Files
modeling-app/rust/kcl-lib/tests/kcl_samples/cpu-cooler/artifact_graph_flowchart.snap.md
Jess Frazelle 78b6854c6b bump modeling-cmds, nuke slow world (#6753)
* bump modeling-cmds, nuke slow world

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* more stuffs

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* i mechanical engineered today

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* reverse uno your revolves

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* retry logic

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* fixes

Signed-off-by: Jess Frazelle <github@jessfraz.com>

* updates

Signed-off-by: Jess Frazelle <github@jessfraz.com>

---------

Signed-off-by: Jess Frazelle <github@jessfraz.com>
2025-05-14 04:07:24 +00:00

28 KiB

flowchart LR
  subgraph path22 [Path]
    22["Path<br>[323, 370, 2]"]
    65["Segment<br>[376, 444, 2]"]
    66["Segment<br>[450, 550, 2]"]
    67["Segment<br>[556, 673, 2]"]
    68["Segment<br>[679, 764, 2]"]
    69["Segment<br>[770, 777, 2]"]
    247[Solid2d]
  end
  subgraph path23 [Path]
    23["Path<br>[801, 836, 2]"]
    70["Segment<br>[801, 836, 2]"]
    228[Solid2d]
  end
  subgraph path24 [Path]
    24["Path<br>[861, 1008, 2]"]
    71["Segment<br>[861, 1008, 2]"]
    244[Solid2d]
  end
  subgraph path25 [Path]
    25["Path<br>[1033, 1181, 2]"]
    72["Segment<br>[1033, 1181, 2]"]
    238[Solid2d]
  end
  subgraph path26 [Path]
    26["Path<br>[1206, 1354, 2]"]
    73["Segment<br>[1206, 1354, 2]"]
    255[Solid2d]
  end
  subgraph path27 [Path]
    27["Path<br>[1379, 1528, 2]"]
    74["Segment<br>[1379, 1528, 2]"]
    233[Solid2d]
  end
  subgraph path28 [Path]
    28["Path<br>[1696, 1752, 2]"]
    75["Segment<br>[1758, 1823, 2]"]
    76["Segment<br>[1829, 1881, 2]"]
    77["Segment<br>[1887, 1938, 2]"]
    78["Segment<br>[1944, 1996, 2]"]
    79["Segment<br>[2002, 2068, 2]"]
    80["Segment<br>[2074, 2126, 2]"]
    81["Segment<br>[2132, 2164, 2]"]
    82["Segment<br>[2170, 2235, 2]"]
    83["Segment<br>[2241, 2248, 2]"]
    246[Solid2d]
  end
  subgraph path29 [Path]
    29["Path<br>[2597, 2710, 2]"]
    84["Segment<br>[2716, 2771, 2]"]
    85["Segment<br>[2777, 2812, 2]"]
    86["Segment<br>[2818, 2873, 2]"]
    87["Segment<br>[2879, 2915, 2]"]
    88["Segment<br>[2921, 2976, 2]"]
    89["Segment<br>[2982, 3018, 2]"]
    90["Segment<br>[3024, 3079, 2]"]
    91["Segment<br>[3085, 3141, 2]"]
  end
  subgraph path30 [Path]
    30["Path<br>[3290, 3341, 2]"]
    92["Segment<br>[3290, 3341, 2]"]
    239[Solid2d]
  end
  subgraph path31 [Path]
    31["Path<br>[3520, 3582, 2]"]
    93["Segment<br>[3588, 3656, 2]"]
    94["Segment<br>[3662, 3762, 2]"]
    95["Segment<br>[3768, 3885, 2]"]
    96["Segment<br>[3891, 3976, 2]"]
    97["Segment<br>[3982, 3989, 2]"]
    253[Solid2d]
  end
  subgraph path32 [Path]
    32["Path<br>[4013, 4064, 2]"]
    98["Segment<br>[4013, 4064, 2]"]
    225[Solid2d]
  end
  subgraph path33 [Path]
    33["Path<br>[4089, 4236, 2]"]
    99["Segment<br>[4089, 4236, 2]"]
    226[Solid2d]
  end
  subgraph path34 [Path]
    34["Path<br>[4261, 4409, 2]"]
    100["Segment<br>[4261, 4409, 2]"]
    252[Solid2d]
  end
  subgraph path35 [Path]
    35["Path<br>[4434, 4582, 2]"]
    101["Segment<br>[4434, 4582, 2]"]
    249[Solid2d]
  end
  subgraph path36 [Path]
    36["Path<br>[4607, 4756, 2]"]
    102["Segment<br>[4607, 4756, 2]"]
    231[Solid2d]
  end
  subgraph path37 [Path]
    37["Path<br>[4898, 4936, 2]"]
    103["Segment<br>[4898, 4936, 2]"]
    248[Solid2d]
  end
  subgraph path38 [Path]
    38["Path<br>[5009, 5045, 2]"]
    104["Segment<br>[5009, 5045, 2]"]
    242[Solid2d]
  end
  subgraph path39 [Path]
    39["Path<br>[271, 321, 3]"]
    105["Segment<br>[271, 321, 3]"]
