 'multi-file-sketch-test')
await fs.mkdir(projectDir, { recursive: true })
await Promise.all([
fs.writeFile(path.join(projectDir, 'good.kcl'), GOOD_KCL, 'utf-8'),
fs.writeFile(path.join(projectDir, 'error.kcl'), ERROR_KCL, 'utf-8'),
])
})
await page.setBodyDimensions({ width: 1000, height: 800 })
await homePage.openProject('multi-file-sketch-test')
await scene.connectionEstablished()
await scene.settled(cmdBar)
await u.closeDebugPanel()
await toolbar.openFeatureTreePane()
await toolbar.openPane('files')
await toolbar.openFile('good.kcl')
await expect(
toolbar.featureTreePane.getByRole('button', { name: 'Sketch' })
).toHaveCount(2)
await toolbar.openFile('error.kcl')
// Ensure filetree is populated
await scene.settled(cmdBar)
await expect(
toolbar.featureTreePane.getByRole('button', { name: 'Sketch' })
).toHaveCount(0)
})
test('adding a syntax error, recovers after fixing', async ({
page,
homePage,

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

After

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 132 KiB

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 116 KiB

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 64 KiB

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 63 KiB

View File

@ -21,7 +21,6 @@ export const token = process.env.token || ''
import type { ProjectConfiguration } from '@rust/kcl-lib/bindings/ProjectConfiguration'
import type { ElectronZoo } from '@e2e/playwright/fixtures/fixtureSetup'
import { isErrorWhitelisted } from '@e2e/playwright/lib/console-error-whitelist'
import { TEST_SETTINGS, TEST_SETTINGS_KEY } from '@e2e/playwright/storageStates'
import { test } from '@e2e/playwright/zoo-test'
@ -810,6 +809,8 @@ export const doExport = async (
await page.getByRole('button', { name: 'Submit command' }).click()
// This usually happens immediately after. If we're too slow we don't
// catch it.
await expect(page.getByText('Exported successfully')).toBeVisible()
if (exportFrom === 'sidebarButton' || exportFrom === 'commandBar') {
@ -1150,77 +1151,3 @@ export function perProjectSettingsToToml(
// eslint-disable-next-line no-restricted-syntax
return TOML.stringify(settings as any)
}
export async function clickElectronNativeMenuById(
tronApp: ElectronZoo,
menuId: string
) {
const clickWasTriggered = await tronApp.electron.evaluate(
async ({ app }, menuId) => {
if (!app || !app.applicationMenu) {
return false
}
const menu = app.applicationMenu.getMenuItemById(menuId)
if (!menu) return false
menu.click()
return true
},
menuId
)
expect(clickWasTriggered).toBe(true)
}
export async function findElectronNativeMenuById(
tronApp: ElectronZoo,
menuId: string
) {
const found = await tronApp.electron.evaluate(async ({ app }, menuId) => {
if (!app || !app.applicationMenu) {
return false
}
const menu = app.applicationMenu.getMenuItemById(menuId)
if (!menu) return false
return true
}, menuId)
expect(found).toBe(true)
}
export async function openSettingsExpectText(page: Page, text: string) {
const settings = page.getByTestId('settings-dialog-panel')
await expect(settings).toBeVisible()
// You are viewing the user tab
const actualText = settings.getByText(text)
await expect(actualText).toBeVisible()
}
export async function openSettingsExpectLocator(page: Page, selector: string) {
const settings = page.getByTestId('settings-dialog-panel')
await expect(settings).toBeVisible()
// You are viewing the keybindings tab
const settingsLocator = settings.locator(selector)
await expect(settingsLocator).toBeVisible()
}
/**
* A developer helper function to make playwright send all the console logs to stdout
* Call this within your E2E test and pass in the page or the tronApp to get as many
* logs piped to stdout for debugging
*/
export async function enableConsoleLogEverything({
page,
tronApp,
}: { page?: Page; tronApp?: ElectronZoo }) {
page?.on('console', (msg) => {
console.log(`[Page-log]: ${msg.text()}`)
})
tronApp?.electron.on('window', async (electronPage) => {
electronPage.on('console', (msg) => {
console.log(`[Renderer] ${msg.type()}: ${msg.text()}`)
})
})
tronApp?.electron.on('console', (msg) => {
console.log(`[Main] ${msg.type()}: ${msg.text()}`)
})
}

View File

@ -33,8 +33,8 @@ test.describe('Testing loading external models', () => {
// Locators and constants
const newSample = {
file: 'pillow-block-bearing' + FILE_EXT,
title: 'Pillow Block Bearing',
file: 'parametric-bearing-pillow-block' + FILE_EXT,
title: 'Parametric Bearing Pillow Block',
}
const commandBarButton = page.getByRole('button', { name: 'Commands' })
const samplesCommandOption = page.getByRole('option', {
@ -100,9 +100,9 @@ test.describe('Testing loading external models', () => {
// Locators and constants
const sampleOne = {
file: 'ball-bearing' + FILE_EXT,
title: 'Ball Bearing',
file1: 'ball-bearing-1' + FILE_EXT,
file: 'parametric-bearing-pillow-block' + FILE_EXT,
title: 'Parametric Bearing Pillow Block',
file1: 'parametric-bearing-pillow-block-1' + FILE_EXT,
}
const projectCard = page.getByRole('link', { name: 'bracket' })
const overwriteWarning = page.getByText(

View File

@ -237,7 +237,7 @@ test.describe('Testing segment overlays', () => {
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await page.waitForTimeout(500)
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
const clickUnconstrained = _clickUnconstrained(page, editor)
const clickConstrained = _clickConstrained(page, editor)
@ -402,7 +402,7 @@ test.describe('Testing segment overlays', () => {
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await page.waitForTimeout(500)
await expect(page.getByTestId('segment-overlay')).toHaveCount(9)
await expect(page.getByTestId('segment-overlay')).toHaveCount(8)
const clickUnconstrained = _clickUnconstrained(page, editor)
@ -482,7 +482,7 @@ test.describe('Testing segment overlays', () => {
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await page.waitForTimeout(500)
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
const clickUnconstrained = _clickUnconstrained(page, editor)
const clickConstrained = _clickConstrained(page, editor)
@ -602,7 +602,7 @@ test.describe('Testing segment overlays', () => {
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await page.waitForTimeout(500)
await expect(page.getByTestId('segment-overlay')).toHaveCount(14)
await expect(page.getByTestId('segment-overlay')).toHaveCount(13)
const clickUnconstrained = _clickUnconstrained(page, editor)
const clickConstrained = _clickConstrained(page, editor)
@ -808,7 +808,7 @@ profile001 = startProfile(sketch001, at = [56.37, 120.33])
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await page.waitForTimeout(500)
await expect(page.getByTestId('segment-overlay')).toHaveCount(6)
await expect(page.getByTestId('segment-overlay')).toHaveCount(5)
const clickUnconstrained = _clickUnconstrained(page, editor)
const clickConstrained = _clickConstrained(page, editor)
@ -1307,7 +1307,7 @@ part001 = startSketchOn(XZ)
.toBe(true)
await page.getByRole('button', { name: 'Edit Sketch' }).click()
await expect(page.getByTestId('segment-overlay')).toHaveCount(4)
await expect(page.getByTestId('segment-overlay')).toHaveCount(3)
const segmentToDelete = await u.getBoundingBox(
`[data-overlay-index="0"]`
)

View File

@ -905,7 +905,7 @@ test.describe('Mocked Text-to-CAD API tests', { tag: ['@skipWin'] }, () => {
await page.keyboard.press('Enter')
// Go into the project that was created from Text to CAD
await homePage.openProject(projectName)
await page.getByText(projectName).click()
await expect(page.getByTestId('app-header-project-name')).toBeVisible()
await expect(page.getByTestId('app-header-project-name')).toContainText(
@ -951,7 +951,7 @@ test.describe('Mocked Text-to-CAD API tests', { tag: ['@skipWin'] }, () => {
await page.keyboard.press('Enter')
// Go into the project that was created from Text to CAD
await homePage.openProject(projectName)
await page.getByText(projectName).click()
await page.getByRole('button', { name: 'Accept' }).click()

View File

@ -74,7 +74,7 @@
LIBCLANG_PATH = "${pkgs.libclang.lib}/lib";
ELECTRON_OVERRIDE_DIST_PATH =
if pkgs.stdenv.isDarwin
then "${pkgs.electron}/Applications/Electron.app/Contents/MacOS/"
then "${pkgs.electron}/Applications"
else "${pkgs.electron}/bin";
PLAYWRIGHT_SKIP_VALIDATE_HOST_REQUIREMENTS = true;
PLAYWRIGHT_CHROMIUM_EXECUTABLE_PATH = "${pkgs.playwright-driver.browsers}/chromium-1091/chrome-linux/chrome";

View File

@ -15,10 +15,6 @@ export default function lspGoToDefinitionExt(
{
key: 'F12',
run: (view) => {
if (!plugin) {
return false
}
const value = view.plugin(plugin)
if (!value) return false

View File

@ -47,7 +47,7 @@ import {
import { isArray } from '../lib/utils'
import lspGoToDefinitionExt from './go-to-definition'
import lspRenameExt from './rename'
import lspSignatureHelpExt from './signature-help'
import { lspSignatureHelpExt, setSignatureTooltip } from './signature-help'
const useLast = (values: readonly any[]) => values.reduce((_, v) => v, '')
export const docPathFacet = Facet.define<string, string>({
@ -695,6 +695,8 @@ export class LanguageServerPlugin implements PluginValue {
// Create the tooltip container
const dom = this.createTooltipContainer()
dom.className =
'documentation hover-tooltip cm-tooltip cm-signature-tooltip'
// Get active signature
const activeSignatureIndex = result.activeSignature ?? 0
@ -769,42 +771,7 @@ export class LanguageServerPlugin implements PluginValue {
)
if (tooltip) {
// Create and show the tooltip manually
const { pos: tooltipPos, create } = tooltip
const tooltipView = create(view)
const tooltipElement = document.createElement('div')
tooltipElement.className =
'documentation hover-tooltip cm-tooltip cm-signature-tooltip'
tooltipElement.style.position = 'absolute'
tooltipElement.style.zIndex = '99999999'
tooltipElement.appendChild(tooltipView.dom)
// Position the tooltip
const coords = view.coordsAtPos(tooltipPos)
if (coords) {
tooltipElement.style.left = `${coords.left}px`
tooltipElement.style.top = `${coords.bottom + 5}px`
// Add to DOM
document.body.appendChild(tooltipElement)
// Remove after a delay or on editor changes
setTimeout(() => {
removeTooltip() // Use the function that also cleans up event listeners
}, 10000) // Show for 10 seconds
// Also remove on any user input
const removeTooltip = () => {
tooltipElement.remove()
view.dom.removeEventListener('keydown', removeTooltip)
view.dom.removeEventListener('mousedown', removeTooltip)
}
view.dom.addEventListener('keydown', removeTooltip)
view.dom.addEventListener('mousedown', removeTooltip)
}
view.dispatch({ effects: setSignatureTooltip.of(tooltip) })
}
}
@ -1034,15 +1001,8 @@ export class LanguageServerPlugin implements PluginValue {
continue
}
// Sort edits in reverse order to avoid position shifts
const sortedEdits = docChange.edits.sort((a, b) => {
const posA = posToOffset(view.state.doc, a.range.start)
const posB = posToOffset(view.state.doc, b.range.start)
return (posB ?? 0) - (posA ?? 0)
})
// Create a single transaction with all changes
const changes = sortedEdits.map((edit) => ({
const changes = docChange.edits.map((edit) => ({
from: posToOffset(view.state.doc, edit.range.start) ?? 0,
to: posToOffset(view.state.doc, edit.range.end) ?? 0,
insert: edit.newText,
@ -1070,15 +1030,8 @@ export class LanguageServerPlugin implements PluginValue {
continue
}
// Sort changes in reverse order to avoid position shifts
const sortedChanges = changes.sort((a, b) => {
const posA = posToOffset(view.state.doc, a.range.start)
const posB = posToOffset(view.state.doc, b.range.start)
return (posB ?? 0) - (posA ?? 0)
})
// Create a single transaction with all changes
const changeSpecs = sortedChanges.map((change) => ({
const changeSpecs = changes.map((change) => ({
from: posToOffset(view.state.doc, change.range.start) ?? 0,
to: posToOffset(view.state.doc, change.range.end) ?? 0,
insert: change.newText,

View File

@ -15,8 +15,6 @@ export default function lspRenameExt(
{
key: 'F2',
run: (view) => {
if (!plugin) return false
const value = view.plugin(plugin)
if (!value) return false