    237[Solid2d]
  end
  subgraph path40 [Path]
    40["Path<br>[508, 543, 3]"]
    106["Segment<br>[508, 543, 3]"]
    245[Solid2d]
  end
  subgraph path41 [Path]
    41["Path<br>[216, 282, 4]"]
    107["Segment<br>[216, 282, 4]"]
    243[Solid2d]
  end
  subgraph path42 [Path]
    42["Path<br>[601, 691, 4]"]
    109["Segment<br>[699, 768, 4]"]
    110["Segment<br>[776, 1076, 4]"]
    113["Segment<br>[1084, 1386, 4]"]
    114["Segment<br>[1394, 1613, 4]"]
    118["Segment<br>[1621, 1628, 4]"]
    235[Solid2d]
  end
  subgraph path43 [Path]
    43["Path<br>[601, 691, 4]"]
    108["Segment<br>[699, 768, 4]"]
    111["Segment<br>[776, 1076, 4]"]
    112["Segment<br>[1084, 1386, 4]"]
    115["Segment<br>[1394, 1613, 4]"]
    117["Segment<br>[1621, 1628, 4]"]
    241[Solid2d]
  end
  subgraph path44 [Path]
    44["Path<br>[601, 691, 4]"]
    116["Segment<br>[1621, 1628, 4]"]
    254[Solid2d]
  end
  subgraph path45 [Path]
    45["Path<br>[285, 331, 5]"]
    119["Segment<br>[337, 387, 5]"]
    120["Segment<br>[393, 440, 5]"]
    121["Segment<br>[446, 482, 5]"]
    122["Segment<br>[488, 518, 5]"]
    123["Segment<br>[524, 571, 5]"]
    124["Segment<br>[577, 606, 5]"]
  end
  subgraph path46 [Path]
    46["Path<br>[731, 778, 5]"]
    125["Segment<br>[731, 778, 5]"]
    232[Solid2d]
  end
  subgraph path47 [Path]
    47["Path<br>[802, 851, 5]"]
    126["Segment<br>[802, 851, 5]"]
    234[Solid2d]
  end
  subgraph path48 [Path]
    48["Path<br>[1172, 1221, 5]"]
    127["Segment<br>[1227, 1268, 5]"]
    128["Segment<br>[1274, 1321, 5]"]
    129["Segment<br>[1327, 1365, 5]"]
    130["Segment<br>[1371, 1418, 5]"]
    131["Segment<br>[1424, 1460, 5]"]
    132["Segment<br>[1466, 1496, 5]"]
    133["Segment<br>[1502, 1550, 5]"]
    134["Segment<br>[1556, 1602, 5]"]
    135["Segment<br>[1608, 1641, 5]"]
  end
  subgraph path49 [Path]
    49["Path<br>[1766, 1815, 5]"]
    136["Segment<br>[1766, 1815, 5]"]
    222[Solid2d]
  end
  subgraph path50 [Path]
    50["Path<br>[1839, 1890, 5]"]
    137["Segment<br>[1839, 1890, 5]"]
    250[Solid2d]
  end
  subgraph path51 [Path]
    51["Path<br>[2392, 2428, 5]"]
    138["Segment<br>[2434, 2451, 5]"]
    139["Segment<br>[2457, 2508, 5]"]
    140["Segment<br>[2514, 2534, 5]"]
    141["Segment<br>[2540, 2646, 5]"]
    142["Segment<br>[2652, 2672, 5]"]
    143["Segment<br>[2678, 2724, 5]"]
    144["Segment<br>[2730, 2772, 5]"]
    145["Segment<br>[2778, 2815, 5]"]
    146["Segment<br>[2821, 2843, 5]"]
    147["Segment<br>[2897, 2904, 5]"]
    229[Solid2d]
  end
  subgraph path52 [Path]
    52["Path<br>[3238, 3276, 5]"]
    148["Segment<br>[3282, 3302, 5]"]
    149["Segment<br>[3308, 3358, 5]"]
    150["Segment<br>[3364, 3384, 5]"]
    151["Segment<br>[3390, 3438, 5]"]
    152["Segment<br>[3444, 3464, 5]"]
    153["Segment<br>[3470, 3518, 5]"]
    154["Segment<br>[3524, 3544, 5]"]
    155["Segment<br>[3550, 3568, 5]"]
    156["Segment<br>[3574, 3593, 5]"]
    157["Segment<br>[3599, 3621, 5]"]
  end
  subgraph path53 [Path]
    53["Path<br>[3718, 3756, 5]"]
    158["Segment<br>[3762, 3782, 5]"]
    159["Segment<br>[3788, 3837, 5]"]
    160["Segment<br>[3843, 3863, 5]"]
    161["Segment<br>[3869, 3916, 5]"]
    162["Segment<br>[3922, 3942, 5]"]
    163["Segment<br>[3948, 3995, 5]"]
    164["Segment<br>[4001, 4021, 5]"]
    165["Segment<br>[4027, 4045, 5]"]
    166["Segment<br>[4051, 4068, 5]"]
    167["Segment<br>[4074, 4112, 5]"]
    168["Segment<br>[4118, 4140, 5]"]
  end
  subgraph path54 [Path]
    54["Path<br>[4368, 4396, 5]"]
    169["Segment<br>[4402, 4421, 5]"]
    170["Segment<br>[4427, 4473, 5]"]
    171["Segment<br>[4479, 4530, 5]"]
    172["Segment<br>[4536, 4600, 5]"]
    173["Segment<br>[4606, 4659, 5]"]
    174["Segment<br>[4665, 4732, 5]"]
    175["Segment<br>[4738, 4818, 5]"]
    176["Segment<br>[4824, 4870, 5]"]
    177["Segment<br>[4876, 4939, 5]"]
    178["Segment<br>[4945, 5009, 5]"]
    179["Segment<br>[5015, 5052, 5]"]
    180["Segment<br>[5058, 5128, 5]"]
    181["Segment<br>[5134, 5141, 5]"]
    223[Solid2d]
  end
  subgraph path55 [Path]
    55["Path<br>[5690, 5747, 5]"]
    182["Segment<br>[5690, 5747, 5]"]
    227[Solid2d]
  end
  subgraph path56 [Path]
    56["Path<br>[311, 353, 6]"]
    183["Segment<br>[359, 376, 6]"]
    184["Segment<br>[382, 419, 6]"]
    185["Segment<br>[425, 443, 6]"]
    186["Segment<br>[449, 487, 6]"]
    187["Segment<br>[493, 511, 6]"]
    188["Segment<br>[517, 554, 6]"]
    189["Segment<br>[560, 578, 6]"]
    190["Segment<br>[584, 622, 6]"]
    191["Segment<br>[628, 716, 6]"]
    192["Segment<br>[722, 773, 6]"]
  end
  subgraph path57 [Path]
    57["Path<br>[899, 941, 6]"]
    193["Segment<br>[947, 965, 6]"]
    194["Segment<br>[971, 1009, 6]"]
    195["Segment<br>[1015, 1033, 6]"]
    196["Segment<br>[1039, 1076, 6]"]
    197["Segment<br>[1082, 1101, 6]"]
    198["Segment<br>[1107, 1145, 6]"]
    199["Segment<br>[1151, 1169, 6]"]
    200["Segment<br>[1175, 1212, 6]"]
    201["Segment<br>[1218, 1309, 6]"]
    202["Segment<br>[1315, 1367, 6]"]
  end
  subgraph path58 [Path]
    58["Path<br>[1528, 1593, 6]"]
    203["Segment<br>[1528, 1593, 6]"]
    230[Solid2d]
  end
  subgraph path59 [Path]
    59["Path<br>[1642, 1707, 6]"]
    204["Segment<br>[1642, 1707, 6]"]
    224[Solid2d]
  end
  subgraph path60 [Path]
    60["Path<br>[1865, 1918, 6]"]
    205["Segment<br>[1924, 1975, 6]"]
    206["Segment<br>[1981, 2019, 6]"]
    207["Segment<br>[2025, 2074, 6]"]
    208["Segment<br>[2080, 2118, 6]"]
    209["Segment<br>[2124, 2153, 6]"]
  end
  subgraph path61 [Path]
    61["Path<br>[2280, 2333, 6]"]
    210["Segment<br>[2339, 2390, 6]"]
    211["Segment<br>[2396, 2434, 6]"]
    212["Segment<br>[2440, 2489, 6]"]
    213["Segment<br>[2495, 2533, 6]"]
    214["Segment<br>[2539, 2568, 6]"]
  end
  subgraph path62 [Path]
    62["Path<br>[2736, 2812, 6]"]
    215["Segment<br>[2736, 2812, 6]"]
    251[Solid2d]
  end
  subgraph path63 [Path]
    63["Path<br>[2863, 2939, 6]"]
    216["Segment<br>[2863, 2939, 6]"]
    240[Solid2d]
  end
  subgraph path64 [Path]
    64["Path<br>[360, 389, 7]"]
    217["Segment<br>[395, 458, 7]"]
    218["Segment<br>[464, 559, 7]"]
    219["Segment<br>[565, 682, 7]"]
    220["Segment<br>[688, 773, 7]"]
    221["Segment<br>[779, 786, 7]"]
    236[Solid2d]
  end
  1["Plane<br>[300, 317, 2]"]
  2["Plane<br>[200, 227, 3]"]
  3["Plane<br>[473, 501, 3]"]
  4["Plane<br>[193, 210, 4]"]
  5["Plane<br>[554, 592, 4]"]
  6["Plane<br>[554, 592, 4]"]
  7["Plane<br>[554, 592, 4]"]
  8["Plane<br>[249, 278, 5]"]
  9["Plane<br>[686, 724, 5]"]
  10["Plane<br>[1137, 1165, 5]"]
  11["Plane<br>[1721, 1759, 5]"]
  12["Plane<br>[2357, 2385, 5]"]
  13["Plane<br>[3207, 3225, 5]"]
  14["Plane<br>[4345, 4362, 5]"]
  15["Plane<br>[263, 304, 6]"]
  16["Plane<br>[851, 892, 6]"]
  17["Plane<br>[1468, 1510, 6]"]
  18["Plane<br>[1818, 1858, 6]"]
  19["Plane<br>[2233, 2273, 6]"]
  20["Plane<br>[2677, 2717, 6]"]
  21["Plane<br>[336, 354, 7]"]
  256["Sweep Extrusion<br>[1535, 1554, 2]"]
  257["Sweep Extrusion<br>[2388, 2408, 2]"]
  258["Sweep Extrusion<br>[2388, 2408, 2]"]
  259["Sweep Extrusion<br>[2388, 2408, 2]"]
  260["Sweep Extrusion<br>[2388, 2408, 2]"]
  261["Sweep Extrusion<br>[3147, 3182, 2]"]
  262["Sweep Extrusion<br>[3347, 3385, 2]"]
  263["Sweep Extrusion<br>[4763, 4782, 2]"]
  264["Sweep Extrusion<br>[4942, 4962, 2]"]
  265["Sweep Extrusion<br>[5051, 5072, 2]"]
  266["Sweep Extrusion<br>[327, 347, 3]"]
  267["Sweep Extrusion<br>[549, 570, 3]"]