View File

@ -1,12 +1,68 @@
import type { Extension } from '@codemirror/state'
import { Prec } from '@codemirror/state'
import type { ViewPlugin } from '@codemirror/view'
import { EditorView } from '@codemirror/view'
import { keymap } from '@codemirror/view'
import {
type EditorState,
type Extension,
Prec,
StateEffect,
StateField,
} from '@codemirror/state'
import type { Tooltip } from '@codemirror/view'
import { type ViewPlugin, showTooltip } from '@codemirror/view'
import { EditorView, keymap } from '@codemirror/view'
import { syntaxTree } from '@codemirror/language'
import { type SyntaxNode } from '@lezer/common'
import type { LanguageServerPlugin } from './lsp'
export default function lspSignatureHelpExt(
export const setSignatureTooltip = StateEffect.define<Tooltip | null>()
function findParenthesized(
state: EditorState,
pos: number,
side: 1 | 0 | -1 = 0
) {
let context: SyntaxNode | null = syntaxTree(state).resolveInner(pos, side)
while (context) {
const open = context.firstChild
if (
open &&
open.from == context.from &&
open.to == context.from + 1 &&
state.doc.sliceString(open.from, open.to) == '('
)
break
context = context.parent
}
return context
}
const signatureTooltip = StateField.define<Tooltip | null>({
create: () => null,
update(value, tr) {
for (let effect of tr.effects) {
if (effect.is(setSignatureTooltip)) return effect.value
}
if (!value) return null
if (tr.selection) {
let parens = findParenthesized(tr.state, tr.selection.main.head)
if (!parens || parens.from != value.pos) return null
}
return tr.docChanged
? { ...value, pos: tr.changes.mapPos(value.pos) }
: value
},
provide: (f) => [
showTooltip.from(f),
EditorView.domEventHandlers({
blur: (_, view) => {
if (view.state.field(f)) {
view.dispatch({ effects: setSignatureTooltip.of(null) })
}
},
}),
],
})
export function lspSignatureHelpExt(
plugin: ViewPlugin<LanguageServerPlugin>
): Extension {
return [
@ -15,16 +71,16 @@ export default function lspSignatureHelpExt(
{
key: 'Mod-Shift-Space',
run: (view) => {
if (!plugin) {
return false
}
const value = view.plugin(plugin)
if (!value) return false
const pos = view.state.selection.main.head
const parens = findParenthesized(
view.state,
view.state.selection.main.head
)
if (!parens) return false
// eslint-disable-next-line @typescript-eslint/no-floating-promises
value.showSignatureHelpTooltip(view, pos)
value.showSignatureHelpTooltip(view, parens.from)
return true
},
},
@ -32,17 +88,10 @@ export default function lspSignatureHelpExt(
),
// eslint-disable-next-line @typescript-eslint/no-misused-promises
EditorView.updateListener.of(async (update) => {
if (!(plugin && update.docChanged)) return
if (!update.docChanged) return
// Make sure this is a valid user typing event.
let isRelevant = false
for (const tr of update.transactions) {
if (tr.isUserEvent('input')) {
isRelevant = true
}
}
if (!isRelevant) {
if (!update.transactions.some((tr) => tr.isUserEvent('input'))) {
// We only want signature help on user events.
return
}
@ -59,18 +108,16 @@ export default function lspSignatureHelpExt(
// Check if changes include trigger characters
const changes = update.changes
let shouldTrigger = false
let triggerPos = -1
changes.iterChanges((_fromA, _toA, _fromB, toB, inserted) => {
if (shouldTrigger) return // Skip if already found a trigger
if (triggerPos >= 0) return // Skip if already found a trigger
const text = inserted.toString()
if (!text) return
for (const char of triggerChars) {
if (text.includes(char)) {
shouldTrigger = true
triggerPos = toB
triggerCharacter = char
break
@ -78,13 +125,17 @@ export default function lspSignatureHelpExt(
}
})
if (shouldTrigger && triggerPos >= 0) {
await value.showSignatureHelpTooltip(
update.view,
triggerPos,
triggerCharacter
)
if (triggerPos >= 0) {
const parens = findParenthesized(update.view.state, triggerPos, -1)
if (parens) {
await value.showSignatureHelpTooltip(
update.view,
parens.from,
triggerCharacter
)
}
}
}),
signatureTooltip,
]
}

View File

@ -31,24 +31,14 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![ball-bearing](screenshots/ball-bearing.png)](ball-bearing/main.kcl)
#### [bench](bench/main.kcl) ([screenshot](screenshots/bench.png))
[![bench](screenshots/bench.png)](bench/main.kcl)
#### [bone-plate](bone-plate/main.kcl) ([screenshot](screenshots/bone-plate.png))
[![bone-plate](screenshots/bone-plate.png)](bone-plate/main.kcl)
#### [bottle](bottle/main.kcl) ([screenshot](screenshots/bottle.png))
[![bottle](screenshots/bottle.png)](bottle/main.kcl)
#### [bracket](bracket/main.kcl) ([screenshot](screenshots/bracket.png))
[![bracket](screenshots/bracket.png)](bracket/main.kcl)
#### [car-wheel-assembly](car-wheel-assembly/main.kcl) ([screenshot](screenshots/car-wheel-assembly.png))
[![car-wheel-assembly](screenshots/car-wheel-assembly.png)](car-wheel-assembly/main.kcl)
#### [cold-plate](cold-plate/main.kcl) ([screenshot](screenshots/cold-plate.png))
[![cold-plate](screenshots/cold-plate.png)](cold-plate/main.kcl)
#### [color-cube](color-cube/main.kcl) ([screenshot](screenshots/color-cube.png))
[![color-cube](screenshots/color-cube.png)](color-cube/main.kcl)
#### [counterdrilled-weldment](counterdrilled-weldment/main.kcl) ([screenshot](screenshots/counterdrilled-weldment.png))
[![counterdrilled-weldment](screenshots/counterdrilled-weldment.png)](counterdrilled-weldment/main.kcl)
#### [countersunk-plate](countersunk-plate/main.kcl) ([screenshot](screenshots/countersunk-plate.png))
[![countersunk-plate](screenshots/countersunk-plate.png)](countersunk-plate/main.kcl)
#### [cpu-cooler](cpu-cooler/main.kcl) ([screenshot](screenshots/cpu-cooler.png))
[![cpu-cooler](screenshots/cpu-cooler.png)](cpu-cooler/main.kcl)
#### [cycloidal-gear](cycloidal-gear/main.kcl) ([screenshot](screenshots/cycloidal-gear.png))
[![cycloidal-gear](screenshots/cycloidal-gear.png)](cycloidal-gear/main.kcl)
#### [dodecahedron](dodecahedron/main.kcl) ([screenshot](screenshots/dodecahedron.png))
@ -65,6 +55,8 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![food-service-spatula](screenshots/food-service-spatula.png)](food-service-spatula/main.kcl)
#### [french-press](french-press/main.kcl) ([screenshot](screenshots/french-press.png))
[![french-press](screenshots/french-press.png)](french-press/main.kcl)
#### [gear](gear/main.kcl) ([screenshot](screenshots/gear.png))
[![gear](screenshots/gear.png)](gear/main.kcl)
#### [gear-rack](gear-rack/main.kcl) ([screenshot](screenshots/gear-rack.png))
[![gear-rack](screenshots/gear-rack.png)](gear-rack/main.kcl)
#### [gridfinity-baseplate](gridfinity-baseplate/main.kcl) ([screenshot](screenshots/gridfinity-baseplate.png))
@ -75,18 +67,6 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![gridfinity-bins](screenshots/gridfinity-bins.png)](gridfinity-bins/main.kcl)
#### [gridfinity-bins-stacking-lip](gridfinity-bins-stacking-lip/main.kcl) ([screenshot](screenshots/gridfinity-bins-stacking-lip.png))
[![gridfinity-bins-stacking-lip](screenshots/gridfinity-bins-stacking-lip.png)](gridfinity-bins-stacking-lip/main.kcl)
#### [hammer](hammer/main.kcl) ([screenshot](screenshots/hammer.png))
[![hammer](screenshots/hammer.png)](hammer/main.kcl)
#### [helical-gear](helical-gear/main.kcl) ([screenshot](screenshots/helical-gear.png))
[![helical-gear](screenshots/helical-gear.png)](helical-gear/main.kcl)
#### [helical-planetary-gearset](helical-planetary-gearset/main.kcl) ([screenshot](screenshots/helical-planetary-gearset.png))
[![helical-planetary-gearset](screenshots/helical-planetary-gearset.png)](helical-planetary-gearset/main.kcl)
#### [helium-tank](helium-tank/main.kcl) ([screenshot](screenshots/helium-tank.png))
[![helium-tank](screenshots/helium-tank.png)](helium-tank/main.kcl)
#### [herringbone-gear](herringbone-gear/main.kcl) ([screenshot](screenshots/herringbone-gear.png))
[![herringbone-gear](screenshots/herringbone-gear.png)](herringbone-gear/main.kcl)
#### [herringbone-planetary-gearset](herringbone-planetary-gearset/main.kcl) ([screenshot](screenshots/herringbone-planetary-gearset.png))
[![herringbone-planetary-gearset](screenshots/herringbone-planetary-gearset.png)](herringbone-planetary-gearset/main.kcl)
#### [hex-nut](hex-nut/main.kcl) ([screenshot](screenshots/hex-nut.png))
[![hex-nut](screenshots/hex-nut.png)](hex-nut/main.kcl)
#### [i-beam](i-beam/main.kcl) ([screenshot](screenshots/i-beam.png))
@ -103,8 +83,8 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![mounting-plate](screenshots/mounting-plate.png)](mounting-plate/main.kcl)
#### [multi-axis-robot](multi-axis-robot/main.kcl) ([screenshot](screenshots/multi-axis-robot.png))
[![multi-axis-robot](screenshots/multi-axis-robot.png)](multi-axis-robot/main.kcl)
#### [pillow-block-bearing](pillow-block-bearing/main.kcl) ([screenshot](screenshots/pillow-block-bearing.png))
[![pillow-block-bearing](screenshots/pillow-block-bearing.png)](pillow-block-bearing/main.kcl)
#### [parametric-bearing-pillow-block](parametric-bearing-pillow-block/main.kcl) ([screenshot](screenshots/parametric-bearing-pillow-block.png))
[![parametric-bearing-pillow-block](screenshots/parametric-bearing-pillow-block.png)](parametric-bearing-pillow-block/main.kcl)
#### [pipe](pipe/main.kcl) ([screenshot](screenshots/pipe.png))
[![pipe](screenshots/pipe.png)](pipe/main.kcl)
#### [pipe-flange-assembly](pipe-flange-assembly/main.kcl) ([screenshot](screenshots/pipe-flange-assembly.png))
@ -113,8 +93,6 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![pipe-with-bend](screenshots/pipe-with-bend.png)](pipe-with-bend/main.kcl)
#### [poopy-shoe](poopy-shoe/main.kcl) ([screenshot](screenshots/poopy-shoe.png))
[![poopy-shoe](screenshots/poopy-shoe.png)](poopy-shoe/main.kcl)
#### [prosthetic-hip](prosthetic-hip/main.kcl) ([screenshot](screenshots/prosthetic-hip.png))
[![prosthetic-hip](screenshots/prosthetic-hip.png)](prosthetic-hip/main.kcl)
#### [router-template-cross-bar](router-template-cross-bar/main.kcl) ([screenshot](screenshots/router-template-cross-bar.png))
[![router-template-cross-bar](screenshots/router-template-cross-bar.png)](router-template-cross-bar/main.kcl)
#### [router-template-slate](router-template-slate/main.kcl) ([screenshot](screenshots/router-template-slate.png))
@ -123,20 +101,10 @@ When you submit a PR to add or modify KCL samples, images will be generated and
[![sheet-metal-bracket](screenshots/sheet-metal-bracket.png)](sheet-metal-bracket/main.kcl)
#### [socket-head-cap-screw](socket-head-cap-screw/main.kcl) ([screenshot](screenshots/socket-head-cap-screw.png))
[![socket-head-cap-screw](screenshots/socket-head-cap-screw.png)](socket-head-cap-screw/main.kcl)
#### [spur-gear](spur-gear/main.kcl) ([screenshot](screenshots/spur-gear.png))
[![spur-gear](screenshots/spur-gear.png)](spur-gear/main.kcl)
#### [spur-reduction-gearset](spur-reduction-gearset/main.kcl) ([screenshot](screenshots/spur-reduction-gearset.png))
[![spur-reduction-gearset](screenshots/spur-reduction-gearset.png)](spur-reduction-gearset/main.kcl)
#### [surgical-drill-guide](surgical-drill-guide/main.kcl) ([screenshot](screenshots/surgical-drill-guide.png))
[![surgical-drill-guide](screenshots/surgical-drill-guide.png)](surgical-drill-guide/main.kcl)
#### [tooling-nest-block](tooling-nest-block/main.kcl) ([screenshot](screenshots/tooling-nest-block.png))
[![tooling-nest-block](screenshots/tooling-nest-block.png)](tooling-nest-block/main.kcl)
#### [utility-sink](utility-sink/main.kcl) ([screenshot](screenshots/utility-sink.png))
[![utility-sink](screenshots/utility-sink.png)](utility-sink/main.kcl)
#### [walkie-talkie](walkie-talkie/main.kcl) ([screenshot](screenshots/walkie-talkie.png))
[![walkie-talkie](screenshots/walkie-talkie.png)](walkie-talkie/main.kcl)
#### [washer](washer/main.kcl) ([screenshot](screenshots/washer.png))
[![washer](screenshots/washer.png)](washer/main.kcl)
#### [wing-spar](wing-spar/main.kcl) ([screenshot](screenshots/wing-spar.png))
[![wing-spar](screenshots/wing-spar.png)](wing-spar/main.kcl)

View File

@ -1,55 +0,0 @@
// Bone Plate
// A bone plate is a medical device used in orthopedics to stabilize and fix bone fractures during the healing process. They are typically made of stainless steel or titanium and are secured to the bone with screws. Bone plates come in various types, including locking, compression, and bridge plates, each with specific applications
// Set units
@settings(defaultLengthUnit = mm)
// Define parameters
boltSize = 4.5
// Revolve the profile of a compression plate designed to fit a bone
plateRevolve = startSketchOn(YZ)
|> startProfile(at = [22.9, 0])
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|> arc(angleStart = 180, angleEnd = 176, radius = 120)
|> arc(angleStart = -60, angleEnd = 54, radius = 5)
|> arc(angleStart = 180, angleEnd = 174, radius = 170)
|> tangentialArc(endAbsolute = [41.8, 91.88])
|> tangentialArc(endAbsolute = [56.92, 117.08], tag = $seg01)
|> angledLine(angle = tangentToEnd(seg01), length = 23.16)
|> tangentialArc(endAbsolute = [60.93, 140.44], tag = $seg02)
|> angledLine(angle = tangentToEnd(seg02), length = 25.65)
|> tangentialArc(endAbsolute = [48.35, 85.53])
|> tangentialArc(endAbsolute = [35.2, 67.73], tag = $seg03)
|> angledLine(angle = tangentToEnd(seg03), length = 49.06)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(axis = Y, angle = 65, symmetric = true)
// Create a hole sketch with the size and location of each bolt hole
holeSketch = startSketchOn(XZ)
hole01 = circle(holeSketch, center = [0, 12.25], radius = boltSize / 2)
|> extrude(length = -100)
hole02 = circle(holeSketch, center = [0, 29.5], radius = boltSize / 2)
|> extrude(length = -100)
hole03 = circle(holeSketch, center = [0, 46.25], radius = boltSize / 2)
|> extrude(length = -100)
hole04 = circle(holeSketch, center = [0, 77], radius = boltSize / 2)
|> extrude(length = -100)
hole05 = circle(holeSketch, center = [0, 100], radius = boltSize / 2)
|> extrude(length = -100)
hole06 = circle(holeSketch, center = [0, 130], radius = boltSize / 2)
|> extrude(length = -100)
hole07 = circle(holeSketch, center = [-20, 130], radius = boltSize / 2)
|> extrude(length = -100)
hole08 = circle(holeSketch, center = [20, 130], radius = boltSize / 2)
|> extrude(length = -100)
// Cut each guiding clearance hole from the bone plate
solid001 = subtract([plateRevolve], tools = union([hole01, hole02]))
solid002 = subtract([solid001], tools = union([hole03, hole04]))
solid003 = subtract([solid002], tools = union([hole05, hole06]))
solid004 = subtract([solid003], tools = union([hole07, hole08]))

View File

@ -1,67 +0,0 @@
// Cold Plate
// A cold plate is a thermal management device used to remove heat from a device or component, typically by transferring heat to a liquid coolant that flows through the plate. It's a conductive cooling solution, commonly made of materials like aluminum or copper, with internal channels or tubes for the coolant
// Set units
@settings(defaultLengthUnit = in)
// Define parameters
tubeDiameter = 5 / 8
wallThickness = 0.080
bendRadius = 1
// Create the cold plate with indentions to secure each pass of the brazed copper tube
coldPlate = startSketchOn(YZ)
|> startProfile(at = [0, tubeDiameter * 2])
|> xLine(length = bendRadius - (tubeDiameter / 2))
|> yLine(length = -tubeDiameter)
|> tangentialArc(angle = 180, radius = tubeDiameter / 2)
|> yLine(length = tubeDiameter)
|> xLine(length = bendRadius * 2 - tubeDiameter, tag = $seg07)
|> yLine(length = -tubeDiameter, tag = $seg09)
|> tangentialArc(angle = 180, radius = tubeDiameter / 2)
|> yLine(length = tubeDiameter, tag = $seg08)
|> xLine(length = bendRadius - (tubeDiameter / 2))
|> angledLine(angle = -77, length = tubeDiameter / 3)
|> tangentialArc(angle = 77, radius = tubeDiameter, tag = $seg01)
|> angledLine(angle = tangentToEnd(seg01), length = 1)
|> yLine(endAbsolute = 0)
|> xLine(endAbsolute = 0)
|> mirror2d(axis = Y)
|> close()
|> extrude(length = 10, symmetric = true)
// Sketch the path for the copper tube to follow
copperTubePath = startSketchOn(offsetPlane(XY, offset = tubeDiameter))
|> startProfile(at = [-7.35, -bendRadius * 3])
|> xLine(length = 14.13, tag = $seg05)
|> tangentialArc(angle = 180, radius = bendRadius, tag = $seg02)
|> angledLine(angle = tangentToEnd(seg02), length = 13.02, tag = $seg06)
|> tangentialArc(angle = -180, radius = bendRadius, tag = $seg03)
|> angledLine(angle = tangentToEnd(seg03), length = segLen(seg06))
|> tangentialArc(angle = 180, radius = bendRadius, tag = $seg04)
|> angledLine(angle = tangentToEnd(seg04), length = segLen(seg05))
// Create the profile for the inner and outer diameter of the hollow copper tube
tubeWall = startSketchOn(offsetPlane(YZ, offset = -7.35))
|> circle(center = [-bendRadius * 3, tubeDiameter], radius = tubeDiameter / 2)
|> subtract2d(%, tool = circle(center = [-bendRadius * 3, tubeDiameter], radius = tubeDiameter / 2 - wallThickness))
|> sweep(path = copperTubePath)
|> appearance(color = "#b81b0a")
// Model a brazed cap to cover each tube. Constrain the caps using the walls of the plate
brazedCap = startSketchOn(YZ)
|> startProfile(at = segEnd(seg07))
|> arc(interiorAbsolute = [bendRadius * 3, tubeDiameter * 1.85], endAbsolute = segEnd(seg08))
|> yLine(endAbsolute = segStartY(seg08))
|> arc(
interiorAbsolute = [
bendRadius * 3,
segEndY(seg09) + tubeDiameter / 2
],
endAbsolute = segEnd(seg09),
)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> extrude(length = 10, symmetric = true)
|> patternLinear3d(instances = 4, distance = bendRadius * 2, axis = [0, -1, 0])
|> appearance(color = "#6b261e")

View File

@ -1,120 +0,0 @@
// Counterdrilled Weldment
// A metal weldment consisting of a counterdrilled plate, a centrally mounted housing tube, and four structural support fins.
// Set units
@settings(defaultLengthUnit = in)
// Define parameters
boltSpacingX = 5
boltSpacingY = 3
boltDiameter = 1 / 4
counterdrillDiameter = 7 / 16
counterdrillDepth = 3 / 16
tubeInnerDiameter = 1 + 1 / 4
tubeThickness = 0.115
tubeHeight = 2
stockThickness = .5
// Calculate the dimensions of the block using the specified bolt spacing. The size of the block can be defined by adding a multiple of the counterdrill diameter to the bolt spacing
blockLength = boltSpacingX + boltDiameter * 6
blockWidth = boltSpacingY + boltDiameter * 6
// Draw the base plate
plateSketch = startSketchOn(XY)
|> startProfile(at = [-blockLength / 2, -blockWidth / 2])
|> angledLine(angle = 0, length = blockLength, tag = $rectangleSegmentA001)
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = blockWidth, tag = $rectangleSegmentB001)
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|> close()
|> subtract2d(tool = circle(center = [0, 0], radius = tubeInnerDiameter / 2))
plateBody = extrude(plateSketch, length = stockThickness)
|> chamfer(
length = boltDiameter * 2,
tags = [
getNextAdjacentEdge(rectangleSegmentB001),
getNextAdjacentEdge(rectangleSegmentA001),
getNextAdjacentEdge(rectangleSegmentC001),
getNextAdjacentEdge(rectangleSegmentD001)
],
)
// Define hole positions
holePositions = [
[-boltSpacingX / 2, -boltSpacingY / 2],
[-boltSpacingX / 2, boltSpacingY / 2],
[boltSpacingX / 2, -boltSpacingY / 2],
[boltSpacingX / 2, boltSpacingY / 2]
]
// Function to create a counterdrilled hole
fn counterdrill(@holePosition) {
cbdrill = startSketchOn(plateBody, face = END)
|> circle(center = holePosition, radius = counterdrillDiameter / 2)
|> extrude(length = -counterdrillDepth)
cbBolt = startSketchOn(cbdrill, face = START)
|> circle(center = holePosition, radius = boltDiameter / 2, tag = $hole01)
|> extrude(length = -stockThickness + counterdrillDepth)
// Use a chamfer to create a 90-degree counterdrill edge
|> chamfer(length = (counterdrillDiameter - boltDiameter) / 2 * sqrt(2), tags = [hole01])
return { }
}
// Place a counterdrilled hole at each bolt hole position
map(holePositions, f = counterdrill)
// Drill a small pin hole in the side of the tube
pinhole = startSketchOn(YZ)
|> circle(center = [0, 2.2], radius = 0.125)
|> extrude(length = -10)
// Model the central tube and subtract the pin hole
centralTube = startSketchOn(offsetPlane(XY, offset = stockThickness))
|> circle(center = [0, 0], radius = tubeInnerDiameter / 2 + tubeThickness)
|> subtract2d(tool = circle(center = [0, 0], radius = tubeInnerDiameter / 2))
|> extrude(length = tubeHeight)
|> subtract(tools = [pinhole])
// Create a function to create a fin which spans from the central tube to the bolt hole
fn fin(@i) {
diagPlane = {
origin = [0.0, 0.0, 0.0],
xAxis = [
boltSpacingX / 2 * i,
boltSpacingY / 2,
0.0
],
yAxis = [0.0, 0.0, 1.0]
}
finSketch = startSketchOn(diagPlane)
|> startProfile(at = [
tubeInnerDiameter / 2 + tubeThickness,
stockThickness
])
|> xLine(endAbsolute = sqrt((boltSpacingX / 2) ^ 2 + (boltSpacingY / 2) ^ 2) - counterdrillDiameter)
|> yLine(length = 0.15)
|> line(endAbsolute = [
profileStartX(%) + 0.15,
stockThickness + tubeHeight * .8
])
|> xLine(length = -0.15)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> extrude(length = tubeThickness, symmetric = true)
// Use a circular pattern to create an identical fin on the opposite side
otherFin = patternCircular3d(
finSketch,
instances = 2,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
return { }
}
// Place a pair of support fins along each diagonal axis of the bolt pattern
fin(1)
fin(-1)

View File

@ -1,50 +0,0 @@
// Plate with countersunk holes
// A small mounting plate with a countersunk hole at each end
// Set units
@settings(defaultLengthUnit = in)
// Define parameters
boltSpacing = 5
boltDiameter = 1 / 4
centerHoleDiameter = 1 + 3 / 4
plateThickness = 0.375
// Check that the plate is thick enough to countersink a hole
// assertGreaterThan(plateThickness, boltDiameter, "This plate is not thick enough for the necessary countersink dimensions")
// A bit of math to calculate the tangent line between the two diameters
r1 = centerHoleDiameter / 2 * 1.5 + .35
r2 = boltDiameter * 2 + .25
d = boltSpacing / 2
tangentAngle = asin((r1 - r2) / d)
tangentLength = (r1 - r2) / tan(tangentAngle)
plateBody = startSketchOn(XY)
// Use polar coordinates to start the sketch at the tangent point of the larger radius
|> startProfile(at = polar(angle = 90 - tangentAngle, length = r1))
|> angledLine(angle = -tangentAngle, length = tangentLength)
|> tangentialArc(radius = r2, angle = (tangentAngle - 90) * 2)
|> angledLine(angle = tangentAngle, length = -tangentLength)
|> tangentialArc(radius = r1, angle = -tangentAngle * 2)
|> angledLine(angle = -tangentAngle, length = -tangentLength)
|> tangentialArc(radius = r2, angle = (tangentAngle - 90) * 2)
|> angledLine(angle = tangentAngle, length = tangentLength)
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> subtract2d(tool = circle(center = [0, 0], radius = centerHoleDiameter / 2 * 1.5))
|> extrude(%, length = plateThickness)
// Function to create a countersunk hole
fn countersink(@holePosition) {
startSketchOn(plateBody, face = END)
|> circle(center = [holePosition, 0], radius = boltDiameter / 2, tag = $hole01)
|> extrude(length = -plateThickness)
// Use a chamfer to create a 90-degree countersink
|> chamfer(length = boltDiameter, tags = [hole01])
return { }
}
// Place a countersunk hole at each bolt hole position
countersink(-boltSpacing / 2)
countersink(boltSpacing / 2)