  268["Sweep Extrusion<br>[288, 318, 4]"]
  269["Sweep Loft<br>[1954, 1973, 4]"]
  270["Sweep Sweep<br>[858, 883, 5]"]
  271["Sweep Sweep<br>[1897, 1925, 5]"]
  272["Sweep Extrusion<br>[2910, 2929, 5]"]
  273["Sweep Extrusion<br>[3651, 3704, 5]"]
  274["Sweep Extrusion<br>[4170, 4231, 5]"]
  275["Sweep Extrusion<br>[5147, 5267, 5]"]
  276["Sweep Extrusion<br>[5753, 5786, 5]"]
  277["Sweep Sweep<br>[1599, 1624, 6]"]
  278["Sweep Sweep<br>[1713, 1738, 6]"]
  279["Sweep Sweep<br>[2818, 2844, 6]"]
  280["Sweep Sweep<br>[2945, 2971, 6]"]
  281["Sweep Extrusion<br>[792, 812, 7]"]
  282[Wall]
  283[Wall]
  284[Wall]
  285[Wall]
  286[Wall]
  287[Wall]
  288[Wall]
  289[Wall]
  290[Wall]
  291[Wall]
  292[Wall]
  293[Wall]
  294[Wall]
  295[Wall]
  296[Wall]
  297[Wall]
  298[Wall]
  299[Wall]
  300[Wall]
  301[Wall]
  302[Wall]
  303[Wall]
  304[Wall]
  305[Wall]
  306[Wall]
  307[Wall]
  308[Wall]
  309[Wall]
  310[Wall]
  311[Wall]
  312[Wall]
  313[Wall]
  314[Wall]
  315[Wall]
  316[Wall]
  317[Wall]
  318[Wall]
  319[Wall]
  320[Wall]
  321[Wall]
  322[Wall]
  323[Wall]
  324[Wall]
  325[Wall]
  326[Wall]
  327[Wall]
  328[Wall]
  329[Wall]
  330[Wall]
  331[Wall]
  332[Wall]
  333[Wall]
  334[Wall]
  335[Wall]
  336[Wall]
  337[Wall]
  338[Wall]
  339["Cap Start"]
  340["Cap Start"]
  341["Cap Start"]
  342["Cap Start"]
  343["Cap Start"]
  344["Cap Start"]
  345["Cap Start"]
  346["Cap Start"]
  347["Cap Start"]
  348["Cap Start"]
  349["Cap Start"]
  350["Cap Start"]
  351["Cap Start"]
  352["Cap End"]
  353["Cap End"]
  354["Cap End"]
  355["Cap End"]
  356["Cap End"]
  357["Cap End"]
  358["Cap End"]
  359["Cap End"]
  360["Cap End"]
  361["Cap End"]
  362["Cap End"]
  363["Cap End"]
  364["Cap End"]
  365["Cap End"]
  366["Cap End"]
  367["Cap End"]
  368["Cap End"]
  369["SweepEdge Opposite"]
  370["SweepEdge Opposite"]
  371["SweepEdge Opposite"]
  372["SweepEdge Opposite"]
  373["SweepEdge Opposite"]
  374["SweepEdge Opposite"]
  375["SweepEdge Opposite"]
  376["SweepEdge Opposite"]
  377["SweepEdge Opposite"]
  378["SweepEdge Opposite"]
  379["SweepEdge Opposite"]
  380["SweepEdge Opposite"]
  381["SweepEdge Opposite"]
  382["SweepEdge Opposite"]
  383["SweepEdge Opposite"]
  384["SweepEdge Opposite"]
  385["SweepEdge Opposite"]
  386["SweepEdge Opposite"]
  387["SweepEdge Opposite"]
  388["SweepEdge Opposite"]
  389["SweepEdge Opposite"]
  390["SweepEdge Opposite"]
  391["SweepEdge Opposite"]
  392["SweepEdge Opposite"]
  393["SweepEdge Opposite"]
  394["SweepEdge Opposite"]
  395["SweepEdge Opposite"]
  396["SweepEdge Opposite"]
  397["SweepEdge Opposite"]
  398["SweepEdge Opposite"]
  399["SweepEdge Opposite"]
  400["SweepEdge Opposite"]
  401["SweepEdge Opposite"]
  402["SweepEdge Opposite"]
  403["SweepEdge Opposite"]
  404["SweepEdge Opposite"]
  405["SweepEdge Opposite"]
  406["SweepEdge Opposite"]
  407["SweepEdge Opposite"]
  408["SweepEdge Opposite"]
  409["SweepEdge Opposite"]
  410["SweepEdge Opposite"]
  411["SweepEdge Opposite"]
  412["SweepEdge Opposite"]
  413["SweepEdge Opposite"]
  414["SweepEdge Opposite"]
  415["SweepEdge Opposite"]
  416["SweepEdge Opposite"]
  417["SweepEdge Opposite"]
  418["SweepEdge Opposite"]
  419["SweepEdge Opposite"]
  420["SweepEdge Opposite"]
  421["SweepEdge Opposite"]
  422["SweepEdge Opposite"]
  423["SweepEdge Opposite"]
  424["SweepEdge Opposite"]
  425["SweepEdge Opposite"]
  426["SweepEdge Adjacent"]
  427["SweepEdge Adjacent"]
  428["SweepEdge Adjacent"]
  429["SweepEdge Adjacent"]
  430["SweepEdge Adjacent"]
  431["SweepEdge Adjacent"]
  432["SweepEdge Adjacent"]
  433["SweepEdge Adjacent"]
  434["SweepEdge Adjacent"]
  435["SweepEdge Adjacent"]
  436["SweepEdge Adjacent"]
  437["SweepEdge Adjacent"]
  438["SweepEdge Adjacent"]
  439["SweepEdge Adjacent"]
  440["SweepEdge Adjacent"]
  441["SweepEdge Adjacent"]
  442["SweepEdge Adjacent"]
  443["SweepEdge Adjacent"]
  444["SweepEdge Adjacent"]
  445["SweepEdge Adjacent"]
  446["SweepEdge Adjacent"]
  447["SweepEdge Adjacent"]
  448["SweepEdge Adjacent"]
  449["SweepEdge Adjacent"]
  450["SweepEdge Adjacent"]
  451["SweepEdge Adjacent"]
  452["SweepEdge Adjacent"]
  453["SweepEdge Adjacent"]
  454["SweepEdge Adjacent"]
  455["SweepEdge Adjacent"]
  456["SweepEdge Adjacent"]
  457["SweepEdge Adjacent"]
  458["SweepEdge Adjacent"]
  459["SweepEdge Adjacent"]
  460["SweepEdge Adjacent"]
  461["SweepEdge Adjacent"]
  462["SweepEdge Adjacent"]
  463["SweepEdge Adjacent"]
  464["SweepEdge Adjacent"]
  465["SweepEdge Adjacent"]
  466["SweepEdge Adjacent"]
  467["SweepEdge Adjacent"]
  468["SweepEdge Adjacent"]
  469["SweepEdge Adjacent"]
  470["SweepEdge Adjacent"]
  471["SweepEdge Adjacent"]
  472["SweepEdge Adjacent"]
  473["SweepEdge Adjacent"]
  474["SweepEdge Adjacent"]
  475["SweepEdge Adjacent"]
  476["SweepEdge Adjacent"]
  477["SweepEdge Adjacent"]
  478["SweepEdge Adjacent"]
  479["SweepEdge Adjacent"]
  480["SweepEdge Adjacent"]
  481["SweepEdge Adjacent"]
  482["SweepEdge Adjacent"]
  483["EdgeCut Fillet<br>[5113, 5624, 2]"]
  484["EdgeCut Fillet<br>[5113, 5624, 2]"]
  485["EdgeCut Fillet<br>[5113, 5624, 2]"]
  486["EdgeCut Fillet<br>[5113, 5624, 2]"]
  487["EdgeCut Fillet<br>[5113, 5624, 2]"]
  488["EdgeCut Fillet<br>[5113, 5624, 2]"]
  489["EdgeCut Fillet<br>[5113, 5624, 2]"]
  490["EdgeCut Fillet<br>[5113, 5624, 2]"]
  491["EdgeCut Fillet<br>[353, 411, 3]"]
  492["EdgeCut Fillet<br>[353, 411, 3]"]
  493["EdgeCut Fillet<br>[324, 382, 4]"]
  494["EdgeCut Fillet<br>[5273, 5543, 5]"]
  495["EdgeCut Fillet<br>[5273, 5543, 5]"]
  496["EdgeCut Fillet<br>[5273, 5543, 5]"]
  497["EdgeCut Fillet<br>[5273, 5543, 5]"]
  498["EdgeCut Chamfer<br>[5792, 5921, 5]"]
  499["EdgeCut Chamfer<br>[853, 1120, 7]"]
  500["EdgeCut Chamfer<br>[853, 1120, 7]"]
  501["EdgeCut Chamfer<br>[853, 1120, 7]"]
  502["EdgeCut Chamfer<br>[853, 1120, 7]"]
  1 --- 22
  1 --- 23
  1 --- 24
  1 --- 25
  1 --- 26
  1 --- 27
  2 --- 39
  3 --- 40
  4 --- 41
  5 --- 44
  6 --- 43
  7 --- 42
  8 --- 45
  9 --- 46
  9 --- 47
  10 --- 48
  11 --- 49
  11 --- 50
  12 --- 51
  13 --- 52
  13 --- 53
  14 --- 54
  15 --- 56
  16 --- 57
  17 --- 58
  17 --- 59
  18 --- 60
  19 --- 61
  20 --- 62
  20 --- 63
  21 --- 64
  22 --- 65
  22 --- 66
  22 --- 67
  22 --- 68
  22 --- 69
  22 --- 247
  22 ---- 256
  23 --- 70
  23 --- 228
  24 --- 71
  24 --- 244
  25 --- 72
  25 --- 238
  26 --- 73
  26 --- 255
  27 --- 74
  27 --- 233
  28 --- 75
  28 --- 76
  28 --- 77
  28 --- 78
  28 --- 79
  28 --- 80
  28 --- 81
  28 --- 82
  28 --- 83
  28 --- 246
  28 ---- 258
  362 --- 28
  29 --- 84
  29 --- 85
  29 --- 86
  29 --- 87
  29 --- 88
  29 --- 89
  29 --- 90
  29 --- 91
  29 ---- 261
  362 --- 29
  30 --- 92
  30 --- 239
  30 ---- 262
  361 --- 30
  31 --- 93
  31 --- 94
  31 --- 95
  31 --- 96
  31 --- 97
  31 --- 253
  31 ---- 263
  361 --- 31
  32 --- 98
  32 --- 225
  361 --- 32
  33 --- 99
  33 --- 226
  361 --- 33
  34 --- 100
  34 --- 252
  361 --- 34
  35 --- 101
  35 --- 249
  361 --- 35
  36 --- 102
  36 --- 231
  361 --- 36
  37 --- 103
  37 --- 248
  37 ---- 264
  362 --- 37
  38 --- 104
  38 --- 242
  38 ---- 265
  357 --- 38
  39 --- 105
  39 --- 237
  39 ---- 266
  40 --- 106
  40 --- 245
  40 ---- 267
  41 --- 107
  41 --- 243
  41 ---- 268
  42 --- 109
  42 --- 110
  42 --- 113
  42 --- 114
  42 --- 118
  42 --- 235
  42 x---> 269
  43 --- 108
  43 --- 111
  43 --- 112
  43 --- 115
  43 --- 117
  43 --- 241