View File

@ -1,153 +0,0 @@
// Fan Housing
// The plastic housing that contains the fan and the motor
// Set units
@settings(defaultLengthUnit = mm)
// Import parameters
import * from "parameters.kcl"
// Model the housing which holds the motor, the fan, and the mounting provisions
// Bottom mounting face
bottomFaceSketch = startSketchOn(YZ)
|> startProfile(at = [-fanSize / 2, -fanSize / 2])
|> angledLine(angle = 0, length = fanSize, tag = $rectangleSegmentA001)
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = fanSize, tag = $rectangleSegmentB001)
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|> close()
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
|> subtract2d(tool = circle(
center = [
mountingHoleSpacing / 2,
mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
-mountingHoleSpacing / 2,
mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
mountingHoleSpacing / 2,
-mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
-mountingHoleSpacing / 2,
-mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> extrude(length = 4)
// Add large openings to the bottom face to allow airflow through the fan
airflowPattern = startSketchOn(bottomFaceSketch, face = END)
|> startProfile(at = [fanSize * 7 / 25, -fanSize * 9 / 25])
|> angledLine(angle = 140, length = fanSize * 12 / 25, tag = $seg01)
|> tangentialArc(radius = fanSize * 1 / 50, angle = 90)
|> angledLine(angle = -130, length = fanSize * 8 / 25)
|> tangentialArc(radius = fanSize * 1 / 50, angle = 90)
|> angledLine(angle = segAng(seg01) + 180, length = fanSize * 2 / 25)
|> tangentialArc(radius = fanSize * 8 / 25, angle = 40)
|> xLine(length = fanSize * 3 / 25)
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> patternCircular2d(
instances = 4,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> extrude(length = -4)
// Create the middle segment of the fan housing body
housingMiddleLength = fanSize / 3
housingMiddleRadius = fanSize / 3 - 1
bodyMiddle = startSketchOn(bottomFaceSketch, face = END)
|> startProfile(at = [
housingMiddleLength / 2,
-housingMiddleLength / 2 - housingMiddleRadius
])
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|> yLine(length = housingMiddleLength)
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|> xLine(length = -housingMiddleLength)
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|> yLine(length = -housingMiddleLength)
|> tangentialArc(radius = housingMiddleRadius, angle = 90)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> extrude(length = fanHeight - 4 - 4)
// Cut a hole in the body to accommodate the fan
bodyFanHole = startSketchOn(bodyMiddle, face = END)
|> circle(center = [0, 0], radius = fanSize * 23 / 50)
|> extrude(length = -(fanHeight - 4 - 4))
// Top mounting face. Cut a hole in the face to accommodate the fan
topFaceSketch = startSketchOn(bodyMiddle, face = END)
topHoles = startProfile(topFaceSketch, at = [-fanSize / 2, -fanSize / 2])
|> angledLine(angle = 0, length = fanSize, tag = $rectangleSegmentA002)
|> angledLine(angle = segAng(rectangleSegmentA002) + 90, length = fanSize, tag = $rectangleSegmentB002)
|> angledLine(angle = segAng(rectangleSegmentA002), length = -segLen(rectangleSegmentA002), tag = $rectangleSegmentC002)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD002)
|> close()
|> subtract2d(tool = circle(center = [0, 0], radius = fanSize * 23 / 50))
|> subtract2d(tool = circle(
center = [
mountingHoleSpacing / 2,
mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
-mountingHoleSpacing / 2,
mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
mountingHoleSpacing / 2,
-mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> subtract2d(tool = circle(
center = [
-mountingHoleSpacing / 2,
-mountingHoleSpacing / 2
],
radius = mountingHoleSize / 2,
))
|> extrude(length = 4)
// Create a housing for the electric motor to sit
motorHousing = startSketchOn(bottomFaceSketch, face = END)
|> circle(center = [0, 0], radius = 11.2)
|> extrude(length = 16)
startSketchOn(motorHousing, face = END)
|> circle(center = [0, 0], radius = 10)
|> extrude(length = -16)
|> appearance(color = "#a55e2c")
|> fillet(
radius = abs(fanSize - mountingHoleSpacing) / 2,
tags = [
getNextAdjacentEdge(rectangleSegmentA001),
getNextAdjacentEdge(rectangleSegmentB001),
getNextAdjacentEdge(rectangleSegmentC001),
getNextAdjacentEdge(rectangleSegmentD001),
getNextAdjacentEdge(rectangleSegmentA002),
getNextAdjacentEdge(rectangleSegmentB002),
getNextAdjacentEdge(rectangleSegmentC002),
getNextAdjacentEdge(rectangleSegmentD002)
],
)

View File

@ -1,71 +0,0 @@
// Fan
// Spinning axial fan that moves airflow
// Set units
@settings(defaultLengthUnit = mm)
// Import parameters
import * from "parameters.kcl"
// Model the center of the fan
fanCenter = startSketchOn(YZ)
|> circle(center = [0, 0], radius = fanHeight / 2, tag = $centerBend)
|> extrude(%, length = fanHeight)
|> fillet(radius = 1.5, tags = [getOppositeEdge(centerBend)])
// Create a function for a lofted fan blade cross section that rotates about the center hub of the fan
fn fanBlade(offsetHeight, startAngle) {
fanBlade = startSketchOn(offsetPlane(YZ, offset = offsetHeight))
|> startProfile(at = [
15 * cos(startAngle),
15 * sin(startAngle)
])
|> arc(angleStart = startAngle, angleEnd = startAngle + 14, radius = 15)
|> arc(
endAbsolute = [
fanSize * 22 / 50 * cos(startAngle - 20),
fanSize * 22 / 50 * sin(startAngle - 20)
],
interiorAbsolute = [
fanSize * 11 / 50 * cos(startAngle + 3),
fanSize * 11 / 50 * sin(startAngle + 3)
],
)
|> arc(
endAbsolute = [
fanSize * 22 / 50 * cos(startAngle - 24),
fanSize * 22 / 50 * sin(startAngle - 24)
],
interiorAbsolute = [
fanSize * 22 / 50 * cos(startAngle - 22),
fanSize * 22 / 50 * sin(startAngle - 22)
],
)
|> arc(
endAbsolute = [profileStartX(%), profileStartY(%)],
interiorAbsolute = [
fanSize * 11 / 50 * cos(startAngle - 5),
fanSize * 11 / 50 * sin(startAngle - 5)
],
)
|> close()
return fanBlade
}
// Loft the fan blade cross sections into a single blade, then pattern them about the fan center
crossSections = [
fanBlade(offsetHeight = 4.5, startAngle = 50),
fanBlade(offsetHeight = (fanHeight - 2 - 4) / 2, startAngle = 30),
fanBlade(offsetHeight = fanHeight - 2, startAngle = 0)
]
bladeLoft = loft(crossSections)
|> patternCircular3d(
instances = 9,
axis = [1, 0, 0],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
[fanCenter, bladeLoft]
|> appearance(color = "#110803")

View File

@ -1,171 +0,0 @@
// Heat Sink
// Conductive metal device made from brazed tubes and fins
// Set units
@settings(defaultLengthUnit = mm)
// Import parameters
import * from "parameters.kcl"
// Draw the sweep path for the outermost tubes
endTubePath = startSketchOn(offsetPlane(YZ, offset = -20))
|> startProfile(at = [fanSize / 4, fanSize + 38])
|> yLine(endAbsolute = bendRadius + 10, tag = $seg01)
|> tangentialArc(radius = bendRadius, angle = -90)
|> xLine(endAbsolute = 0, tag = $seg02)
|> xLine(length = -segLen(seg02))
|> tangentialArc(radius = bendRadius, angle = -90)
|> yLine(length = segLen(seg01))
// Sweep and translate the outermost tube on each end
endTube = startSketchOn(offsetPlane(XY, offset = fanSize + 38))
|> circle(center = [-20, fanSize / 4], radius = 3)
|> subtract2d(tool = circle(center = [-20, fanSize / 4], radius = 2.5))
|> sweep(path = endTubePath)
|> patternCircular3d(
%,
instances = 2,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = false,
)
// Draw the sweep path for the 4 interior tubes
centerTubePath = startSketchOn(offsetPlane(YZ, offset = -4))
|> startProfile(at = [fanSize / 2.67, fanSize + 38])
|> yLine(endAbsolute = bendRadius + 15 + 10)
|> tangentialArc(radius = bendRadius, angle = -45)
|> angledLine(angle = -135, lengthY = 15)
|> tangentialArc(radius = bendRadius, angle = -45)
|> xLine(endAbsolute = 0, tag = $seg03)
|> xLine(length = -segLen(seg03))
|> tangentialArc(radius = bendRadius, angle = -155)
|> tangentialArc(radius = bendRadius, angle = 65)
|> yLine(endAbsolute = fanSize + 38)
// Draw the profile and sweep the 4 interior tubes
centerTube = startSketchOn(offsetPlane(XY, offset = fanSize + 38))
|> circle(center = [-4, fanSize / 2.67], radius = 3)
|> subtract2d(tool = circle(center = [-4, fanSize / 2.67], radius = 2.5))
|> sweep(path = centerTubePath)
|> patternCircular3d(
%,
instances = 2,
axis = [0, 0, 1],
center = [-4 * 2, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> patternLinear3d(
%,
instances = 2,
distance = 4 * 4,
axis = [1, 0, 0],
)
// Draw a heat fin with built-in clips to secure the mounting wire. Pattern the fin upwards by the height of the fan
heatFins = startSketchOn(offsetPlane(XY, offset = 45))
|> startProfile(at = [0, -fanSize / 2])
|> xLine(length = 9)
|> angledLine(angle = -60, length = 2.5, tag = $seg04)
|> xLine(length = 0.75)
|> arc(interiorAbsolute = [lastSegX(%) + 1, lastSegY(%) + 1.2], endAbsolute = [lastSegX(%) + 2, lastSegY(%)])
|> xLine(length = 0.75)
|> angledLine(angle = 60, length = segLen(seg04))
|> xLine(endAbsolute = heatSinkDepth / 2 - 3)
|> tangentialArc(angle = 90, radius = 3)
|> yLine(endAbsolute = 0)
|> mirror2d(axis = X)
|> mirror2d(axis = Y)
|> close()
|> extrude(length = 1)
|> patternLinear3d(
%,
instances = 31,
distance = (fanSize - 10) / 30,
axis = [0, 0, 1],
)
// Create the mounting base for the CPU cooler. The base should consist of two pieces that secure around each of the tubes at the bottom
coolerBase = startSketchOn(-XZ)
baseLower = startProfile(coolerBase, at = [0, 10])
|> xLine(length = -0.9)
|> arc(angleStart = 0, angleEnd = -180, radius = 3.1)
|> xLine(length = -1.8)
|> arc(angleStart = 0, angleEnd = -180, radius = 3)
|> xLine(length = -1.8)
|> arc(angleStart = 0, angleEnd = -180, radius = 3)
|> xLine(length = -1.8)
|> xLine(length = -2)
|> yLine(length = -10)
|> xLine(endAbsolute = 0)
|> mirror2d(axis = Y)
|> extrude(length = 2 * segLen(seg02), symmetric = true)
baseUpper = startProfile(coolerBase, at = [0, 10])
|> xLine(length = -0.9)
|> arc(angleStart = 0, angleEnd = 180, radius = 3.1)
|> xLine(length = -1.8)
|> arc(angleStart = 0, angleEnd = 180, radius = 3)
|> xLine(length = -1.8)
|> arc(angleStart = 0, angleEnd = 180, radius = 3)
|> xLine(length = -1.8)
|> xLine(length = -1)
|> yLine(length = 4)
|> tangentialArc(angle = -90, radius = 2)
|> xLine(endAbsolute = 0)
|> mirror2d(axis = Y)
|> extrude(length = 2 * segLen(seg02) * 3 / 4, symmetric = true)
// Create a flexible mounting bracket to secure the heat sink to the motherboard once adhered
mountingBracket = startSketchOn(XZ)
|> startProfile(at = [-10, 16])
|> xLine(length = -20)
|> tangentialArc(angle = 20, radius = bendRadius)
|> angledLine(angle = -160, length = 14, tag = $seg09)
|> tangentialArc(angle = -30, radius = bendRadius + sheetThickness)
|> angledLine(angle = 170, length = 21.5, tag = $seg04Q)
|> angledLine(angle = 170 - 90, length = sheetThickness, tag = $seg08)
|> angledLine(angle = segAng(seg04Q) + 180, length = segLen(seg04Q), tag = $seg05E)
|> tangentialArc(angle = 30, radius = bendRadius)
|> angledLine(angle = segAng(seg09) + 180, length = segLen(seg09))
|> tangentialArc(angle = -20, radius = bendRadius + sheetThickness)
|> xLine(endAbsolute = profileStartX(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $seg07)
|> close()
|> extrude(
length = 16,
symmetric = true,
tagEnd = $capEnd001,
tagStart = $capStart001,
)
|> fillet(
radius = 2,
tags = [
getCommonEdge(faces = [seg07, capEnd001]),
getCommonEdge(faces = [seg08, capEnd001]),
getCommonEdge(faces = [seg08, capStart001]),
getCommonEdge(faces = [seg07, capStart001])
],
)
// Create a clearance hole in the bracket for an M3 screw and countersink the hole
thruHole = startSketchOn(mountingBracket, face = seg05E)
|> circle(center = [70, 0], radius = 3.4 / 2, tag = $seg06E)
|> extrude(length = -sheetThickness)
|> chamfer(
length = sheetThickness * 0.75,
tags = [
getCommonEdge(faces = [seg05E, seg06E])
],
)
// Duplicate the bracket to the other side of the heat sink base
|> patternCircular3d(
instances = 2,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)

View File

@ -1,51 +0,0 @@
// CPU Cooler
// A CPU cooler is a device designed to dissipate heat generated by the CPU of a computer. They consist of a brazed heat sink made from aluminum or copper alloys, and one or two axial fans to move airflow across the heat sink.
// Set units
@settings(defaultLengthUnit = mm)
// Import all parts and parameters into assembly file
import * from "parameters.kcl"
import "fan-housing.kcl" as fanHousing
import "motor.kcl" as motor
import "fan.kcl" as fan
import "heat-sink.kcl" as heatSink
import "mounting-wire.kcl" as mountingWire
import "removable-sticker.kcl" as removableSticker
// Produce the model for each imported part
heatSink
fn translatePart(part) {
part
|> translate(x = heatSinkDepth / 2, z = 40 + fanSize / 2)
|> patternLinear3d(
%,
instances = 2,
distance = heatSinkDepth + fanHeight,
axis = [-1, 0, 0],
)
return { }
}
translatePart(part = fanHousing)
translatePart(part = motor)
translatePart(part = fan)
mountingWire
|> patternCircular3d(
%,
instances = 2,
axis = [0, 1, 0],
center = [0, 0, 40 + fanSize / 2],
arcDegrees = 360,
rotateDuplicates = true,
)
|> patternCircular3d(
%,
instances = 2,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
removableSticker

View File

@ -1,21 +0,0 @@
// Motor
// A small electric motor to power the fan
// Set Units
@settings(defaultLengthUnit = mm)
// Import Parameters
import * from "parameters.kcl"
// Model the motor body and stem
startPlane = offsetPlane(YZ, offset = 4)
motorBody = startSketchOn(startPlane)
|> circle(center = [0, 0], radius = 10, tag = $seg04)
|> extrude(length = 17)
|> fillet(radius = 2, tags = [getOppositeEdge(seg04), seg04])
|> appearance(color = "#021b55")
motorStem = startSketchOn(offsetPlane(YZ, offset = 21))
|> circle(center = [0, 0], radius = 1)
|> extrude(length = 3.8)
|> appearance(color = "#cbcccd")
[motorBody, motorStem]

View File

@ -1,79 +0,0 @@
// Mounting Wire
// The flexible metal wire used to clip the fans onto the heat sink
// Set units
@settings(defaultLengthUnit = mm)
// Import parameters
import * from "parameters.kcl"
// Draw the XZ component of the mounting wire path
upperArm = startSketchOn(offsetPlane(XZ, offset = fanSize / 2 + 2))
|> startProfile(at = [-12, 40 + fanSize / 2])
|> yLine(length = 7)
|> tangentialArc(radius = 2, angle = 90)
|> xLine(length = -9)
|> tangentialArc(radius = 2, angle = -90)
|> yLine(length = 14)
|> tangentialArc(radius = 2, angle = 90)
|> xLine(length = -9)
|> tangentialArc(radius = 2, angle = -80)
|> angledLine(angle = 100, endAbsoluteY = 40 + fanSize / 2 + mountingHoleSpacing / 2 - 1.5)
|> tangentialArc(radius = 2, angle = 80, tag = $seg07)
// Draw the XZ component of the mounting wire path
lowerArm = startSketchOn(offsetPlane(XZ, offset = fanSize / 2 + 2))
|> startProfile(at = [-12, 40 + fanSize / 2])
|> yLine(length = -7)
|> tangentialArc(radius = 2, angle = -90)
|> xLine(length = -9)
|> tangentialArc(radius = 2, angle = 90)
|> yLine(length = -14)
|> tangentialArc(radius = 2, angle = -90)
|> xLine(length = -9)
|> tangentialArc(radius = 2, angle = 80)
|> angledLine(angle = -100, endAbsoluteY = 40 + fanSize / 2 - (mountingHoleSpacing / 2) + 1.5)
|> tangentialArc(radius = 2, angle = -80, tag = $seg08)
// Create the profile of the mounting wire and sweep along the XZ path
wireProfile = startSketchOn(offsetPlane(XY, offset = 40 + fanSize / 2))
sweepUpperArm = circle(wireProfile, center = [-12, -fanSize / 2 - 2], radius = 1)
|> sweep(%, path = upperArm)
sweepLowerArm = circle(wireProfile, center = [-12, -fanSize / 2 - 2], radius = 1)
|> sweep(%, path = lowerArm)
// Draw the XY components of the mounting wire path
upperHook = startSketchOn(offsetPlane(XY, offset = segEndY(seg07)))
|> startProfile(at = [segEndX(seg07), -fanSize / 2 - 2])
|> xLine(endAbsolute = -heatSinkDepth / 2 - fanHeight)
|> tangentialArc(radius = 2, angle = -90)
|> yLine(endAbsolute = -mountingHoleSpacing / 2 - 2)
|> tangentialArc(radius = 2, angle = -90)
|> xLine(length = fanHeight / 3)
// Draw the XY components of the mounting wire path
lowerHook = startSketchOn(offsetPlane(XY, offset = segEndY(seg08)))
|> startProfile(at = [segEndX(seg07), -fanSize / 2 - 2])
|> xLine(endAbsolute = -heatSinkDepth / 2 - fanHeight)
|> tangentialArc(radius = 2, angle = -90)
|> yLine(endAbsolute = -mountingHoleSpacing / 2 - 2)
|> tangentialArc(radius = 2, angle = -90)
|> xLine(length = fanHeight / 3)
// Sweep the wire profile around the hook-shaped segments of the mounting wire
hookProfile = startSketchOn(offsetPlane(YZ, offset = segEndX(seg07)))
sweepUpperHook = circle(hookProfile, center = [-fanSize / 2 - 2, segEndY(seg07)], radius = 1)
|> sweep(%, path = upperHook)
sweepLowerHook = circle(hookProfile, center = [-fanSize / 2 - 2, segEndY(seg08)], radius = 1)
|> sweep(%, path = lowerHook)
// Union each piece of the wire into a single continuous sweep
[
sweepLowerArm,
sweepLowerHook,
sweepUpperArm,
sweepUpperHook
]
|> appearance(color = "#0d0d0d")

View File

@ -1,13 +0,0 @@
// Global parameters for the CPU cooler
// Set units
@settings(defaultLengthUnit = mm)
// Define Parameters
export fanSize = 120
export fanHeight = 25
export mountingHoleSpacing = 105
export mountingHoleSize = 4.5
export bendRadius = 15
export sheetThickness = 2.125
export heatSinkDepth = 55

View File

@ -1,25 +0,0 @@
// Removable Sticker
// Protective sticker to be removed before adhering the heat sink to the CPU
// Set units
@settings(defaultLengthUnit = mm)
// Create a simple body to represent the removable warning sticker. Brightly color the sticker so that the user will not forget to remove it before installing the device
removableSticker = startSketchOn(-XY)
|> startProfile(at = [-12, -12])
|> angledLine(angle = 0, length = 24, tag = $rectangleSegmentA001)
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = 24, tag = $rectangleSegmentB001)
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|> close()
|> extrude(length = .3)
|> appearance(color = "#021b55")
|> chamfer(
length = 3,
tags = [
getNextAdjacentEdge(rectangleSegmentA001),
getNextAdjacentEdge(rectangleSegmentB001),
getNextAdjacentEdge(rectangleSegmentC001),
getNextAdjacentEdge(rectangleSegmentD001)
],
)

View File

@ -0,0 +1,112 @@
// Spur Gear
// A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.
// Set units
@settings(defaultLengthUnit = in, kclVersion = 1.0)
// Define parameters
nTeeth = 21
module = 0.5
pitchDiameter = module * nTeeth
pressureAngle = 20
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
gearHeight = 3
// Interpolate points along the involute curve
cmo = 101
rs = map(
[0..cmo],
f = fn(@i) {
return baseDiameter / 2 + i / cmo * (tipDiameter - baseDiameter) / 2
},
)
// Calculate operating pressure angle
angles = map(
rs,
f = fn(@r) {
return units::toDegrees(acos(baseDiameter / 2 / r))
},
)
// Calculate the involute function
invas = map(
angles,
f = fn(@a) {
return tan(a) - units::toRadians(a)
},
)
// Map the involute curve
xs = map(
[0..cmo],
f = fn(@i) {
return rs[i] * cos(invas[i]: number(rad))
},
)
ys = map(
[0..cmo],
f = fn(@i) {
return rs[i] * sin(invas[i]: number(rad))
},
)
// Extrude the gear body
body = startSketchOn(XY)
|> circle(center = [0, 0], radius = baseDiameter / 2)
|> extrude(length = gearHeight)
toothAngle = 360 / nTeeth / 1.5
// Plot the involute curve
fn leftInvolute(@i, accum) {
j = 100 - i // iterate backwards
return line(accum, endAbsolute = [xs[j], ys[j]])
}
fn rightInvolute(@i, accum) {
x = rs[i] * cos(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
y = -rs[i] * sin(-toothAngle + units::toDegrees(atan(ys[i] / xs[i])))
return line(accum, endAbsolute = [x, y])
}
// Draw gear teeth
start = startSketchOn(XY)
|> startProfile(at = [xs[101], ys[101]])
teeth = reduce([0..100], initial = start, f = leftInvolute)
|> arc(angleStart = 0, angleEnd = toothAngle, radius = baseDiameter / 2)
|> reduce([1..101], initial = %, f = rightInvolute)
|> close()
|> extrude(length = gearHeight)
|> patternCircular3d(
axis = [0, 0, 1],
center = [0, 0, 0],
instances = nTeeth,
arcDegrees = 360,
rotateDuplicates = true,
)
// Define the constants of the keyway and the bore hole
keywayWidth = 0.250
keywayDepth = keywayWidth / 2
holeDiam = 2
holeRadius = 1
startAngle = asin(keywayWidth / 2 / holeRadius)
// Sketch the keyway and center hole and extrude
keyWay = startSketchOn(body, face = END)
|> startProfile(at = [
holeRadius * cos(startAngle),
holeRadius * sin(startAngle)
])
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc(angleStart = -1 * units::toDegrees(startAngle) + 360, angleEnd = 180, radius = holeRadius)
|> arc(angleStart = 180, angleEnd = units::toDegrees(startAngle), radius = holeRadius)
|> close()
|> extrude(length = -gearHeight)

View File

@ -1,118 +0,0 @@
// Claw Hammer
// Often used in construction, a claw hammer is a levered metal hand tool that is used to strike and extract nails
// Set units
@settings(defaultLengthUnit = in)
// Sketch the side profile of the hammer head
headSideProfile = startSketchOn(XZ)
|> startProfile(at = [0.33, 11.26])
|> yLine(length = 0.1)
|> tangentialArc(endAbsolute = [0.95, 11.92])
|> tangentialArc(endAbsolute = [2.72, 11.26], tag = $seg01)
|> angledLine(angle = tangentToEnd(seg01) + 90, length = .2)
|> angledLine(angle = tangentToEnd(seg01) - 10, length = -0.5)
|> tangentialArc(endAbsolute = [-0.91, 12.78], tag = $seg03)
|> tangentialArc(endAbsolute = [-1.67, 12.85])
|> xLine(length = -.25)
|> tangentialArc(angle = 90, radius = .05)
|> yLine(length = -1.125, tag = $seg02)
|> tangentialArc(angle = 90, radius = .05)
|> xLine(length = .25, tag = $seg04)
|> angledLine(angle = 23, length = 0.1)
|> tangentialArc(endAbsolute = [-0.33, profileStartY(%)])
|> xLine(endAbsolute = profileStartX(%))
|> close()
|> extrude(length = 3, symmetric = true)
// Sketch the top profile of the hammer head
headTopProfile = startSketchOn(offsetPlane(XY, offset = 13))
leftSideCut = startProfile(headTopProfile, at = [-4, -1.6])
|> line(endAbsolute = [segEndX(seg02), -segLen(seg02) / 2])
|> arc(
%,
angleStart = 180,
angleEnd = 270,
radius = .05,
)
|> xLine(endAbsolute = segEndX(seg04))
|> arc(interiorAbsolute = [segEndX(seg03) - .1, lastSegY(%) + .03], endAbsolute = [segEndX(seg03), lastSegY(%)])
|> tangentialArc(endAbsolute = [3.39, -1.15])
|> yLine(endAbsolute = profileStartY(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> extrude(length = -14)
rearCut = startProfile(headTopProfile, at = [3.39, -0.56])
|> angledLine(angle = 177, length = 0.1)
|> tangentialArc(endAbsolute = [1.86, -0.37])
|> tangentialArc(endAbsolute = [lastSegX(%), -lastSegY(%)])
|> tangentialArc(endAbsolute = [profileStartX(%), -profileStartY(%)])
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> extrude(length = -14)
rightSideCut = startProfile(headTopProfile, at = [-4, 1.6])
|> line(endAbsolute = [segEndX(seg02), segLen(seg02) / 2])
|> arc(
%,
angleStart = -180,
angleEnd = -270,
radius = .05,
)
|> xLine(endAbsolute = segEndX(seg04))
|> arc(interiorAbsolute = [segEndX(seg03) - .1, lastSegY(%) - .03], endAbsolute = [segEndX(seg03), lastSegY(%)])
|> tangentialArc(endAbsolute = [3.39, 1.15])
|> yLine(endAbsolute = profileStartY(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> extrude(length = -14)
// Subtract the top profiles from the side profile to create a CSG hammer shape
firstProfiles = subtract(
[headSideProfile],
tools = [
union([
leftSideCut,
union([rearCut, rightSideCut])
])
],
)
// Extrude a polygon through the center of the hammer head to create the mounting hole for the handle
handleHole = startSketchOn(XY)
|> polygon(
%,
radius = .28,
numSides = 10,
center = [0, 0],
)
|> extrude(length = 14)
// Add an additional fillet feature to support the handle, and union it to the rest of the head
baseSupport = startSketchOn(offsetPlane(XY, offset = 11.5))
|> circle(center = [0, 0], radius = .45, tag = $seg05)
|> extrude(length = 1, tagStart = $capStart001)
|> fillet(
radius = .05,
tags = [
getCommonEdge(faces = [seg05, capStart001])
],
)
// Union all pieces into a single solid, then cut the handle hole
hammerHead = union([firstProfiles, baseSupport])
|> subtract(tools = [handleHole])
// Draw a profile for the handle, then revolve around the center axis
handleSketch = startSketchOn(XZ)
|> startProfile(at = [0.01, 0])
|> xLine(length = 1.125 / 2)
|> tangentialArc(angle = 90, radius = 0.05)
|> tangentialArc(endAbsolute = [0.38, 12.8 / 1.612])
|> tangentialArc(endAbsolute = [0.28, 12.8])
|> xLine(endAbsolute = profileStartX(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
handle = revolve(handleSketch, angle = 360, axis = Y)
|> appearance(color = "#f14f04")