  43 ---- 269
  44 --- 116
  44 --- 254
  44 x---> 269
  44 x--> 404
  44 x--> 405
  44 x--> 406
  44 x--> 407
  45 --- 119
  45 --- 120
  45 --- 121
  45 --- 122
  45 --- 123
  45 --- 124
  46 --- 125
  46 --- 232
  46 ---- 270
  47 --- 126
  47 --- 234
  48 --- 127
  48 --- 128
  48 --- 129
  48 --- 130
  48 --- 131
  48 --- 132
  48 --- 133
  48 --- 134
  48 --- 135
  49 --- 136
  49 --- 222
  49 ---- 271
  50 --- 137
  50 --- 250
  51 --- 138
  51 --- 139
  51 --- 140
  51 --- 141
  51 --- 142
  51 --- 143
  51 --- 144
  51 --- 145
  51 --- 146
  51 --- 147
  51 --- 229
  51 ---- 272
  52 --- 148
  52 --- 149
  52 --- 150
  52 --- 151
  52 --- 152
  52 --- 153
  52 --- 154
  52 --- 155
  52 --- 156
  52 --- 157
  52 ---- 273
  53 --- 158
  53 --- 159
  53 --- 160
  53 --- 161
  53 --- 162
  53 --- 163
  53 --- 164
  53 --- 165
  53 --- 166
  53 --- 167
  53 --- 168
  53 ---- 274
  54 --- 169
  54 --- 170
  54 --- 171
  54 --- 172
  54 --- 173
  54 --- 174
  54 --- 175
  54 --- 176
  54 --- 177
  54 --- 178
  54 --- 179
  54 --- 180
  54 --- 181
  54 --- 223
  54 ---- 275
  55 --- 182
  55 --- 227
  55 ---- 276
  333 --- 55
  56 --- 183
  56 --- 184
  56 --- 185
  56 --- 186
  56 --- 187
  56 --- 188
  56 --- 189
  56 --- 190
  56 --- 191
  56 --- 192
  57 --- 193
  57 --- 194
  57 --- 195
  57 --- 196
  57 --- 197
  57 --- 198
  57 --- 199
  57 --- 200
  57 --- 201
  57 --- 202
  58 --- 203
  58 --- 230
  58 ---- 277
  59 --- 204
  59 --- 224
  59 ---- 278
  60 --- 205
  60 --- 206
  60 --- 207
  60 --- 208
  60 --- 209
  61 --- 210
  61 --- 211
  61 --- 212
  61 --- 213
  61 --- 214
  62 --- 215
  62 --- 251
  62 ---- 279
  63 --- 216
  63 --- 240
  63 ---- 280
  64 --- 217
  64 --- 218
  64 --- 219
  64 --- 220
  64 --- 221
  64 --- 236
  64 ---- 281
  65 --- 304
  65 x--> 349
  65 --- 391
  65 --- 448
  66 --- 307
  66 x--> 349
  66 --- 392
  66 --- 449
  67 --- 306
  67 x--> 349
  67 --- 393
  67 --- 450
  68 --- 305
  68 x--> 349
  68 --- 394
  68 --- 451
  75 --- 291
  75 x--> 362
  75 --- 378
  75 --- 435
  76 --- 298
  76 x--> 362
  76 --- 379
  76 --- 436
  77 --- 297
  77 x--> 362
  77 --- 380
  77 --- 437
  78 --- 296
  78 x--> 362
  78 --- 381
  78 --- 438
  79 --- 292
  79 x--> 362
  79 --- 382
  79 --- 439
  80 --- 294
  80 x--> 362
  80 --- 383
  80 --- 440
  81 --- 293
  81 x--> 362
  81 --- 384
  81 --- 441
  82 --- 295
  82 x--> 362
  82 --- 385
  82 --- 442
  84 --- 282
  84 x--> 362
  84 --- 369
  84 --- 426
  85 --- 285
  85 x--> 362
  85 --- 370
  85 --- 427
  86 --- 289
  86 x--> 362
  86 --- 371
  86 --- 428
  87 --- 286
  87 x--> 362
  87 --- 372
  87 --- 429
  88 --- 287
  88 x--> 362
  88 --- 373
  88 --- 430
  89 --- 284
  89 x--> 362
  89 --- 374
  89 --- 431
  90 --- 288
  90 x--> 362
  90 --- 375
  90 --- 432
  91 --- 283
  91 x--> 362
  91 --- 376
  91 --- 433
  92 --- 315
  92 x--> 361
  92 --- 402
  92 --- 459
  93 --- 310
  93 x--> 340
  93 --- 395
  93 --- 452
  94 --- 308
  94 x--> 340
  94 --- 396
  94 --- 453
  95 --- 311
  95 x--> 340
  95 --- 397
  95 --- 454
  96 --- 309
  96 x--> 340
  96 --- 398
  96 --- 455
  103 --- 301
  103 x--> 362
  103 --- 388
  103 --- 445
  104 --- 302
  104 x--> 357
  104 --- 389
  104 --- 446
  105 --- 321
  105 x--> 339
  105 --- 408
  105 --- 465
  105 --- 491
  106 --- 299
  106 x--> 346
  106 --- 386
  106 --- 443
  107 --- 300
  107 x--> 345
  107 --- 387
  107 --- 444
  108 --- 317
  108 x--> 365
  108 --- 404
  108 --- 461
  111 --- 318
  111 x--> 365
  111 --- 405
  111 --- 462
  112 --- 319
  112 x--> 365
  112 --- 406
  112 --- 463
  115 --- 320
  115 x--> 365
  115 --- 407
  115 --- 464
  125 --- 312
  125 x--> 342
  125 --- 399
  125 --- 456
  136 --- 290