View File

@ -1,99 +0,0 @@
// Helical Gear
// A helical gear is a type of cylindrical gear where the teeth are slanted at an angle relative to the axis of rotation. This greatly reduces noise and wear when transmitting torque across meshed spinning gears
// Set units
@settings(defaultLengthUnit = mm)
// Define a function to create a helical gear
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define the constants of the keyway and the bore hole
keywayWidth = 2
keywayDepth = keywayWidth / 2
holeDiam = 7
holeRadius = holeDiam / 2
startAngle = asin(keywayWidth / 2 / holeRadius)
// Sketch the keyway and center hole
holeWithKeyway = startSketchOn(XY)
|> startProfile(at = [
holeRadius * cos(startAngle),
holeRadius * sin(startAngle)
])
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|> close()
// Define a function to create a rotated gear sketch on an offset plane
fn helicalGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
|> subtract2d(tool = holeWithKeyway)
return helicalGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = helicalGearSketch(offsetHeight = 0)
// Draw a rotated gear sketch on a middle interstitial plane
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
// Draw a rotated gear sketch at the gear height offset plane
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
// Loft each rotated gear sketch together to form a helical gear
helicalGear = loft([
gearSketch001,
gearSketch002,
gearSketch003
])
return helicalGear
}
helicalGear(
nTeeth = 21,
module = 2,
pressureAngle = 20,
helixAngle = 35,
gearHeight = 7,
)

View File

@ -1,197 +0,0 @@
// Helical Planetary Gearset
// A helical planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are helical rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.
// Set units
@settings(defaultLengthUnit = mm)
// Define a function to create a helical gear
fn helicalGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define the constants of the keyway and the bore hole
keywayWidth = 1
keywayDepth = keywayWidth / 2
holeDiam = 7
holeRadius = holeDiam / 2
startAngle = asin(keywayWidth / 2 / holeRadius)
// Sketch the keyway and center hole
holeWithKeyway = startSketchOn(XY)
|> startProfile(at = [
holeRadius * cos(startAngle),
holeRadius * sin(startAngle)
])
|> xLine(length = keywayDepth)
|> yLine(length = -keywayWidth)
|> xLine(length = -keywayDepth)
|> arc(angleStart = -1 * startAngle + 360, angleEnd = 180, radius = holeRadius)
|> arc(angleStart = 180, angleEnd = startAngle, radius = holeRadius)
|> close()
// Define a function to create a rotated gear sketch on an offset plane
fn helicalGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
helicalGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
|> subtract2d(tool = holeWithKeyway)
return helicalGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = helicalGearSketch(offsetHeight = 0)
// Draw a rotated gear sketch on a middle interstitial plane
gearSketch002 = helicalGearSketch(offsetHeight = gearHeight / 2)
// Draw a rotated gear sketch at the gear height offset plane
gearSketch003 = helicalGearSketch(offsetHeight = gearHeight)
// Loft each rotated gear sketch together to form a helical gear
helicalGear = loft([
gearSketch001,
gearSketch002,
gearSketch003
])
return helicalGear
}
// Define a function to create a ring gear
fn ringGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define a function to create a rotated gear sketch on an offset plane
fn ringGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
ringTeeth = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 200 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
// Create a circular body that is larger than the tip diameter of the gear, then subtract the gear profile from the body
ringGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> circle(center = [0, 0], radius = tipDiameter / 1.85)
|> subtract2d(tool = ringTeeth)
return ringGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = ringGearSketch(offsetHeight = 0)
// Draw a rotated gear sketch on a middle interstitial plane
gearSketch002 = ringGearSketch(offsetHeight = gearHeight / 2)
// Draw a rotated gear sketch at the gear height offset plane
gearSketch003 = ringGearSketch(offsetHeight = gearHeight)
// Loft each rotated gear sketch together to form a ring gear
ringGear = loft([
gearSketch001,
gearSketch002,
gearSketch003
])
return ringGear
}
// Create the outer ring gear for the planetary gearset
ringGear(
nTeeth = 42,
module = 1.5,
pressureAngle = 14,
helixAngle = -25,
gearHeight = 5,
)
// Create a central sun gear using a small helical gear
helicalGear(
nTeeth = 12,
module = 1.5,
pressureAngle = 14,
helixAngle = 25,
gearHeight = 5,
)
// Create the helical planet gears
numPlanetGears = 3
helicalGear(
nTeeth = 12,
module = 1.5,
pressureAngle = 14,
helixAngle = -25,
gearHeight = 5,
)
|> translate(y = (12 + 12) / 2 * 1.5 + 2.7)
|> patternCircular3d(
instances = numPlanetGears,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = false,
)

View File

@ -1,123 +0,0 @@
// Helium Tank
// A helium tank is a portable pressure vessel used to store and dispense helium gas for a variety of commercial and entertainment purposes
// Set units
@settings(defaultLengthUnit = in)
// Define parameters
tankHeight = 2.5ft
tankDiameter = 9
wallThickness = 0.125
portDiameter = 1.25
bracketThickness = 0.090
boltSize = 1 / 4
// Sketch the perimeter of the gas tank- inside and out, then revolve around the vertical axis.
tankSketch = startSketchOn(YZ)
|> startProfile(at = [portDiameter / 2, tankHeight])
|> yLine(length = -0.6)
|> xLine(length = 0.1)
|> tangentialArc(angle = -110, radius = 0.1)
|> tangentialArc(angle = 40, radius = 0.6)
|> tangentialArc(angle = -110, radius = 0.1)
|> tangentialArc(angle = 180, radius = 0.1)
|> tangentialArc(angle = -90, radius = tankDiameter / 2 - lastSegX(%), tag = $seg01)
|> angledLine(angle = tangentToEnd(seg01), endAbsoluteY = 1.5, tag = $seg09)
|> tangentialArc(angle = -90, radius = 2, tag = $seg02)
|> angledLine(angle = tangentToEnd(seg02), endAbsoluteX = 0.001, tag = $seg08)
|> yLine(length = wallThickness)
|> xLine(length = segLen(seg08))
|> tangentialArc(angle = 90, radius = 2 - wallThickness)
|> yLine(length = segLen(seg09))
|> tangentialArc(angle = 90, radius = tankDiameter / 2 - wallThickness - 1.3)
|> xLine(endAbsolute = profileStartX(%) - .1)
|> yLine(endAbsolute = profileStartY(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Only revolving to 220deg so that the interior of the tank is visible. It should ultimately be closed at 360deg
tankRevolve = revolve(tankSketch, angle = 220, axis = Y)
// Model the brass valve on top of the tank port
valveBody = startSketchOn(offsetPlane(XY, offset = tankHeight - 0.5))
|> circle(center = [0, 0], radius = portDiameter / 1.9, tag = $seg03)
|> extrude(length = 1.5, tagEnd = $capEnd001)
|> fillet(
radius = 0.1,
tags = [
getCommonEdge(faces = [seg03, capEnd001])
],
)
// Model the outlet port of the valve, then union it all together
valvePort = startSketchOn(YZ)
|> circle(center = [0, tankHeight + 0.3], radius = portDiameter / 3)
|> subtract2d(tool = circle(center = [0, tankHeight + 0.3], radius = portDiameter / 3.25))
|> extrude(length = 1.3)
valve = union([valveBody, valvePort])
|> appearance(color = "#9a4618")
// Sketch the offset profile of the mounting bracket
bracketOffsetProfile = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|> startProfile(at = [0, tankDiameter / 2 + wallThickness])
|> xLine(length = -0.1)
|> tangentialArc(angle = 35, radius = tankDiameter / 2 + wallThickness)
|> tangentialArc(angle = -135, radius = 0.25 - wallThickness, tag = $seg06)
|> angledLine(angle = tangentToEnd(seg06), length = tankDiameter / 7)
|> tangentialArc(angle = -80, radius = 0.25 - wallThickness, tag = $seg07)
|> angledLine(angle = tangentToEnd(seg07), endAbsoluteX = 0)
|> mirror2d(axis = Y)
|> close()
// Sketch the outer perimeter of the offset bracket, then subtract the inner offset to create a constant thickness sheet metal hoop
bracketProfile = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|> startProfile(at = [0, tankDiameter / 2])
|> xLine(length = -0.1)
|> tangentialArc(angle = 35, radius = tankDiameter / 2)
|> tangentialArc(angle = -135, radius = 0.25, tag = $seg04)
|> angledLine(angle = tangentToEnd(seg04), length = tankDiameter / 7)
|> tangentialArc(angle = -80, radius = 0.25, tag = $seg05)
|> angledLine(angle = tangentToEnd(seg05), endAbsoluteX = 0)
|> mirror2d(axis = Y)
|> close()
|> subtract2d(tool = bracketOffsetProfile)
|> extrude(length = 1, symmetric = true)
// Cut holes in the bracket for a mounting strap
strapSleeve = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|> circle(center = [0, .125 / 2], radius = 4.75)
|> subtract2d(tool = circle(center = [0, .125 / 2], radius = 4.65))
|> extrude(length = .8, symmetric = true)
bracketSleeve = subtract([bracketProfile], tools = [strapSleeve])
// Create holes in the bracket for anchor mounts to secure the bracket to a wall
mountingHoles = startSketchOn(offsetPlane(XZ, offset = -tankDiameter / 1.9))
|> circle(center = [tankDiameter / 4.5, tankHeight * 0.67], radius = boltSize / 2)
|> extrude(length = -5)
bracket = subtract(
[bracketSleeve],
tools = union(patternLinear3d(
mountingHoles,
instances = 2,
distance = tankDiameter / 2.25,
axis = [-1, 0, 0],
)),
)
|> appearance(color = "#cd0404")
// Model a circular strap to secure the tank to the bracket
mountingStrap = startSketchOn(offsetPlane(XY, offset = tankHeight * 0.67))
|> circle(center = [0, .155 / 2], radius = tankDiameter / 1.9)
|> subtract2d(tool = circle(center = [0, .155 / 2], radius = tankDiameter / 1.9 - 0.1))
|> extrude(length = .75, symmetric = true)
|> appearance(color = "#210d03")
// Create a second instance of the bracket and strap at a lower point on the tank
[bracket, mountingStrap]
|> patternLinear3d(
%,
instances = 2,
distance = tankHeight * 0.33,
axis = [0, 0, -1],
)

View File

@ -1,84 +0,0 @@
// Herringbone Gear
// A herringbone, or double-helical gear, is a cylindrical gear type with angled teeth in opposing directions. This allows the quietness and smoothness of a helical gear, without applying a directional load while turning
// Set units
@settings(defaultLengthUnit = mm)
// Define a function to create a herringbone gear
fn herringboneGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define a function to create a rotated gear sketch on an offset plane
fn herringboneGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
herringboneGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
// Create a center hole with an 8mm diameter
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
return herringboneGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = herringboneGearSketch(offsetHeight = 0)
// Draw a gear sketch that has been rotated by the helix angle
gearSketch002 = herringboneGearSketch(offsetHeight = gearHeight / 2)
// Draw a gear sketch at the total gear height that reverses the angle direction
gearSketch003 = clone(gearSketch001)
|> translate(z = gearHeight)
// Loft each rotated gear sketch together to form a herringbone gear
herringboneGear = loft(
[
gearSketch001,
gearSketch002,
gearSketch003
],
vDegree = 1,
)
return herringboneGear
}
herringboneGear(
nTeeth = 25,
module = 1,
pressureAngle = 14,
helixAngle = 40,
gearHeight = 8,
)

View File

@ -1,186 +0,0 @@
// Herringbone Planetary Gearset
// A herringbone planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are herringbone rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.
// Set units
@settings(defaultLengthUnit = mm)
// Define a function to create a herringbone gear
fn herringboneGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define a function to create a rotated gear sketch on an offset plane
fn herringboneGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
herringboneGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 160 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
// Create a center hole with an 8mm diameter
|> subtract2d(tool = circle(center = [0, 0], radius = 4))
return herringboneGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = herringboneGearSketch(offsetHeight = 0)
// Draw a gear sketch that has been rotated by the helix angle
gearSketch002 = herringboneGearSketch(offsetHeight = gearHeight / 2)
// Draw a gear sketch at the total gear height that reverses the angle direction
gearSketch003 = clone(gearSketch001)
|> translate(z = gearHeight)
// Loft each rotated gear sketch together to form a herringbone gear
herringboneGear = loft(
[
gearSketch001,
gearSketch002,
gearSketch003
],
vDegree = 1,
)
return herringboneGear
}
// Define a function to create a ring gear
fn ringGear(nTeeth, module, pressureAngle, helixAngle, gearHeight) {
// Calculate gear parameters
pitchDiameter = module * nTeeth
addendum = module
deddendum = 1.25 * module
baseDiameter = pitchDiameter * cos(pressureAngle)
tipDiameter = pitchDiameter + 2 * module
// Define a function to create a rotated gear sketch on an offset plane
fn ringGearSketch(offsetHeight) {
// Calculate the amount to rotate each planar sketch of the gear given the gear helix angle and total gear height
helixCalc = acos(offsetHeight * tan(helixAngle) / (tipDiameter / 2))
// Using the gear parameters, sketch an involute tooth spanning from the base diameter to the tip diameter
ringTeeth = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> startProfile(at = polar(angle = helixCalc, length = baseDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = helixCalc,
tag = $seg01,
)
|> line(endAbsolute = polar(angle = 220 / nTeeth + helixCalc, length = tipDiameter / 2))
|> involuteCircular(
startRadius = baseDiameter / 2,
endRadius = tipDiameter / 2,
angle = -(4 * atan(segEndY(seg01) / segEndX(seg01)) - (3 * helixCalc)),
reverse = true,
)
// Position the end line of the sketch at the start of the next tooth
|> line(endAbsolute = polar(angle = 360 / nTeeth + helixCalc, length = baseDiameter / 2))
// Pattern the sketch about the center by the specified number of teeth, then close the sketch
|> patternCircular2d(
%,
instances = nTeeth,
center = [0, 0],
arcDegrees = 360,
rotateDuplicates = true,
)
|> close()
// Create a circular body that is larger than the tip diameter of the gear, then subtract the gear profile from the body
ringGearSketch = startSketchOn(offsetPlane(XY, offset = offsetHeight))
|> circle(center = [0, 0], radius = tipDiameter / 1.8)
|> subtract2d(tool = ringTeeth)
return ringGearSketch
}
// Draw a gear sketch on the base plane
gearSketch001 = ringGearSketch(offsetHeight = 0)
// Draw a rotated gear sketch on a middle interstitial plane
gearSketch002 = ringGearSketch(offsetHeight = gearHeight / 2)
// Draw a gear sketch at the total gear height that reverses the angle direction
gearSketch003 = clone(gearSketch001)
|> translate(z = gearHeight)
// Loft each rotated gear sketch together to form a ring gear
ringGear = loft(
[
gearSketch001,
gearSketch002,
gearSketch003
],
vDegree = 1,
)
return ringGear
}
// Create the outer ring gear for the planetary gearset
ringGear(
nTeeth = 58,
module = 1.5,
pressureAngle = 14,
helixAngle = -35,
gearHeight = 8,
)
// Create a central sun gear using a small herringbone gear
herringboneGear(
nTeeth = 18,
module = 1.5,
pressureAngle = 14,
helixAngle = 35,
gearHeight = 8,
)
// Create the herringbone planet gears
numPlanetGears = 4
herringboneGear(
nTeeth = 18,
module = 1.5,
pressureAngle = 14,
helixAngle = -35,
gearHeight = 8,
)
|> translate(y = 18 * 1.5 + 1.95)
|> patternCircular3d(
instances = numPlanetGears,
axis = [0, 0, 1],
center = [0, 0, 0],
arcDegrees = 360,
rotateDuplicates = false,
)

View File

@ -44,16 +44,6 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "bone-plate/main.kcl",
"multipleFiles": false,
"title": "Bone Plate",
"description": "A bone plate is a medical device used in orthopedics to stabilize and fix bone fractures during the healing process. They are typically made of stainless steel or titanium and are secured to the bone with screws. Bone plates come in various types, including locking, compression, and bridge plates, each with specific applications",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "bottle/main.kcl",
@ -90,16 +80,6 @@
"parameters.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "cold-plate/main.kcl",
"multipleFiles": false,
"title": "Cold Plate",
"description": "A cold plate is a thermal management device used to remove heat from a device or component, typically by transferring heat to a liquid coolant that flows through the plate. It's a conductive cooling solution, commonly made of materials like aluminum or copper, with internal channels or tubes for the coolant",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "color-cube/main.kcl",
@ -110,43 +90,6 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "counterdrilled-weldment/main.kcl",
"multipleFiles": false,
"title": "Counterdrilled Weldment",
"description": "A metal weldment consisting of a counterdrilled plate, a centrally mounted housing tube, and four structural support fins.",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "countersunk-plate/main.kcl",
"multipleFiles": false,
"title": "Plate with countersunk holes",
"description": "A small mounting plate with a countersunk hole at each end",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "cpu-cooler/main.kcl",
"multipleFiles": true,
"title": "CPU Cooler",
"description": "A CPU cooler is a device designed to dissipate heat generated by the CPU of a computer. They consist of a brazed heat sink made from aluminum or copper alloys, and one or two axial fans to move airflow across the heat sink.",
"files": [
"fan-housing.kcl",
"fan.kcl",
"heat-sink.kcl",
"main.kcl",
"motor.kcl",
"mounting-wire.kcl",
"parameters.kcl",
"removable-sticker.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "cycloidal-gear/main.kcl",
@ -227,6 +170,16 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "gear/main.kcl",
"multipleFiles": false,
"title": "Spur Gear",
"description": "A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "gear-rack/main.kcl",
@ -277,66 +230,6 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "hammer/main.kcl",
"multipleFiles": false,
"title": "Claw Hammer",
"description": "Often used in construction, a claw hammer is a levered metal hand tool that is used to strike and extract nails",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "helical-gear/main.kcl",
"multipleFiles": false,
"title": "Helical Gear",
"description": "A helical gear is a type of cylindrical gear where the teeth are slanted at an angle relative to the axis of rotation. This greatly reduces noise and wear when transmitting torque across meshed spinning gears",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "helical-planetary-gearset/main.kcl",
"multipleFiles": false,
"title": "Helical Planetary Gearset",
"description": "A helical planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are helical rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "helium-tank/main.kcl",
"multipleFiles": false,
"title": "Helium Tank",
"description": "A helium tank is a portable pressure vessel used to store and dispense helium gas for a variety of commercial and entertainment purposes",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "herringbone-gear/main.kcl",
"multipleFiles": false,
"title": "Herringbone Gear",
"description": "A herringbone, or double-helical gear, is a cylindrical gear type with angled teeth in opposing directions. This allows the quietness and smoothness of a helical gear, without applying a directional load while turning",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "herringbone-planetary-gearset/main.kcl",
"multipleFiles": false,
"title": "Herringbone Planetary Gearset",
"description": "A herringbone planetary gearset is a type of planetary gear system where the teeth of the sun gear, planet gears, and/or ring gear are herringbone rather than straight. This design allows for smoother, quieter operation, greater load-carrying capacity, and more flexible shaft alignment.",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "hex-nut/main.kcl",
@ -424,15 +317,12 @@
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "pillow-block-bearing/main.kcl",
"multipleFiles": true,
"title": "Pillow Block Bearing",
"pathFromProjectDirectoryToFirstFile": "parametric-bearing-pillow-block/main.kcl",
"multipleFiles": false,
"title": "Parametric Bearing Pillow Block",
"description": "A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.",
"files": [
"ball-bearing.kcl",
"block.kcl",
"main.kcl",
"parameters.kcl"
"main.kcl"
]
},
{
@ -482,16 +372,6 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "prosthetic-hip/main.kcl",
"multipleFiles": false,
"title": "Prosthetic Hip",
"description": "A prosthetic hip is a surgically implanted ball-and-socket intended to replace a damaged or worn hip joint",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "router-template-cross-bar/main.kcl",
@ -532,46 +412,6 @@
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "spur-gear/main.kcl",
"multipleFiles": false,
"title": "Spur Gear",
"description": "A rotating machine part having cut teeth or, in the case of a cogwheel, inserted teeth (called cogs), which mesh with another toothed part to transmit torque. Geared devices can change the speed, torque, and direction of a power source. The two elements that define a gear are its circular shape and the teeth that are integrated into its outer edge, which are designed to fit into the teeth of another gear.",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "spur-reduction-gearset/main.kcl",
"multipleFiles": false,
"title": "Spur Reduction Gearset",
"description": "A pair of spur gears meshed together, with an equal module and different number of teeth",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "surgical-drill-guide/main.kcl",
"multipleFiles": false,
"title": "Surgical Drill Guide",
"description": "A surgical drill guide is a tool used in medical procedures to assist in drilling holes to a desired depth, ensuring proper orientation and minimizing intraosseal pressure",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "tooling-nest-block/main.kcl",
"multipleFiles": false,
"title": "Tooling Nest Block",
"description": "A tooling nest block is a block-shaped tool made from high-carbon steel. It features an assortment of conical or hemispherical indentions, which are used to form or shape metal, particularly in crafting bells or jewelry",
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "utility-sink/main.kcl",
@ -609,15 +449,5 @@
"files": [
"main.kcl"
]
},
{
"file": "main.kcl",
"pathFromProjectDirectoryToFirstFile": "wing-spar/main.kcl",
"multipleFiles": false,
"title": "Wing Spar",
"description": "In a fixed-wing aircraft, the spar is often the main structural member of the wing, running spanwise at right angles (or thereabouts depending on wing sweep) to the fuselage. The spar carries flight loads and the weight of the wings while on the ground. Other structural and forming members such as ribs may be attached to the spars",
"files": [
"main.kcl"
]
}
]

View File

@ -0,0 +1,51 @@
// Parametric Bearing Pillow Block
// A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.
// Set units
@settings(defaultLengthUnit = in, kclVersion = 1.0)
// Define parameters
length = 6
width = 4
height = 1
cbDepth = .25
cbDia = .7
holeDia = .375
padding = 1.5
bearingDia = 3
// Sketch the block body
body = startSketchOn(XY)
|> startProfile(at = [-width / 2, -length / 2])
|> line(endAbsolute = [width / 2, -length / 2])
|> line(endAbsolute = [width / 2, length / 2])
|> line(endAbsolute = [-width / 2, length / 2])
|> close()
|> extrude(length = height)
counterBoreHoles = startSketchOn(body, face = END)
|> circle(
center = [
-(width / 2 - (padding / 2)),
-(length / 2 - (padding / 2))
],
radius = cbDia / 2,
)
|> patternLinear2d(instances = 2, distance = length - padding, axis = [0, 1])
|> patternLinear2d(instances = 2, distance = width - padding, axis = [1, 0])
|> extrude(%, length = -cbDepth)
boltHoles = startSketchOn(body, face = START)
|> circle(
center = [
-(width / 2 - (padding / 2)),
-(length / 2 - (padding / 2))
],
radius = holeDia / 2,
)
|> patternLinear2d(instances = 2, distance = length - padding, axis = [0, 1])
|> patternLinear2d(instances = 2, distance = width - padding, axis = [1, 0])
|> extrude(length = -height + cbDepth)
centerHole = startSketchOn(body, face = END)
|> circle(center = [0, 0], radius = bearingDia / 2)
|> extrude(length = -height)