  136 x--> 344
  136 --- 377
  136 --- 434
  169 --- 329
  169 x--> 351
  169 --- 421
  169 --- 478
  170 --- 323
  170 x--> 351
  170 --- 420
  170 --- 477
  171 --- 334
  171 x--> 351
  171 --- 419
  171 --- 476
  172 --- 332
  172 x--> 351
  172 --- 418
  172 --- 475
  173 --- 326
  173 x--> 351
  173 --- 417
  173 --- 474
  174 --- 330
  174 x--> 351
  174 --- 416
  174 --- 473
  174 --- 497
  175 --- 333
  175 x--> 351
  175 --- 415
  175 --- 472
  176 --- 328
  176 x--> 351
  176 --- 414
  176 --- 471
  177 --- 325
  177 x--> 351
  177 --- 413
  177 --- 470
  178 --- 324
  178 x--> 351
  178 --- 412
  178 --- 469
  179 --- 331
  179 x--> 351
  179 --- 411
  179 --- 468
  180 --- 327
  180 x--> 351
  180 --- 410
  180 --- 467
  180 --- 496
  182 --- 314
  182 x--> 333
  182 --- 401
  182 --- 458
  182 --- 498
  203 --- 313
  203 x--> 363
  203 --- 400
  203 --- 457
  204 --- 316
  204 x--> 347
  204 --- 403
  204 --- 460
  215 --- 303
  215 x--> 358
  215 --- 390
  215 --- 447
  216 --- 322
  216 x--> 355
  216 --- 409
  216 --- 466
  217 --- 338
  217 x--> 350
  217 --- 422
  217 --- 479
  218 --- 336
  218 x--> 350
  218 --- 423
  218 --- 480
  219 --- 335
  219 x--> 350
  219 --- 424
  219 --- 481
  220 --- 337
  220 x--> 350
  220 --- 425
  220 --- 482
  256 --- 304
  256 --- 305
  256 --- 306
  256 --- 307
  256 --- 349
  256 --- 362
  256 --- 391
  256 --- 392
  256 --- 393
  256 --- 394
  256 --- 448
  256 --- 449
  256 --- 450
  256 --- 451
  258 --- 291
  258 --- 292
  258 --- 293
  258 --- 294
  258 --- 295
  258 --- 296
  258 --- 297
  258 --- 298
  258 --- 378
  258 --- 379
  258 --- 380
  258 --- 381
  258 --- 382
  258 --- 383
  258 --- 384
  258 --- 385
  258 --- 435
  258 --- 436
  258 --- 437
  258 --- 438
  258 --- 439
  258 --- 440
  258 --- 441
  258 --- 442
  261 --- 282
  261 --- 283
  261 --- 284
  261 --- 285
  261 --- 286
  261 --- 287
  261 --- 288
  261 --- 289
  261 --- 361
  261 --- 369
  261 --- 370
  261 --- 371
  261 --- 372
  261 --- 373
  261 --- 374
  261 --- 375
  261 --- 376
  261 --- 426
  261 --- 427
  261 --- 428
  261 --- 429
  261 --- 430
  261 --- 431
  261 --- 432
  261 --- 433
  262 --- 315
  262 --- 402
  262 --- 459
  263 --- 308
  263 --- 309
  263 --- 310
  263 --- 311
  263 --- 340
  263 --- 353
  263 --- 395
  263 --- 396
  263 --- 397
  263 --- 398
  263 --- 452
  263 --- 453
  263 --- 454
  263 --- 455
  264 --- 301
  264 --- 357
  264 --- 388
  264 --- 445
  265 --- 302
  265 --- 389
  265 --- 446
  266 --- 321
  266 --- 339
  266 --- 352
  266 --- 408
  266 --- 465
  267 --- 299
  267 --- 346
  267 --- 360
  267 --- 386
  267 --- 443
  268 --- 300
  268 --- 345
  268 --- 356
  268 --- 387
  268 --- 444
  269 --- 317
  269 --- 318
  269 --- 319
  269 --- 320
  269 --- 365
  269 --- 366
  269 --- 404
  269 --- 405
  269 --- 406
  269 --- 407
  269 --- 461
  269 --- 462
  269 --- 463
  269 --- 464
  270 --- 312
  270 --- 341
  270 --- 342
  270 --- 399
  270 --- 456
  271 --- 290
  271 --- 343
  271 --- 344
  271 --- 377
  271 --- 434
  275 --- 323
  275 --- 324
  275 --- 325
  275 --- 326
  275 --- 327
  275 --- 328
  275 --- 329
  275 --- 330
  275 --- 331
  275 --- 332
  275 --- 333
  275 --- 334
  275 --- 351
  275 --- 368
  275 --- 410
  275 --- 411
  275 --- 412
  275 --- 413
  275 --- 414
  275 --- 415
  275 --- 416
  275 --- 417
  275 --- 418
  275 --- 419
  275 --- 420
  275 --- 421
  275 --- 467
  275 --- 468
  275 --- 469
  275 --- 470
  275 --- 471
  275 --- 472
  275 --- 473
  275 --- 474
  275 --- 475
  275 --- 476
  275 --- 477
  275 --- 478
  276 --- 314
  276 --- 401
  276 --- 458
  277 --- 313
  277 --- 363
  277 --- 364
  277 --- 400
  277 --- 457
  278 --- 316
  278 --- 347
  278 --- 348
  278 --- 403
  278 --- 460
  279 --- 303
  279 --- 358
  279 --- 359
  279 --- 390
  279 --- 447
  280 --- 322
  280 --- 354
  280 --- 355
  280 --- 409
  280 --- 466
  281 --- 335
  281 --- 336
  281 --- 337
  281 --- 338
  281 --- 350
  281 --- 367
  281 --- 422
  281 --- 423
  281 --- 424
  281 --- 425
  281 --- 479
  281 --- 480
  281 --- 481
  281 --- 482
  282 --- 369
  282 --- 426
  433 <--x 282
  283 --- 376
  432 <--x 283
  283 --- 433
  284 --- 374
  430 <--x 284
  284 --- 431
  285 --- 370
  426 <--x 285
  285 --- 427
  286 --- 372
  428 <--x 286
  286 --- 429
  287 --- 373
  429 <--x 287
  287 --- 430
  288 --- 375
  431 <--x 288
  288 --- 432
  289 --- 371
  427 <--x 289
  289 --- 428
  290 --- 377
  290 --- 434
  291 --- 378
  291 --- 435
  442 <--x 291
  292 --- 382
  438 <--x 292
  292 --- 439
  293 --- 384
  440 <--x 293
  293 --- 441
  294 --- 383
  439 <--x 294
  294 --- 440
  295 --- 385
  441 <--x 295
  295 --- 442
  296 --- 381
  437 <--x 296
  296 --- 438
  297 --- 380
  436 <--x 297
  297 --- 437
  298 --- 379
  435 <--x 298
  298 --- 436
  299 --- 386
  299 --- 443
  300 --- 387
  300 --- 444
  301 --- 388
  301 --- 445
  302 --- 389
  302 --- 446
  303 --- 390
  303 --- 447
  304 --- 391
  304 --- 448
  451 <--x 304
  305 --- 394
  450 <--x 305
  305 --- 451
  306 --- 393
  449 <--x 306
  306 --- 450
  307 --- 392
  448 <--x 307
  307 --- 449
  308 --- 396
  452 <--x 308
  308 --- 453
  309 --- 398
  454 <--x 309
  309 --- 455
  310 --- 395
  310 --- 452
  455 <--x 310
  311 --- 397
  453 <--x 311
  311 --- 454
  312 --- 399
  312 --- 456
  313 --- 400
  313 --- 457
  314 --- 401
  314 --- 458
  315 --- 402
  315 --- 459
  316 --- 403
  316 --- 460
  317 --- 404
  317 --- 461
  462 <--x 317
  318 --- 405
  318 --- 462
  463 <--x 318
  319 --- 406
  319 --- 463
  464 <--x 319
  320 --- 407
  461 <--x 320
  320 --- 464
  321 --- 408
  321 --- 465
  322 --- 409
  322 --- 466
  323 --- 420
  323 --- 477
  478 <--x 323
  324 --- 412
  324 --- 469
  470 <--x 324
  325 --- 413
  325 --- 470
  471 <--x 325
  401 <--x 326
  326 --- 417
  326 --- 474
  475 <--x 326
  327 --- 410
  327 --- 467
  468 <--x 327
  328 --- 414
  328 --- 471
  472 <--x 328
  329 --- 421
  467 <--x 329
  329 --- 478
  330 --- 416
  330 --- 473
  474 <--x 330
  331 --- 411
  331 --- 468
  469 <--x 331
  332 --- 418
  332 --- 475
  476 <--x 332
  333 --- 415
  333 --- 472
  473 <--x 333
  334 --- 419
  334 --- 476
  477 <--x 334
  335 --- 424
  480 <--x 335
  335 --- 481
  336 --- 423
  479 <--x 336
  336 --- 480
  337 --- 425
  481 <--x 337
  337 --- 482
  338 --- 422
  338 --- 479
  482 <--x 338
  399 <--x 341
  377 <--x 343
  403 <--x 348
  378 <--x 349
  379 <--x 349
  380 <--x 349
  381 <--x 349
  382 <--x 349
  383 <--x 349
  384 <--x 349
  385 <--x 349
  408 <--x 352
  395 <--x 353
  396 <--x 353
  397 <--x 353
  398 <--x 353
  409 <--x 354
  387 <--x 356
  388 <--x 357
  390 <--x 359
  386 <--x 360
  369 <--x 361
  370 <--x 361
  371 <--x 361
  372 <--x 361
  373 <--x 361
  374 <--x 361
  375 <--x 361
  376 <--x 361
  389 <--x 362
  391 <--x 362
  392 <--x 362
  393 <--x 362
  394 <--x 362
  402 <--x 362
  400 <--x 364
  404 <--x 366
  405 <--x 366
  406 <--x 366
  407 <--x 366
  422 <--x 367
  423 <--x 367
  424 <--x 367
  425 <--x 367
  410 <--x 368
  411 <--x 368
  412 <--x 368
  413 <--x 368
  414 <--x 368
  415 <--x 368
  416 <--x 368
  417 <--x 368
  418 <--x 368
  419 <--x 368
  420 <--x 368
  421 <--x 368
  387 <--x 493
  408 <--x 492
  410 <--x 495
  416 <--x 494
  448 <--x 484
  449 <--x 483
  450 <--x 486
  451 <--x 485
  452 <--x 489
  453 <--x 488
  454 <--x 490
  455 <--x 487
  479 <--x 502
  480 <--x 500
  481 <--x 499
  482 <--x 501