View File

@ -1,101 +0,0 @@
// Pillow Block Bearing
// The ball bearing for the pillow block bearing assembly
// Set units
@settings(defaultLengthUnit = in)
// Import Parameters
import * from "parameters.kcl"
// Create the sketch of one of the balls. The ball diameter is sized as a fraction of the difference between inner and outer radius of the bearing
ballsSketch = startSketchOn(offsetPlane(XY, offset = stockThickness / 2))
|> startProfile(at = [bearingBoreDiameter / 2 + 0.1, 0.001])
|> arc(angleEnd = 0, angleStart = 180, radius = sphereDia / 2)
|> close()
// Revolve the ball to make a sphere and pattern around the inside wall
balls = revolve(ballsSketch, axis = X)
|> patternCircular3d(
arcDegrees = 360,
axis = [0, 0, 1],
center = [0, 0, 0],
instances = 16,
rotateDuplicates = true,
)
// Create the sketch for the chain around the balls
chainSketch = startSketchOn(offsetPlane(XY, offset = stockThickness / 2))
|> startProfile(at = [
bearingBoreDiameter / 2 + 0.1 + sphereDia / 2 - (chainWidth / 2),
0.125 * sin(60deg)
])
|> arc(angleEnd = 60, angleStart = 120, radius = sphereDia / 2)
|> line(end = [0, chainThickness])
|> line(end = [-chainWidth, 0])
|> close()
// Revolve the chain sketch
chainHead = revolve(chainSketch, axis = X)
|> patternCircular3d(
arcDegrees = 360,
axis = [0, 0, 1],
center = [0, 0, 0],
instances = 16,
rotateDuplicates = true,
)
// Create the sketch for the links in between the chains
linkSketch = startSketchOn(XZ)
|> circle(
center = [
bearingBoreDiameter / 2 + 0.1 + sphereDia / 2,
stockThickness / 2
],
radius = linkDiameter / 2,
)
// Create the walls of the bearing
bearingBody = startSketchOn(XZ)
bearingUpper = startProfile(
bearingBody,
at = [
bearingOuterDiameter / 2 - .07,
stockThickness
],
)
|> angledLine(angle = -91, length = 0.05)
|> xLine(length = -(bearingOuterDiameter / 2 - (bearingBoreDiameter / 2)) + .145)
|> yLine(endAbsolute = 0.105)
|> xLine(length = -0.025)
|> angledLine(angle = 91, endAbsoluteY = profileStartY(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(angle = 360, axis = Y)
|> appearance(%, color = "#121212")
bearingLower = startProfile(bearingBody, at = [bearingBoreDiameter / 2, 0.025])
|> xLine(length = 0.05)
|> angledLine(angle = 75, length = 0.04, tag = $seg01)
|> xLine(length = 0.05)
|> angledLine(angle = -75, length = segLen(seg01))
|> xLine(endAbsolute = bearingOuterDiameter / 2)
|> yLine(length = stockThickness)
|> xLine(length = -0.07)
|> angledLine(angle = -91, endAbsoluteY = profileStartY(%) + .075)
|> xLine(endAbsolute = profileStartX(%) + .05)
|> angledLine(angle = 91, endAbsoluteY = stockThickness * 1.25)
|> xLine(endAbsolute = profileStartX(%))
|> line(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(angle = 360, axis = Y)
|> appearance(%, color = "#f0f0f0")
// Revolve the link sketch
revolve(linkSketch, axis = Y, angle = 360 / 16)
|> patternCircular3d(
arcDegrees = 360,
axis = [0, 0, 1],
center = [0, 0, 0],
instances = 16,
rotateDuplicates = true,
)

View File

@ -1,56 +0,0 @@
// Pillow Block Bearing
// The machined block for the pillow block bearing assembly. The block is dimensioned using the bolt pattern spacing, and each bolt hole includes a counterbore
// Set units
@settings(defaultLengthUnit = in)
// Import Parameters
import * from "parameters.kcl"
// Calculate the dimensions of the block using the specified bolt spacing. The size of the block can be defined by adding a multiple of the counterbore diameter to the bolt spacing
blockLength = boltSpacingX + counterboreDiameter + boltDiameter
blockWidth = boltSpacingY + counterboreDiameter + boltDiameter
// Draw the base plate
plateSketch = startSketchOn(XY)
|> startProfile(at = [-blockLength / 2, -blockWidth / 2])
|> angledLine(angle = 0, length = blockLength, tag = $rectangleSegmentA001)
|> angledLine(angle = segAng(rectangleSegmentA001) + 90, length = blockWidth, tag = $rectangleSegmentB001)
|> angledLine(angle = segAng(rectangleSegmentA001), length = -segLen(rectangleSegmentA001), tag = $rectangleSegmentC001)
|> line(endAbsolute = [profileStartX(%), profileStartY(%)], tag = $rectangleSegmentD001)
|> close()
|> subtract2d(tool = circle(center = [0, 0], radius = bearingOuterDiameter / 2))
plateBody = extrude(plateSketch, length = stockThickness)
|> appearance(%, color = "#1e62eb")
|> fillet(
radius = boltDiameter * 1 / 3,
tags = [
getNextAdjacentEdge(rectangleSegmentB001),
getNextAdjacentEdge(rectangleSegmentA001),
getNextAdjacentEdge(rectangleSegmentC001),
getNextAdjacentEdge(rectangleSegmentD001)
],
)
// Define hole positions
holePositions = [
[-boltSpacingX / 2, -boltSpacingY / 2],
[-boltSpacingX / 2, boltSpacingY / 2],
[boltSpacingX / 2, -boltSpacingY / 2],
[boltSpacingX / 2, boltSpacingY / 2]
]
// Function to create a counterbored hole
fn counterbore(@holePosition) {
cbBore = startSketchOn(plateBody, face = END)
|> circle(center = holePosition, radius = counterboreDiameter / 2)
|> extrude(length = -counterboreDepth)
cbBolt = startSketchOn(cbBore, face = START)
|> circle(center = holePosition, radius = boltDiameter / 2, tag = $hole01)
|> extrude(length = -stockThickness + counterboreDepth)
return { }
}
// Place a counterbored hole at each bolt hole position
map(holePositions, f = counterbore)

View File

@ -1,14 +0,0 @@
// Pillow Block Bearing
// A bearing pillow block, also known as a plummer block or pillow block bearing, is a pedestal used to provide support for a rotating shaft with the help of compatible bearings and various accessories. Housing a bearing, the pillow block provides a secure and stable foundation that allows the shaft to rotate smoothly within its machinery setup. These components are essential in a wide range of mechanical systems and machinery, playing a key role in reducing friction and supporting radial and axial loads.
// Set units
@settings(defaultLengthUnit = in)
// Import parts and parameters
import * from "parameters.kcl"
import "ball-bearing.kcl" as ballBearing
import "block.kcl" as block
// Render each part
ballBearing
block

View File

@ -1,18 +0,0 @@
// Global parameters for the pillow block bearing
// Set units
@settings(defaultLengthUnit = in)
// Export parameters
export boltSpacingX = 5
export boltSpacingY = 3
export boltDiameter = 3 / 8
export counterboreDiameter = 3 / 4
export counterboreDepth = 3 / 16
export stockThickness = .5
export bearingBoreDiameter = 1 + 3 / 4
export bearingOuterDiameter = bearingBoreDiameter * 1.5
export sphereDia = (bearingOuterDiameter - bearingBoreDiameter) / 4
export chainWidth = sphereDia / 2
export chainThickness = sphereDia / 8
export linkDiameter = sphereDia / 4

View File

@ -1,176 +0,0 @@
// Prosthetic Hip
// A prosthetic hip is a surgically implanted ball-and-socket intended to replace a damaged or worn hip joint
// Set units
@settings(defaultLengthUnit = mm)
// Create the femur using a series of lofts. Draw the profile for the first loft on the XY plane.
l1 = 1
r1 = 3
stemLoftProfile1 = startSketchOn(XY)
|> startProfile(at = [-3, -l1 / 2])
|> yLine(length = l1, tag = $seg01)
|> tangentialArc(angle = -120, radius = r1)
|> angledLine(angle = -30, length = segLen(seg01))
|> tangentialArc(angle = -120, radius = r1)
|> angledLine(angle = 30, length = -segLen(seg01))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the second profile for the lofted femur
l2 = 19
r2 = 3
stemLoftProfile2 = startSketchOn(offsetPlane(XY, offset = 75))
|> startProfile(at = [-8, -l2 / 2])
|> yLine(length = l2, tag = $seg02)
|> tangentialArc(angle = -120, radius = r2)
|> angledLine(angle = -30, length = segLen(seg02))
|> tangentialArc(angle = -120, radius = r2)
|> angledLine(angle = 30, length = -segLen(seg02))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the third profile for the lofted femur
p3Z = 110
p3A = 25
plane003 = {
origin = [0, 0.0, p3Z],
xAxis = [cos(p3A), 0, sin(p3A)],
yAxis = [0.0, 1.0, 0.0]
}
l3 = 32
r3 = 4
stemLoftProfile3 = startSketchOn(plane003)
|> startProfile(at = [-15.5, -l3 / 2])
|> yLine(length = l3, tag = $seg03)
|> tangentialArc(angle = -120, radius = r3)
|> angledLine(angle = -30, length = segLen(seg03))
|> tangentialArc(angle = -120, radius = r3)
|> angledLine(angle = 30, length = -segLen(seg03))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the fourth profile for the lofted femur
p4Z = 130
p4A = 36.5
plane004 = {
origin = [0, 0.0, p4Z],
xAxis = [cos(p4A), 0, sin(p4A)],
yAxis = [0.0, 1.0, 0.0]
}
l4 = 16
r4 = 5
stemLoftProfile4 = startSketchOn(plane004)
|> startProfile(at = [-23, -l4 / 2])
|> yLine(length = l4, tag = $seg04)
|> tangentialArc(angle = -120, radius = r4)
|> angledLine(angle = -30, length = segLen(seg04))
|> tangentialArc(angle = -120, radius = r4)
|> angledLine(angle = 30, length = -segLen(seg04))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the first profile for the femoral stem
p5Z = 140
p5A = 36.5
plane005 = {
origin = [0, 0.0, p5Z],
xAxis = [cos(p5A), 0, sin(p5A)],
yAxis = [0.0, 1.0, 0.0]
}
l5 = 1.6
r5 = 1.6
stemLoftProfile5 = startSketchOn(plane005)
|> startProfile(at = [-19.5, -l5 / 2])
|> yLine(length = l5, tag = $seg05)
|> tangentialArc(angle = -120, radius = r5)
|> angledLine(angle = -30, length = segLen(seg05))
|> tangentialArc(angle = -120, radius = r5)
|> angledLine(angle = 30, length = -segLen(seg05))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the second profile for the femoral stem
p6Z = 145
p6A = 36.5
plane006 = {
origin = [0, 0.0, p6Z],
xAxis = [cos(p6A), 0, sin(p6A)],
yAxis = [0.0, 1.0, 0.0]
}
l6 = 1
r6 = 3
stemLoftProfile6 = startSketchOn(plane006)
|> startProfile(at = [-23.4, -l6 / 2])
|> yLine(length = l6, tag = $seg06)
|> tangentialArc(angle = -120, radius = r6)
|> angledLine(angle = -30, length = segLen(seg06))
|> tangentialArc(angle = -120, radius = r6)
|> angledLine(angle = 30, length = -segLen(seg06))
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
// Draw the third profile for the femoral stem
stemTab = clone(stemLoftProfile6)
|> extrude(%, length = 6)
// Loft the femur using all profiles in sequence
femur = loft([
stemLoftProfile1,
stemLoftProfile2,
stemLoftProfile3,
stemLoftProfile4
])
// Loft the femoral stem
femoralStem = loft([
clone(stemLoftProfile4),
stemLoftProfile5,
stemLoftProfile6
])
// Revolve a hollow socket to represent the femoral head
femoralHead = startSketchOn(XZ)
|> startProfile(at = [4, 0])
|> xLine(length = 1.1)
|> tangentialArc(angle = 90, radius = 3)
|> tangentialArc(angle = 90, radius = 8)
|> yLine(length = -1)
|> tangentialArc(angle = 90, radius = .1)
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(angle = 360, axis = Y)
|> translate(x = -16.1, z = 133)
|> rotate(pitch = -36.5)
|> appearance(color = "#d64398")
// Place a polyethylene cap over the femoral head
polyethyleneInsert = startSketchOn(XZ)
|> startProfile(at = [8.36, 3])
|> xLine(length = 0.5)
|> yLine(length = .1)
|> tangentialArc(endAbsolute = [0.1, 12.55])
|> yLine(length = -0.85)
|> xLine(length = 0.58)
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(angle = 360, axis = Y)
|> translate(x = -16.1, z = 133)
|> rotate(pitch = -36.5)
|> appearance(color = "#3cadd3")
// Place a ceramic or metal shell over the cap
acetabularShell = startSketchOn(XZ)
|> startProfile(at = [8.84, 4.7])
|> xLine(length = 1)
|> yLine(length = .5)
|> tangentialArc(endAbsolute = [0.1, 14])
|> yLine(endAbsolute = 12.56)
|> xLine(length = 0.1)
|> tangentialArc(endAbsolute = [profileStartX(%), profileStartY(%)])
|> close()
|> revolve(angle = 360, axis = Y)
|> translate(x = -16.1, z = 133)
|> rotate(pitch = -36.5)
|> appearance(color = "#a55e2c")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 126 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 113 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 118 KiB

After

Width:  |  Height:  |  Size: 118 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 139 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Some files were not shown because too many files have changed in this diff Show More